Release Notes for IoT Field Network Director, Release 4.3
IoT FND 4.3 Software Subscriptions
Resource Management Guidelines
This release note contains the latest information about using the user interface for IoT Field Network Director (IoT FND), Release 4.3 to configure and manage IPv6 mesh endpoints, Cisco 1000 Series Connected Grid Routers (CGR 1000 or CGR), Cisco 800 Series Integrated Services Routers (C800), Cisco LoRaWAN IXM Gateway, Cisco 500 Series WPAN Industrial Routers (IR 500), Cisco 5921 (C5921) Embedded Service Routers, and Cisco 800 Series Industrial Integrated Services Routers (IR 807, IR 809 and IR 829), Cisco 1101 Industrial Integrated Services Router (IR1101), and Cisco Industrial Compute Gateway IC3000 Management.
The routers are easy to deploy and manage, with cutting-edge, scalable, multi-core separate data and control plane capabilities. and Cisco Industrial Compute Gateway IC3000 Management.
IoT Field Network Director (IoT FND) is a software platform that helps to enable a clear separation between communications network management and operational applications such as distribution management systems, outage management systems, and meter data management in utilities. Use the software to manage a multi-service network of routers or a combination of routers and endpoint devices deployed with end-to-end security for your specific use case.
IoT FND is highly secure, scalable, and modular. Its pluggable architecture can enable network connectivity to a multi-vendor ecosystem of legacy and next-generation IoT devices.
Listed below are documents that support this release:
■ Cisco IoT FND 4.3.1 with Integrated Application Management with Postgres and Influx Database Deployment on OVA, VMware ESXi 5.5/6.0
■ Cisco IoT Field Network Director Installation Guide-Oracle Deployment, Release 4.3.x
■ IoT FND 4.3 Deployment on VMware ESXi 5.5 and 6.0
■ Cisco IoT Field Network Director Post-Installation Guide-Release 4.3.x - High Availability and Tunnel Provisioning
■ Cisco IoT Field Network Director User Guide, Release 4.3.x
You can find all of the docs above at the Support Documentation page for the IoT Field Network Director
Please refer to the Cisco IoT Field Network Directo r data sheet for an extensive list of the product capabilities and the required licenses to support specific platforms management by the FND application.
Note: IoT FND was previously named Connected Grid Network Management System (CG-NMS) for releases 2.x and 1.x.
Be sure to refer to the following related CGR 1000 and NMS system documentation:
■ Cisco IoT Device Manager, Release 5.4
■ Cisco Connected Grid WPAN Module for CGR 1000 Series Installation and Cisco Resilient Mesh Configuration Guide (Cisco IOS)
This document uses the following conventions.
Note: Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.
Caution: Means reader be careful. In this situation, you might perform an action that could result in equipment damage or loss of data.
Warning: IMPORTANT SAFETY INSTRUCTIONS
Means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device.
SAVE THESE INSTRUCTIONS
Note: Do not use an underscore(_) in the FND hostname or OVA template names.
Note: For optimal performance, ensure that the network ping latency between the FND Application Server and Database Server is < 1ms.
New Features in IoT FND 4.3 lists new platforms and features that are managed in IoT FND 4.3.
