- About this Manual
- Chapter 1, Shelf and Backplane Hardware
- Chapter 2, Common Control Cards
- Chapter 3, Electrical Cards
- Chapter 4, Optical Cards
- Chapter 5, Ethernet Cards
- Chapter 6, Storage Access Networking Cards
- Chapter 7, Card Protection
- Chapter 8, Cisco Transport Controller Operation
- Chapter 9, Security and Timing
- Chapter 10, Circuits and Tunnels
- Chapter 11, SONET Topologies and Upgrades
- Chapter 12, CTC Network Connectivity
- Chapter 13, Alarm Monitoring and Management
- Appendix A, Specifications
- Appendix B, Administrative and Service States
- Appendix C, Network Element Defaults
Common Control Cards
Note The terms "Unidirectional Path Switched Ring" and "UPSR" may appear in Cisco literature. These terms do not refer to using Cisco ONS 15xxx products in a unidirectional path switched ring configuration. Rather, these terms, as well as "Path Protected Mesh Network" and "PPMN," refer generally to Cisco's path protection feature, which may be used in any topological network configuration. Cisco does not recommend using its path protection feature in any particular topological network configuration.
This chapter describes Cisco ONS 15454 common control card functions. For installation and turn-up procedures, refer to the Cisco ONS 15454 Procedure Guide.
Chapter topics include:
2.1 Common Control Card Overview
The card overview section summarizes card functions and compatibility.
Note Each card is marked with a symbol that corresponds to a slot (or slots) on the ONS 15454 shelf assembly. The cards are then installed into slots displaying the same symbols. See the "1.16.1 Card Slot Requirements" section on page 1-60 for a list of slots and symbols.
2.1.1 Cards Summary
Table 2-1 lists the common control cards for the Cisco ONS 15454 and summarizes card functions.
|
|
|
---|---|---|
|
The Advanced Timing, Communications, and Control (TCC2) card is the main processing center for the ONS 15454 and provides system initialization, provisioning, alarm reporting, maintenance, and diagnostics. It has additional features including supply voltage monitoring, support for up to 84 data communications channel/generic communications channel (DCC/GCC) terminations, and an on-card lamp test. |
See the "TCC2 Card" section. |
|
The Advanced Timing, Communications, and Control Plus (TCC2P) card is the main processing center for the ONS 15454 and provides system initialization, provisioning, alarm reporting, maintenance, and diagnostics. It also provides supply voltage monitoring, support for up to 84 DCC/GCC terminations, and an on-card lamp test. This card also has Ethernet security features and 64K composite clock building integrated timing supply (BITS) timing. |
See the "TCC2P Card" section |
|
The Cross Connect Virtual Tributary (XCVT) card is the central element for switching; it establishes connections and performs TDS. The XCVT can manage STS and Virtual Tributary (VT) circuits up to 48c. |
See the "XCVT Card" section. |
|
The 10 Gigabit Cross Connect (XC10G) card is the central element for switching; it establishes connections and performs TDS. The XC10G can manage STS and VT circuits up to 192c. The XC10G allows up to four times the bandwidth of XC and XCVT cards. |
See the "XC10G Card" section. |
|
The Alarm Interface Card (AIC) provides customer-defined (environmental) alarms with its additional input/output alarm contact closures. It also provides orderwire. |
See the "AIC Card" section. |
|
The Alarm Interface Card-International (AIC-I) provides customer-defined (environmental) alarms with its additional input/output alarm contact closures. It also provides orderwire, user data channels, and supply voltage monitoring. |
See the "AIC-I Card" section. |
|
The Alarm expansion panel (AEP) board provides 48 dry alarm contacts: 32 inputs and 16 outputs. It can be used with the AIC-I card. |
2.1.2 Card Compatibility
Table 2-2 lists the Cisco Transport Controller (CTC) software release compatibility for each common-control card. In the tables below, "Yes" means cards are compatible with the listed software versions. Table cells with dashes mean cards are not compatible with the listed software versions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
— |
— |
— |
— |
|
— |
— |
— |
— |
— |
— |
— |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
|
— |
— |
— |
— |
— |
— |
— |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
|
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
— |
Yes1 |
|
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
— |
— |
— |
Yes |
|
— |
— |
— |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
— |
Yes |
Yes |
Yes |
|
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
|
— |
— |
— |
— |
— |
— |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
|
— |
— |
— |
— |
— |
— |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
Yes |
1 The XC card does not support features new to Release 5.0. |
2.1.3 Cross-Connect Card Compatibility
The following tables list the compatible cross-connect cards for each Cisco ONS 15454 common-control card. The tables are organized according to type of common-control card. In the tables below, "Yes" means cards are compatible with the listed cross-connect card. Table cells with dashes mean cards are not compatible with the listed cross-connect card.