Cisco 1101 Industrial Integrated Services Router (IR1101) Management Support |
The Cisco IR1101 Industrial Integrated Services Router is a next generation modular industrial router which has a base module with additional Pluggable Modules that can be added. The Pluggable Module provides the flexibility of adding different interfaces to the IR1101 platform, for example, a cellular module. |
IR1101 Industrial Integrated Services Router Hardware Installation Guide |
|
You can manage IC3000 with an integrated FND and Fog Director OVA software bundle. |
|||
Device Contextual User Interface (UI) for Router Only, Gateway and AMI Deployments |
For example, if you are configuring IR809/IR829 gateways or add a license for the IR800, only the related fields, device-specific details, groups or pages for those platforms appear on the user interface. |
||
Use to limit the actions that a user can see or perform in FND. Items the user can select from a menu are in bold text and those menus the user cannot access are in faint, fine text. For example, in the CONFIG menu, a user with a Device Health permission can view details on Firmware Updates, Device File Management, Rules and Groups but cannot access the Device Configuration or Tunnel Provisioning pages. |
|||
Cisco Industrial Compute Gateway IC3000 Management, IOTFND-IC3000 |
IC3000 supports edge computing and communicates with IoT FND through the IOx application, Cisco Fog Director (FD). A subset of FD is provided. For FND management, you import IC3000 details using CSV files. You can perform the following IC3000 actions using the FD/FND APP Management page: DEVICES > FIELD DEVICES > APP. IoT FND manages the following items for IC3000s: ■Refresh Metrics (On demand/Periodic) Users can initiate the following actions on the IC3000 through IoT FND: |
Cisco Fog Director Reference Guide, Release 1.7 Cisco 3000 Series Industrial Compute Gateways Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
|
Two new IR800 Series Routers are supported on FND 4.3. Management features match those of the IR829G. |
Cisco IoT Field Network Director, User Guide, Release 4.3 Cisco IR829 Industrial Integrated Services Router Hardware Installation Guide |
||
For the CGR1000, you can upload and enable LoRa Modem by employing LRR uploads (CGR) and for IR807 you can use existing template configurations for IR800. |
Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
||
CGR 1240 High Availability (HA) Reference Design to Maintain Connectivity to a Mesh Network |
To ensure connectivity is maintained between CGR1240 and the mesh network, you can import a specified configuration via a CSV file into the CGR 1240. Please refer to the links noted in Related Documentation for details. HA involves deployment of two CGRs (each installed with a CGM-WPAN-OFDM module) with common switch management and FND management. |
Cisco IoT Field Network Director Post-Installation Guide, Release 4.3.x-High Availability and Tunnel Provisioning |
|
Changes entered into the ZTD Tunnel Provisioning script will now automatically update during bootstrap. No user-initiated reload required. Additionally, the status of the configuration update displays on the Device summary page. ■Bootstrapping (displays when update is in process) ■Bootstrapped (displays when process is complete) |
Cisco IoT Field Network Director Post-Installation Guide, Release 4.3.x-High Availability and Tunnel Provisioning |
||
FSK10 support added for BACT and CAM devices to support CAM Star deployments where CAM is connected to BACT devices directly for densely populated topologies. See CAM Details page: Modulation Percent Usage Chart. |
Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
||
FND now supports BACT controller devices along with existing BACT meters. BACT controllers operate on FSK 10kbps modulation. |
Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
||
FSK 10kbps and FSK 15kbps modulation details are found on the Modulation Percentage Usage Chart of the CAM. |
Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
||
New Dashlet for IR500 Distribution of Modulation Across IR500. |
New dashlet for IR500s: Distribution of Modulation Across IR500 |
Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
|
Two new mesh node network modules are introduced and managed as Endpoints: EV8KREF3 (Dual-Phy) and EV8KREF4 (RF only). Firmware images employ the same base names: EV8KREF3 and EV8KREF4 along with version numbers. |
Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
||
Upgrade Router Firmware with Image Diff File for IR809 and IR829 |
Partial image file is sent to the router to reduce file size transferred across network. At Upload Image page: Check box for option: “install patch for IOS and hypervisor from this bundle.” |
Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
|
Note: Cisco IOS Release 15.8(3) must be installed in the routers noted below for Mesh 6.0 feature support. Cisco Resilient Mesh Release 6.0 is supported on the following FND-managed platforms: ■CGM-WPAN-FSK-NA and CGR WPAN-OFDM modules Specific Mesh 6.0 features include: ■CoAP version 18 support (RFC 7252): An IETF Constrained Application Protocol (CoAP) as defined by the IETF CORE WG and will use port 61628. Note: FND 4.3 will continue to support the previous version of CoAP (Classic CoAP) and use port 61624. FND will automatically determine the CoAP protocol based on the port type required. No configuration required by the user. ■For mesh firmware images, a Kernel Version displays at the CONFIG > FIRMWARE UPDATE > Images page. Version format displays for example: ■New Firmware Display Format on the DEVICES > FIELD DEVICES > Device Info page for example: Firmware Version: 6.0 (6.0.19) |
Release Notes for Cisco Resilient Mesh Release 6.0 Release Notes for Cisco IOS Release 15.8(3)M Cisco Connected Grid WPAN Module for CGR 1000 Series Installation and Cisco Resilient Mesh Configuration Guide (Cisco IOS) IR510 WPAN Gateway and IR530 WPAN Range Extender Hardware Installation Guide |
||
■Access Control List (ACL) configuration on IR510 to perform packet filtering for enhanced security by controlling which packets move through a network and limiting access of users and devices in the network.CONFIG > DEVICE CONFIGURATION > Edit Configuration Template page ■Ability to monitor GPS info for IR510 by enabling GPS on the DEVICES > FIELD DEVICES page and pushing the configuration. You can view GPS details (location and time) for IR510 on its Device Info page under GPS Settings. ■Adaptive Modulation Setting: New Adaptive option on the CONFIG > DEVICE CONFIGURATION > Edit Configuration Template page: Enable Interface ACL check box. ■Field Devices Page Pop-up Chart shows Adaptive Modulation Change Over Time |
Release Notes for Cisco Resilient Mesh Release 6.0 Release Notes for Cisco IOS Release 15.8(3)M Cisco Connected Grid WPAN Module for CGR 1000 Series Installation and Cisco Resilient Mesh Configuration Guide (Cisco IOS) IR510 WPAN Gateway and IR530 WPAN Range Extender Hardware Installation Guide |
||
You can now view details on product licenses at the following pages in the IoT FND application for IC3000 and ESR5921. ADMIN > SYSTEM MANAGEMENT > LICENSE CENTER ■To view a list of all licenses in use by a device against the total available for that device, select the License Summary tab at the License Center page. ■To view a list of all active license files, select the License Files tab at the License Center page. |
Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
||
To view the license allocation (Assigned, Used, Available) for devices by domain, navigate to the page below: |
Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
||
ESR 5921 supports the following software images: ■IOS-ESR5900-BASE (Cannot upgrade) ■IOS-ESR5900-UNIVERSAL (Cannot downgrade to IOS-ESR5900-BASE or upgrade to IOS-SBR) ■IOS-SBR (Supports universal-f image for Itron-based hardware containing the ESR5921. Image allows for upgrade and downgrade of software versions on the SBR.) Device Type for all is esr5900 |
|||
A new VMware OVA is now available for router only deployments with embedded FND and associated databases. This OVA cannot be used for AMI deployments (mesh). |
Cisco IoT Field Network Director, User Guide, Release FND 4.3.x |
Summary of IoT FND Perpetual Product IDs provides a summary of perpetual product licenses supported on IoT FND, Release 4.3..
The IoT Field Network Director (IoT FND) is a software platform that helps to enable a clear separation between communications network management and operational applications such as distribution management systems, outage management systems, and meter data management in utilities.The software features enterprise-class fault, configuration, accounting, performance, and security (FCAPS) functionality, as defined in the OSI Network Management reference model.
Through the browser-based interface, you can manage a multi-service network of routers or a combination of routers and endpoint devices such as:
■The IC3000 Industrial Compute Gateway (IC3000) is an edge computing platform which extends the cloud computing paradigm to the edge of the network. Instead of hosting applications in a remote data center, applications can now be hosted on the edge. The Cisco IC3000 Industrial Compute Gateway is fully supported by Cisco IoT Field Network Director for zero-touch deployment, lifecycle management, application management, monitoring, and troubleshooting securely at scale from a single pane of glass.
■The Cisco IR1101 Industrial Integrated Services Router is a next generation modular industrial router which has a base module with additional Pluggable Modules that can be added. The Pluggable Module provides the flexibility of adding different interfaces to the IR1101 platform.