Table 2-3 lists the cross-connect card compatibility for each common-control card.
|
|
|
---|---|---|
|
Yes |
Yes |
|
Yes |
Yes |
|
Yes |
Yes |
|
— |
— |
|
Yes |
— |
|
— |
Yes |
|
Yes |
Yes |
|
Yes |
Yes |
|
Yes |
Yes |
1 The TCC+ is not compatible with Software R5.0. 2 The XC card does not support features new to Release 5.0. |
Table 2-4 lists the cross-connect card compatibility for each electrical card. For electrical card software compatiblilty, see Table 3-2 on page 3-3.
Note The XC card is compatible with most electrical cards, with the exception of the DS3i-N-12, DS3/EC1-48, and transmux cards, but does not support features new to Release 5.0 and greater.
Table 2-5 lists the cross-connect card compatibility for each optical card. For optical card software compatibility, see Table 4-2 on page 4-4.
Note The XC card is compatible with most optical cards, with the exception of those cards noted as incompatible with the XCVT card, but does not support features new to Release 5.0 and greater.
|
|
|
---|---|---|
|
Yes |
Yes |
|
Yes |
Yes |
|
— |
Yes |
|
Yes |
Yes |
|
Yes |
Yes |
|
Yes |
Yes |
|
Yes |
Yes |
|
Yes |
Yes |
|
Yes |
Yes |
|
— |
Yes |
|
Yes |
Yes |
|
Yes |
Yes |
|
Yes1 |
Yes |
|
Yes2 |
Yes |
|
Yes |
Yes |
|
Yes |
Yes |
|
— |
Yes |
|
— |
Yes |
|
— |
Yes |
|
— |
Yes |
1 Software R3.2 and later in Slots 5, 6, 12, 13. 2 Software R3.2 and later in Slots 5, 6, 12, 13. |
Table 2-6 lists the cross-connect card compatibility for each Ethernet card. For Ethernet card software compatibility, see Table 5-2 on page 5-3.
Note The XC card is compatible with most Ethernet cards, with the exception of the G1000-4, but does not support features new to Release 5.0 and greater.
|
|
|
---|---|---|
|
Yes |
— |
|
Yes |
— |
|
Yes |
Yes |
|
Yes |
Yes |
|
— |
Yes |
|
Yes, in Slots 5, 6, 12, 13 |
Yes |
|
Yes, in Slots 5, 6, 12, 13 |
Yes |
|
Yes, in Slots 5, 6, 12, 13 |
Yes |
|
Yes |
Yes |
1 The XC10G card requires a TCC+/TCC2/TCC2P card, Software R3.1 or later and the 15454-SA-ANSI or 154545-SA-HD shelf assembly to operate. |
2.2 TCC2 Card
The TCC2 card, which requires Software R4.0 or later, performs system initialization, provisioning, alarm reporting, maintenance, diagnostics, IP address detection/resolution, SONET section overhead (SOH) DCC/GCC termination, and system fault detection for the ONS 15454. The TCC2 also ensures that the system maintains Stratum 3 (Telcordia GR-253-CORE) timing requirements. It monitors the supply voltage of the system.
The LAN interface of the TCC2 card meets the standard Ethernet specifications by supporting a cable length of 328 ft (100 m) at temperatures from 32 to 149 degrees Fahrenheit (0 to 65 degrees Celsius). The interfaces can operate with a cable length of 32.8 ft (10 m) maximum at temperatures from -40 to 32 degrees Fahrenheit (-40 to 0 degrees Celsius).
Note The TCC2 card supports both -48 VDC and -60 VDC input requirements.
Figure 2-1 shows the faceplate and block diagram for the TCC2 card.