■Cisco 800 Series Industrial Integrated Services Routers (IR800s) are ruggedized small-form factor cellular routers for mobile/vehicle applications. IR829 includes WiFi providing connectivity in non-carpeted IT spaces, industrials, utilities, transportation, infrastructure, industrial M2M application, asset monitoring, Smart Grid, and utility applications. These devices are referred to as FARs in this document and identified by product ID (for example, IR800) on the Field Devices page. You can use IoT FND to manage the following IR800 models: IR809 and IR829.
■Cisco 800 Series Integrated Services Routers (C800s) are used in most networks as edge routers or gateways to provide WAN connectivity (cellular, satellite over Ethernet, and WiFi) to an end device (energy-distribution automation devices, other verticals such as ATMs, and mobile deployments). These devices are referred to as FARs in this document and identified by product ID (for example, C800 or C819) on the Field Devices page.
You can use IoT FND to manage the following hardened Cisco 819H devices:
■Cisco 500 Series Wireless Personal Area Network (WPAN) Industrial Routers (IR500) functions as mesh endpoints to provide RF mesh connectivity to IPv4 and serial Internet of Things (IoT) devices (for example, recloser control, cap bank control, voltage regulator controls, and other remote terminal units).
Note: CGRs, C800, IR800s, IR500s can coexist on a network, but cannot be in the same device group (see Creating Device Groups) or firmware management group. Refer to the following sections in the IoT Field Network Director User Guide for more information: “Creating Device Groups”, “Working with Mesh Endpoint Firmware Images” and “Configuring Firmware Group Settings”.
■The Cisco Wireless Gateway for LoRaWAN (IXM-LPWA-800, IXM-LPWA-900) can be a standalone product that connects to Ethernet switches or routers or connects to LAN ports of the Cisco 800 Series Industrial Integrated Services Routers. This product can be configured as a radio interface of the Cisco Industrial Routers 809 and 829. One or multiple gateways are connected to the LAN port(s) of the IR809 or IR829 via Ethernet or VLANs with encrypted links. Through this configuration, it provides LoRaWAN radio access while the IR809 or IR829 offer backhaul support for Gigabit Ethernet (electrical or fiber), 4G/LTE, or Wi-Fi.
■Cisco Interface Module for LoRaWAN is an extension module for the industrial routers, Cisco IR809 and IR829, and serves as a carrier-grade gateway for outdoor deployments. The module provides unlicensed low-power wide area (LPWA) wireless connectivity for a range of Internet of Things (IoT) use cases such as asset tracking, water and gas metering, street lighting, smart parking/building/agriculture, and environment monitoring. There are two models supported, which are differentiated by their band support (863-870 MHz ISM or 902-928 MHz ISM). The module is identified by product ID (for example, IXM-LORA-800-H-V2).
■Cisco 800 Series Access Points are integrated access points on the Cisco 800 Series Integrated Services Routers (C800). These access points are referred to as FARs in this document and identified by product ID (for example, AP800).
Note: Both the C819 and IR829 have embedded APs and we support management of those two APs.
■Cisco ASR 1000 Series Aggregation Services Routers (ASRs) and Cisco 3900 Series Integrated Service Routers (ISRs) are referred to as head-end routers or HERs in this document.
■Cisco IPv6 RF mesh endpoints (smart meters and range extenders).
Cisco IoT FND Features and Capabilities
■ Configuration Management – Cisco IoT FND facilitates configuration of large numbers of Cisco CGRs, Cisco C800s, Cisco ASRs, and endpoints. Use Cisco IoT FND to bulk-configure devices by placing them into configuration groups, editing settings in a configuration template, and then pushing the configuration to all devices in the group.
■ Device Management – Cisco IoT FND displays easy-to-read tabular views of extensive information generated by devices, allowing you to monitor your network for errors. Cisco IoT FND provides integrated Geographic Information System (GIS) map-based visualization of FAN devices such as routers and smart meters.
■ Firmware Management – Cisco IoT FND serves as a repository for Cisco CGR, Cisco C800s, Cisco IR800 (which has a different group for firmware management) and endpoint firmware images. Use Cisco IoT FND to upgrade the firmware running on groups of devices by loading the firmware image file onto the Cisco IoT FND server, and then uploading the image to the devices in the group. Once uploaded, use IoT FND to install the firmware image directly on the devices.
■ Zero Touch Deployment – Ease of deployment at scale with Zero-Touch Deployment (ZTD) of gateways and devices.
■ Tunnel Provisioning – Protects data exchanged between Cisco ASRs and Cisco CGRs and C800s, and prevents unauthorized access to Cisco CGRs to provide secure communication between devices. Cisco IoT FND can execute CLI commands to provision secure tunnels between Cisco CGRs, Cisco C800s, Cisco IR800s and Cisco ASRs. Use Cisco IoT FND to bulk-configure tunnel provisioning using groups.
■ IPv6 RPL Tree Polling – The IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) finds neighbors and establishes routes using ICMPv6 message exchanges. RPL manages routes based on the relative position of the endpoint to the CGR that is the root of the routing tree. RPL tree polling is available through the mesh nodes and CGR periodic updates. The RPL tree represents the mesh topology, which is useful for troubleshooting. For example, the hop count information received from the RPL tree can determine the use of unicast or multicast for the firmware download process. IoT FND maintains a periodically updated snapshot of the RPL tree.
■ Dynamic Multipoint VPN and Flex VPN – For Cisco C800 devices and Cisco IR800 devices, DMVPN and Flex VPN do not require IoT FND to apply device-specific tunnel configuration to the HER during tunnel provisioning. HER tunnel provisioning is only required for site-to-site VPN tunnels.
■ Dual PHY Support – IoT FND can communicate with devices that support Dual PHY (RF and PLC) traffic. IoT FND identifies CGRs running Dual PHY, enables configuration to masters and slaves, and collects metrics from masters. IoT FND also manages security keys for Dual PHY CGRs. On the mesh side, IoT FND identifies Dual PHY nodes using unique hardware IDs, enables configuration pushes and firmware updates, and collects metrics, including RF and PLC traffic ratios.
■ Device Location Tracking – For CGR 1000, C800, and IR800 devices, IoT FND displays real-time location and device location history.
■ Diagnostics and Troubleshooting – The IoT FND rule engine infrastructure provides effective monitoring of triage-based troubleshooting. Device troubleshooting runs on-demand device path trace and ping on any CGR, Cisco C800, Cisco IR800, range extender, or meter (mesh endpoints).
■ High Availability – To ensure uninterrupted network management and monitoring, you can deploy the Cisco IoT FND solution in a High Availability (HA) configuration. By using clusters of load-balanced IoT FND servers and primary and standby IoT FND databases, Cisco IoT FND constantly monitors the health of the system, including connectivity within clusters and server resource usage. If a server cluster member or database becomes unavailable or a tunnel fails, another takes its place seamlessly. Additionally, you can add reliability to your IoT FND solution by configuring redundant tunnels between a Cisco CGR and multiple Cisco ASRs.
■ Power Outage Notifications – Cisco Resilient mesh Endpoints (RMEs) implement a power outage notification service to support timely and efficient reporting of power outages. In the event of a power outage, CGEs perform the necessary functions to conserve energy and notify neighboring nodes of the outage. FARs relay the power outage notification to IoT FND, which then issues push notifications to customers to relate information on the outage.
■ Mesh Upgrade Support – Allows over-the-air software and firmware upgrades to field devices such as Cisco CGRs and CGEs (for example, AMI meter endpoints).
■ Audit Logging – Logs access information for user activity for audit, regulatory compliance, and Security Event and Incident Management (SEIM) integration. This simplifies management and enhances compliance by integrated monitoring, reporting, and troubleshooting capabilities.
■ North Bound APIs – Eases integration of existing utility applications such as outage management system (OMS), meter data management (MDM), trouble-ticketing systems, and manager-of-managers.
■ Work Orders for Device Manager – Credentialed field technicians can remotely access and update work orders.
■ Role-Based Access Controls – Integrates with enterprise security policies and role-based access control for AMI network devices.