Figure 2-1 TCC2 Card Faceplate and Block Diagram
2.2.1 TCC2 Card Functionality
The TCC2 card supports multichannel, high-level data link control (HDLC) processing for the DCC.Up to 84 DCCs can be routed over the TCC2 card and up to 84 section DCCs can be terminated at the TCC2 card (subject to the available optical digital communication channels). The TCC2 card selects and processes 84 DCCs to facilitate remote system management interfaces.
The TCC2 card also originates and terminates a cell bus carried over the module. The cell bus supports links between any two cards in the node, which is essential for peer-to-peer communication. Peer-to-peer communication accelerates protection switching for redundant cards.
The node database, IP address, and system software are stored in TCC2 card nonvolatile memory, which allows quick recovery in the event of a power or card failure.
The TCC2 card performs all system-timing functions for each ONS 15454. The TCC2 monitors the recovered clocks from each traffic card and two BITS ports for frequency accuracy. The TCC2 selects a recovered clock, a BITS, or an internal Stratum 3 reference as the system-timing reference. You can provision any of the clock inputs as primary or secondary timing sources. A slow-reference tracking loop allows the TCC2 to synchronize with the recovered clock, which provides holdover if the reference is lost.
The TCC2 monitors both supply voltage inputs on the shelf. An alarm is generated if one of the supply voltage inputs has a voltage out of the specified range.
Install TCC2 cards in Slots 7 and 11 for redundancy. If the active TCC2 fails, traffic switches to the protect TCC2. All TCC2 protection switches conform to protection switching standards when the bit error rate (BER) counts are not in excess of 1 * 10 exp - 3 and completion time is less than 50 ms.
The TCC2 card has two built-in interface ports for accessing the system: an RJ-45 10BaseT LAN interface and an EIA/TIA-232 ASCII interface for local craft access. It also has a 10BaseT LAN port for user interfaces via the backplane.
Note Cisco does not support operation of the ONS 15454 with only one TCC2 card. For full functionality and to safeguard your system, always operate with two TCC2 cards.
Note When a second TCC2 card is inserted into a node, it synchronizes its software, its backup software, and its database with the active TCC2. If the software version of the new TCC2 does not match the version on the active TCC2, the newly inserted TCC2 copies from the active TCC2, taking about 15 to 20 minutes to complete. If the backup software version on the new TCC2 does not match the version on the active TCC2, the newly inserted TCC2 copies the backup software from the active TCC2 again, taking about 15 to 20 minutes. Copying the database from the active TCC2 takes about 3 minutes. Depending on the software version and backup version the new TCC2 started with, the entire process can take between 3 and 40 minutes.
2.2.2 TCC2 Card-Level Indicators
The TCC2 faceplate has eight LEDs. Table 2-7 describes the two card-level LEDs on the TCC2 card faceplate.
2.2.3 Network-Level Indicators
Table 2-8 describes the six network-level LEDs on the TCC2 faceplate.
2.3 TCC2P Card
The TCC2P card is an enhanced version of the TCC2 card. The primary enhancements are Ethernet security features and 64K composite clock BITS timing.
The TCC2P card performs system initialization, provisioning, alarm reporting, maintenance, diagnostics, IP address detection/resolution, SONET SOH DCC/GCC termination, and system fault detection for the ONS 15454. The TCC2P also ensures that the system maintains Stratum 3 (Telcordia GR-253-CORE) timing requirements. It monitors the supply voltage of the system.
Note The TCC2P card requires Software Release 4.0.0 or later.
Note The LAN interface of the TCC2P card meets the standard Ethernet specifications by supporting a cable length of 328 ft (100 m) at temperatures from 32 to 149 degrees Fahrenheit (0 to 65 degrees Celsius). The interfaces can operate with a cable length of 32.8 ft (10 m) maximum at temperatures from -40 to 32 degrees Fahrenheit (-40 to 0 degrees Celsius).
Figure 2-2 shows the faceplate and block diagram for the TCC2P card.
Figure 2-2 TCC2P Faceplate and Block Diagram
2.3.1 TCC2P Functionality
The TCC2P card supports multichannel, high-level data link control (HDLC) processing for the DCC. Up to 84 DCCs can be routed over the TCC2P card and up to 84 section DCCs can be terminated at the TCC2P card (subject to the available optical digital communication channels). The TCC2P selects and processes 84 DCCs to facilitate remote system management interfaces.
The TCC2P card also originates and terminates a cell bus carried over the module. The cell bus supports links between any two cards in the node, which is essential for peer-to-peer communication. Peer-to-peer communication accelerates protection switching for redundant cards.
The node database, IP address, and system software are stored in TCC2P card nonvolatile memory, which allows quick recovery in the event of a power or card failure.
The TCC2P card performs all system-timing functions for each ONS 15454. The TCC2P card monitors the recovered clocks from each traffic card and two BITS ports for frequency accuracy. The TCC2P card selects a recovered clock, a BITS, or an internal Stratum 3 reference as the system-timing reference. You can provision any of the clock inputs as primary or secondary timing sources. A slow-reference tracking loop allows the TCC2P card to synchronize with the recovered clock, which provides holdover if the reference is lost.
The TCC2P card supports 64/8K composite clock and 6.312 MHz timing output.
The TCC2P card monitors both supply voltage inputs on the shelf. An alarm is generated if one of the supply voltage inputs has a voltage out of the specified range.
Install TCC2P cards in Slots 7 and 11 for redundancy. If the active TCC2P card fails, traffic switches to the protect TCC2P card. All TCC2P card protection switches conform to protection switching standards when the bit error rate (BER) counts are not in excess of 1 * 10 exp - 3 and completion time is less than 50 ms.
The TCC2P card has two built-in Ethernet interface ports for accessing the system: one built-in RJ-45 port on the front faceplate for on-site craft access and a second port on the backplane. The rear Ethernet interface is for permanent LAN access and all remote access via TCP/IP as well as for Operations Support System (OSS) access. The front and rear Ethernet interfaces can be provisioned with different IP addresses using CTC.
Two EIA/TIA-232 serial ports, one on the faceplate and a second on the backplane, allow for craft interface in TL1 mode.
Cisco does not support operation of the ONS 15454 with only one TCC2P card. For full functionality and to safeguard your system, always operate with two TCC2P cards.
Note When a second TCC2P card is inserted into a node, it synchronizes its software, its backup software, and its database with the active TCC2P card. If the software version of the new TCC2P card does not match the version on the active TCC2P card, the newly inserted TCC2P card copies from the active TCC2P card, taking about 15 to 20 minutes to complete. If the backup software version on the new TCC2P card does not match the version on the active TCC2P card, the newly inserted TCC2P card copies the backup software from the active TCC2P card again, taking about 15 to 20 minutes. Copying the database from the active TCC2P card takes about 3 minutes. Depending on the software version and backup version the new TCC2P card started with, the entire process can take between 3 and 40 minutes.
2.3.2 TCC2P Card-Level Indicators
The TCC2P faceplate has eight LEDs. Table 2-9 describes the two card-level LEDs on the TCC2P faceplate.
2.3.3 Network-Level Indicators
Table 2-10 describes the six network-level LEDs on the TCC2P faceplate.
2.4 XCVT Card
The Cross Connect Virtual Tributary (XCVT) card establishes connections at the STS-1 and VT levels. The XCVT provides nonblocking STS-48 capacity to Slots 5, 6, 12, and 13, and nonbidirectional blocking STS-12 capacity to Slots 1 to 5 and 14 to 17. Any STS-1 on any port can be connected to any other port, meaning that the STS cross-connections are nonblocking.
Figure 2-3 shows the XCVT faceplate and block diagram.
Figure 2-3 XCVT Faceplate and Block Diagram
2.4.1 XCVT Functionality
The STS-1 switch matrix on the XCVT card consists of 288 bidirectional ports and adds a VT matrix that can manage up to 336 bidirectional VT1.5 ports or the equivalent of a bidirectional STS-12. The VT1.5-level signals can be cross connected, dropped, or rearranged. The TCC2/TCC2P card assigns bandwidth to each slot on a per STS-1 or per VT1.5 basis. The switch matrices are fully crosspoint and broadcast supporting.
The XCVT card provides:
•288 STS bidirectional ports
•144 STS bidirectional cross-connects
•672 VT1.5 ports via 24 logical STS ports
•336 VT1.5 bidirectional cross-connects
•Nonblocking at the STS level
•STS-1/3c/6c/12c/48c cross-connects
The XCVT card works with the TCC2/TCC2P card to maintain connections and set up cross-connects within the node. The XCVT or XC10G is required to operate the ONS 15454. You can establish cross-connect (circuit) information through CTC. The TCC2/TCC2P card establishes the proper internal cross-connect information and relays the setup information to the XCVT card.