■ Event and Issue Management – Fault event collection, filtering, and correlation for communication network monitoring. IoT FND supports a variety of fault-event mechanisms for threshold-based rule processing, custom alarm generation, and alarm event processing. Faults display on a color-coded GIS-map view for various endpoints in the utility network. This allows operator-level custom, fault-event generation, processing, and forwarding to various utility applications such as an outage management system. Automatic issue tracking is based on the events collected.
In addition to Cisco IoT FND, you can use the following tools to manage the Cisco 1000 Series Connected Grid Routers (CGR1000), the Cisco 800 Series Industrial Integrated Routers (IR800), and the Cisco 500 Series WPAN Industrial Routers (IR500):
Use the command line interface (CLI) to configure, manage, and monitor the routers noted above.
The Cisco IoT Device Manager (IoT-DM or Device Manager) is a Windows-based application for field management of a single router at a time. IoT-DM uses a local Ethernet or WiFi link to connect to the routers noted above.
Minimum Hardware and Software Requirements for Cisco IoT FND and Supporting Systems lists the hardware and software versions associated with this release.
Note: For a large scale system, refer to Oracle DB Server Hardware Requirements Example Profiles and Application Server Hardware Requirements Example Profile for Routers and Endpoints for scale requirements.
Cisco IoT FND application server (or comparable system that meets the hardware and software requirements) |
–Intel Xeon x5680 2.27 GHz (64-bit) ■Hardware Security Module (HSM) or Software Security Module (SSM) |
■Red Hat Enterprise Linux 7.5 and above, 64-bit with all packages installed (software development and web server) See Table 7 for suggested application server resource allocation profiles. When you access IoT FND from a client browser, the browser connects to the Internet to download the necessary data files from the GIS maps provider. ■A license to use SafeNet for mesh endpoint security Note: IoT FND software bundle includes required Java version. |
■Red Hat Enterprise Linux 7.5 and above with all packages installed (software development and web server) Note: IoT FND software bundle includes required Java version. |
||
Scalable to 5,000/5,000,000 endpoints with minimum hardware requirement. See Resource Management Guidelines for additional scale sizes. |
■Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production (with Patch 20830993) Note: Before installing Oracle, install the Linux packages referenced in “Installing the Linux Packages Required for Installing Oracle” in the Installing Cisco IoT FND chapter of the Cisco IoT Field Network Director Installation Guide, Release 4.3. See Table 5 for suggested Oracle Database server resource allocation profiles. ■Red Hat Linux 7.5 and above, 64-bit with all packages installed (software development and web server) |
|
The client must meet the following minimum requirements to connect to the IoT FND application server and view |
When using FND 4.2 and higher, use Zingcharts for viewing charts. |
|
Server must have the following minimum requirements: ■RAM: 4 GB (small network), 8 GB (average network), 16 GB (large network) |
The following software environment must exist before installing Cisco Network Registrar, software release 8.2 on the server: ■Operating System: Windows Server 2008 ■Development Kit (JDK) Java SE Runtime Environment (JRE) ■User interfaces: Web browser and command-line interface (CLI) (Browser versions listed below): –Internet Explorer (IE) 11.0, Mozilla Firefox 63.x or later ■CNR license. Contact your Cisco partner for the necessary license. |
|
Laptop running Device Manager must have the following: ■Microsoft Windows 7 Enterprise or Windows 10 ■1 GB RAM minimum (for potential large log file processing) ■Utility-signed Certificate Authority (CA) and Client Certificate for router authentication (obtained from your IT department) ■Customer-specific IT security hardening to keep the Device Manager laptop secure |
||
Cisco 800 Series Industrial Integrated Services Router (IR800) |
||
Note: For IC3000 APP management, use Mozilla Firefox: 63.x or later |
||
Cisco ASR 1001 or 1002 Aggregation Services Router (ASR) serving as a head-end router |
■Cisco IOS XE Release 3.17.02.S for Flex tunnels (IOS) ■Cisco IOS XE Release 3.11S for Point to Point tunnels (CG-OS) |
|
Note: ASRs and ISRs with different releases can co-exist on the network. |
||
Cisco 500 Series Wireless Personal Area Network (WPAN) Industrial Routers (IR500) |
■Cisco IR509 and IR510, DA Gateway device: Firmware version 6.0.19 ■Cisco IR529 and Cisco IR530, Range Extender: Firmware version 6.0.19 |
|
■Firmware version 6.0.19 when communicating with CGR 1000s or Cisco ASRs and the minimum |
||
Long Range Wide Area Network (LoRaWAN) Interface Module for Cisco 800 Series Industrial Integrated Services Routers (IR800) |
||
Luna SA appliance, with client software installed on the IoT FND application servers |
Note: Contact SafeNet to determine if you can run a higher version. |
|
■Red Hat Enterprise Linux 7.5, 64-bit with all packages installed (software development and web server) |
Note: If deploying a IoT FND server cluster, all nodes in the cluster should run on similar hardware. Additionally, all nodes must run the same version of IoT FND.