Figure 2-4 shows the cross-connect matrix.
Figure 2-4 XCVT Cross-Connect Matrix
2.4.2 VT Mapping
The VT structure is designed to transport and switch payloads below the DS-3 rate. The ONS 15454 performs VT mapping according to Telcordia GR-253-CORE standards. Table 2-11 shows the VT numbering scheme for the ONS 15454 as it relates to the Telcordia standard.
2.4.3 XCVT Hosting DS3XM-6
A single DS3XM-6 can demultiplex (map down to a lower rate) six DS-3 signals into 168 VT1.5s that the XCVT card manages and cross connects. XCVT cards host a maximum of 336 bidirectional VT1.5s. In most network configurations, two DS3XM-6 cards are paired as working and protect cards.
2.4.4 XCVT Card-Level Indicators
Table 2-12 shows the two card-level LEDs on the XCVT card faceplate.
2.5 XC10G Card
The 10 Gigabit Cross Connect (XC10G) card cross connects STS-12, STS-48, and STS-192 signal rates. The XC10G allows up to four times the bandwidth of the XC and XCVT cards. The XC10G provides a maximum of 576 STS-1 cross-connections through 1152 STS-1 ports. Any STS-1 on any port can be connected to any other port, meaning that the STS cross-connections are nonblocking.
Figure 2-5 shows the XC10G faceplate and block diagram.
Figure 2-5 XC10G Faceplate and Block Diagram
2.5.1 XC10G Functionality
The XC10G card manages up to 672 bidirectional VT1.5 ports and 1152 bidirectional STS-1 ports. The TCC2/TCC2P card assigns bandwidth to each slot on a per STS-1 or per VT1.5 basis.
The XC10G or XCVT card is required to operate the ONS 15454. You can establish cross-connect (circuit) information through the CTC. The TCC2/TCC2P card establishes the proper internal cross-connect information and sends the setup information to the cross-connect card.
The XC10G card provides:
•1152 STS bidirectional ports
•576 STS bidirectional cross-connects
•672 VT1.5 ports via 24 logical STS ports
•336 VT1.5 bidirectional cross-connects
•Nonblocking at STS level
•STS-1/3c/6c/12c/48c/192c cross-connects
Figure 2-6 shows the cross-connect matrix.
Figure 2-6 XC10G Cross-Connect Matrix
2.5.2 VT Mapping
The VT structure is designed to transport and switch payloads below the DS-3 rate. The ONS 15454 performs VT mapping according to Telcordia GR-253-CORE standards. Table 2-13 shows the VT numbering scheme for the ONS 15454 as it relates to the Telcordia standard.
2.5.3 XC10G Hosting DS3XM-6
A single DS3XM-6 can demultiplex (map down to a lower rate) six DS-3 signals into 168 VT1.5s that the XC10G card manages and cross connects. XC10G cards host a maximum of 336 bidirectional VT1.5 ports. In most network configurations two DS3XM-6 cards are paired as working and protect cards.
2.5.4 XC10G Hosting DS3XM-12
A single DS3XM-12 can demultiplex (map down to a lower rate) twelve DS-3 signals into 336 VT1.5s that the XC10G card manages and cross connects. XC10G cards host a maximum of 336 bidirectional VT1.5 ports. The DS3XM-12 cards supports 1:1 protection (cards are paired as working and protect). The DS3XM-12 also supports 1:N protection where one DS3XM-12 card can protect up to five DS3XM-12 cards or DS3XM-6 cards for ported protection, or up to seven DS3XM-12 cards for portless protection.
2.5.5 XC10G Card-Level Indicators
Table 2-14 describes the two card-level LEDs on the XC10G faceplate.
2.5.6 XCVT/XC10G Compatibility
The XC10G supports the same features as the XCVT card. The XC10G card is required for OC-192 operation and OC-48 any-slot (AS) operation. Do not use the XCVT card if you are using the OC-192 card or if you install an OC-48 AS card in Slots 1 to 4 or 14 to 17.
Note A configuration mismatch alarm occurs when an XCVT cross-connect card co-exists with an OC-192 card placed in Slots 5, 6, 12, or 13 or with an OC-48 card placed in Slots 1 to 4 or 14 to 17.
If you are using Ethernet cards, the E1000-2-G or the E100T-G must be used when the XC10G cross-connect card is in use. Do not pair an XCVT with an XC10G. When upgrading from an XCVT to the XC10G card, refer to the "Upgrade Cards and Spans" chapter in the Cisco ONS 15454 Procedure Guide for more information.
2.6 AIC Card
The optional Alarm Interface Controller (AIC) card provides customer-defined alarm input/output (I/O) and supports local and express orderwire. Figure 2-7 shows the AIC faceplate and a block diagram of the card.
Figure 2-7 AIC Faceplate and Block Diagram
2.6.1 AIC Card-Level Indicators
Table 2-15 describes the eight card-level LEDs on the AIC card faceplate.
2.6.2 External Alarms and Controls
The AIC card provides provisionable input/output alarm contact closures for up to four external alarms and four external controls. The physical connections are made using the backplane wire-wrap pins. The alarms are defined using CTC and TL1. For instructions, refer to the Cisco ONS 15454 Procedure Guide.
Each alarm contact has a corresponding LED on the front panel of the AIC that indicates the status of the alarm. External alarms (input contacts) are typically used for external sensors such as open doors, temperature sensors, flood sensors, and other environmental conditions. External controls (output contacts) are typically used to drive visual or audible devices such as bells and lights, but they can control other devices such as generators, heaters, and fans.
You can program each of the four input alarm contacts separately. Choices include:
•Alarm on Closure or Alarm on Open
•Alarm severity of any level (Critical, Major, Minor, Not Alarmed, Not Reported)
•Service Affecting or Non-Service Affecting alarm-service level
•63-character alarm description for CTC display in the alarm log. You cannot assign the fan-tray abbreviation for the alarm; the abbreviation reflects the generic name of the input contacts. The alarm condition remains raised until the external input stops driving the contact or you provision the alarm input.
The output contacts can be provisioned to close on a trigger or to close manually. The trigger can be a local alarm severity threshold, a remote alarm severity, or a virtual wire:
•Local NE alarm severity: A hierarchy of Not Reported, Not Alarmed, Minor, Major, or Critical alarm severities that you set to cause output closure. For example, if the trigger is set to Minor, a Minor alarm or above is the trigger.
•Remote NE alarm severity: Same as the local NE alarm severity but applies to remote alarms only.
•Virtual wire entities: You can provision any environmental alarm input to raise a signal on any virtual wire on external outputs 1 through 4 when the alarm input is an event. You can provision a signal on any virtual wire as a trigger for an external control output.
You can also program the output alarm contacts (external controls) separately. In addition to provisionable triggers, you can manually force each external output contact to open or close. Manual operation takes precedence over any provisioned triggers that might be present.
2.6.3 Orderwire
Orderwire allows a craftsperson to plug a phoneset into an ONS 15454 and communicate with craftspeople working at other ONS 15454s or other facility equipment. The orderwire is a pulse code modulation (PCM) encoded voice channel that uses E1 or E2 bytes in section/line overhead.
The AIC allows simultaneous use of both local (section overhead signal) and express (line overhead channel) orderwire channels on a SONET ring or particular optics facility. Local orderwire also allows communication at regeneration sites when the regenerator is not a Cisco device.
You can provision orderwire functions with CTC similar to the current provisioning model for DCC/GCC channels. In CTC, you provision the orderwire communications network during ring turn-up so that all NEs on the ring can reach one another. Orderwire terminations (that is, the optics facilities that receive and process the orderwire channels) are provisionable. Both express and local orderwire can be configured as on or off on a particular SONET facility. The ONS 15454 supports up to four orderwire channel terminations per shelf, which allow linear, single ring, dual ring, and small hub-and-spoke configurations. Orderwire is not protected in ring topologies such as BLSR and path protection.
The ONS 15454 implementation of both local and express orderwire is broadcast in nature. The line acts as a party line. There is no signaling for private point-to-point connections. Anyone who picks up the orderwire channel can communicate with all other participants on the connected orderwire subnetwork. The local orderwire party line is separate from the express orderwire party line. Up to four OC-N facilities for each local and express orderwire are provisionable as orderwire paths.