Virtual machine (VM) configuration workload characterization is important. When using multiple VMs on the same physical host, allocate resources so that individual VMs do not impact the performance of other VMs. For example, to allocate 4 VMs on a 8-CPU host, do not allocate all 8 CPUs to ensure that one (or more) VM does not use all resources.
Table 5 lists example Oracle database server usage profiles for important resource parameters such as CPU, memory, and disk space
Table 7 lists example IoT FND Application server usage profiles for important resource parameters such as CPU, memory, and disk space.
Note: RAID 10 is mandatory for deployments of 2 million endpoints and above. For 2 million endpoints, we recommend 16 Disks in RAID 10. For more than 2 million endpoints, we recommend 24 Disks in RAID 10. Disk Speed: 15000 RPM.
Information in Application Server Hardware Requirements Example Profile For Routers and Database Server Hardware Requirements Example Profile For Routers and LoRa Modules is relevant to Router Only deployments.
The installation procedure for IoT FND comprises several tasks, as described in the Cisco IoT Field Network Director Installation Guide, Release 4.3.
You can also find details on upgrading from Oracle 11g to Oracle 12c for existing installations; and, instructions for installing Oracle 12c in new installations within the Installation Guide.
Note: In the section, Caveats,any caveats that reference CG-NMS are also relevant to IoT FND. In cases where the caveat was first posted to CG-NMS, we left the CG-NMS reference.
Since IoT FND is supported on a variety of Red Hat Enterprise Linux (RHEL) 5 Update releases, the OpenSSH version that comes with a given release might be an older version with known security holes. Consequently, we recommend ensuring that OpenSSH on the RHEL IoT FND server is up to date. On initial installation, upgrade the OpenSSH package in the IoT FND server to the latest version (7.5 or later).
This section presents open and resolved caveats in this release and information on using the Bug Search Tool to view details on those caveats. Section topics are:
■Accessing the Bug Search Tool
You can use the Bug Search Tool to find information about caveats for this release, including a description of the problems and available workarounds. The Bug Search Tool lists both open and resolved caveats.
To access the Bug Search Tool, you need the following items:
■Cisco.com user ID and password
To access the Bug Search Tool, use the following URL: https://tools.cisco.com/bugsearch/search
To search using a specific bug ID, use the following URL: https://tools.cisco.com/bugsearch/bug/ <BUGID>
Find Cisco 1000 Series Connected Grid Routers and IoT Device Manager documentation at:
For information on additional systems referenced in this release note, see the following documentation on Cisco.com:
■ Cisco ASR 1000 Series Aggregation Services Routers Configuration Guide
■ Cisco 5921 Embedded Services Router
■ Cisco 3945 Series Integrated Services Router
■ Cisco 800 Series Integrated Services Routers
■ Cisco 800 Series Industrial Integrated Services Routers
■ Cisco 800 Series Access Points
■ Cisco 500 Series WPAN Industrial Routers
■ Cisco LoRaWAN Interface Module Hardware Installation Guide
■ Cisco Wireless Gateway for LoRaWAN
■ IR1101 Industrial Integrated Services Router Hardware Installation Guide
No combinations are authorized or intended under this document.