The AIC supports a "call" button on the module front panel which, when pressed, causes all ONS 15454 AICs on the orderwire subnetwork to "ring." The ringer/buzzer resides on the AIC. There is also a "ring" LED that mimics the AIC ringer. It flashes when any "call" button is pressed on the orderwire subnetwork. The "call" button and ringer LED allow a remote craftsperson to get the attention of craftspeople across the network.
Table 2-16 shows the pins on the orderwire ports that correspond to the tip and ring orderwire assignments.
|
|
---|---|
1 |
Four-wire receive ring |
2 |
Four-wire transmit tip |
3 |
Two-wire ring |
4 |
Two-wire tip |
5 |
Four-wire transmit ring |
6 |
Four-wire receive tip |
When provisioning the orderwire subnetwork, make sure that an orderwire loop does not exist. Loops cause oscillation and an unusable orderwire channel. Figure 2-8 shows the standard RJ-11 orderwire pins.
Figure 2-8 RJ-11 Connector
2.7 AIC-I Card
The optional Alarm Interface Controller-International (AIC-I) card provides customer-defined (environmental) alarms and controls and supports local and express orderwire. It provides 12 customer-defined input and 4 customer-defined input/output contacts. The physical connections are via the backplane wire-wrap pin terminals. If you use the additional AEP, the AIC-I card can support up to 32 inputs and 16 outputs, which are connected on the AEP connectors. A power monitoring function monitors the supply voltage (-48 VDC). Figure 2-9 shows the AIC-I faceplate and a block diagram of the card.
Note After you have upgraded a shelf to the AIC-I card and set new attributes, you cannot downgrade the shelf back to the AIC card.
Figure 2-9 AIC-I Faceplate and Block Diagram
2.7.1 AIC-I Card-Level Indicators
Table 2-17 describes the eight card-level LEDs on the AIC-I card faceplate.
2.7.2 External Alarms and Controls
The AIC-I card provides input/output alarm contact closures. You can define up to 12 external alarm inputs and 4 external alarm inputs/outputs (user configurable). The physical connections are made using the backplane wire-wrap pins. See the "1.11 Alarm Expansion Panel" section on page 1-46 for information about increasing the number of input/output contacts.
LEDs on the front panel of the AIC-I indicate the status of the alarm lines, one LED representing all of the inputs and one LED representing all of the outputs. External alarms (input contacts) are typically used for external sensors such as open doors, temperature sensors, flood sensors, and other environmental conditions. External controls (output contacts) are typically used to drive visual or audible devices such as bells and lights, but they can control other devices such as generators, heaters, and fans.
You can program each of the twelve input alarm contacts separately. You can program each of the sixteen input alarm contacts separately. Choices include:
•Alarm on Closure or Alarm on Open
•Alarm severity of any level (Critical, Major, Minor, Not Alarmed, Not Reported)
•Service Affecting or Non-Service Affecting alarm-service level
•63-character alarm description for CTC display in the alarm log. You cannot assign the fan-tray abbreviation for the alarm; the abbreviation reflects the generic name of the input contacts. The alarm condition remains raised until the external input stops driving the contact or you unprovision the alarm input.
You cannot assign the fan-tray abbreviation for the alarm; the abbreviation reflects the generic name of the input contacts. The alarm condition remains raised until the external input stops driving the contact or you provision the alarm input.
The output contacts can be provisioned to close on a trigger or to close manually. The trigger can be a local alarm severity threshold, a remote alarm severity, or a virtual wire:
•Local NE alarm severity: A hierarchy of Not Reported, Not Alarmed, Minor, Major, or Critical alarm severities that you set to cause output closure. For example, if the trigger is set to Minor, a Minor alarm or above is the trigger.
•Remote NE alarm severity: Same as the local NE alarm severity but applies to remote alarms only.
•Virtual wire entities: You can provision any environmental alarm input to raise a signal on any virtual wire on external outputs 1 through 4 when the alarm input is an event. You can provision a signal on any virtual wire as a trigger for an external control output.
You can also program the output alarm contacts (external controls) separately. In addition to provisionable triggers, you can manually force each external output contact to open or close. Manual operation takes precedence over any provisioned triggers that might be present.
Note The number of inputs and outputs can be increased using the AEP. The AEP is connected to the shelf backplane and requires an external wire-wrap panel.
2.7.3 Orderwire
Orderwire allows a craftsperson to plug a phoneset into an ONS 15454 and communicate with craftspeople working at other ONS 15454s or other facility equipment. The orderwire is a pulse code modulation (PCM) encoded voice channel that uses E1 or E2 bytes in section/line overhead.
The AIC-I allows simultaneous use of both local (section overhead signal) and express (line overhead channel) orderwire channels on a SONET ring or particular optics facility. Express orderwire also allows communication via regeneration sites when the regenerator is not a Cisco device.
You can provision orderwire functions with CTC similar to the current provisioning model for DCC/GCC channels. In CTC, you provision the orderwire communications network during ring turn-up so that all NEs on the ring can reach one another. Orderwire terminations (that is, the optics facilities that receive and process the orderwire channels) are provisionable. Both express and local orderwire can be configured as on or off on a particular SONET facility. The ONS 15454 supports up to four orderwire channel terminations per shelf. This allows linear, single ring, dual ring, and small hub-and-spoke configurations. Keep in mind that orderwire is not protected in ring topologies such as BLSR and path protection.
The ONS 15454 implementation of both local and express orderwire is broadcast in nature. The line acts as a party line. Anyone who picks up the orderwire channel can communicate with all other participants on the connected orderwire subnetwork. The local orderwire party line is separate from the express orderwire party line. Up to four OC-N facilities for each local and express orderwire are provisionable as orderwire paths.
Note The OC3 IR 4/STM1 SH 1310 card does not support the express orderwire channel.
The AIC-I supports selective dual tone multifrequency (DTMF) dialing for telephony connectivity, which causes one AIC-I card or all ONS 15454 AIC-I cards on the orderwire subnetwork to "ring." The ringer/buzzer resides on the AIC-I. There is also a "ring" LED that mimics the AIC-I ringer. It flashes when a call is received on the orderwire subnetwork. A party line call is initiated by pressing *0000 on the DTMF pad. Individual dialing is initiated by pressing * and the individual four-digit number on the DTMF pad.
Table 2-18 shows the pins on the orderwire connector that correspond to the tip and ring orderwire assignments.
|
|
---|---|
1 |
Four-wire receive ring |
2 |
Four-wire transmit tip |
3 |
Two-wire ring |
4 |
Two-wire tip |
5 |
Four-wire transmit ring |
6 |
Four-wire receive tip |
When provisioning the orderwire subnetwork, make sure that an orderwire loop does not exist. Loops cause oscillation and an unusable orderwire channel.
Figure 2-10 shows the standard RJ-11 connectors used for orderwire ports. Use a shielded RJ-11 cable.
Figure 2-10 RJ-11 Connector
2.7.4 Power Monitoring
The AIC-I card provides a power monitoring circuit that monitors the supply voltage of -48 VDC for presence, undervoltage, or overvoltage.
2.7.5 User Data Channel
The user data channel (UDC) features a dedicated data channel of 64 kbps (F1 byte) between two nodes in an ONS 15454 network. Each AIC-I card provides two user data channels, UDC-A and UDC-B, through separate RJ-11 connectors on the front of the AIC-I card. Use an unshielded RJ-11 cable. Each UDC can be routed to an individual optical interface in the ONS 15454. For UDC circuit provisioning, refer to the "Create Circuits and VT Tunnels" in the Cisco ONS 15454 Procedure Guide.
The UDC ports are standard RJ-11 receptacles. Table 2-19 lists the UDC pin assignments.
|
|
---|---|
1 |
For future use |
2 |
TXN |
3 |
RXN |
4 |
RXP |
5 |
TXP |
6 |
For future use |
2.7.6 Data Communications Channel
The DCC features a dedicated data channel of 576 kbps (D4 to D12 bytes) between two nodes in an ONS 15454 network. Each AIC-I card provides two data communications channels, DCC-A and DCC-B, through separate RJ-45 connectors on the front of the AIC-I card. Use a shielded RJ-45 cable. Each DCC can be routed to an individual optical interface in the ONS 15454.
The DCC ports are standard RJ-45 receptacles. Table 2-20 lists the DCC pin assignments.
|
|
---|---|
1 |
TCLKP |
2 |
TCLKN |
3 |
TXP |
4 |
TXN |
5 |
RCLKP |
6 |
RCLKN |
7 |
RXP |
8 |
RXN |