
Snort 3 Inspector Reference
First Published: 2021-05-26

Last Modified: 2024-08-27

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2021–2024 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Introduction 1C H A P T E R 1

About Snort 3 Inspection 1

Introduction to Snort 3 Inspectors 3

Protocol and Service Identification in Snort 3 7

Snort 3 Inspectors 9P A R T I

ARP Spoof Inspector 11C H A P T E R 2

ARP Spoof Inspector Overview 11

ARP Spoof Inspector Parameters 12

ARP Spoof Inspector Rules 12

ARP Spoof Inspector Intrusion Rule Options 12

Binder Inspector 13C H A P T E R 3

Binder Inspector Overview 13

Autodetection of Services for Portless Configuration 14

Best Practices for Configuring the Binder Inspector 15

Binder Inspector Parameters 16

Binder Inspector Rules 18

Binder Inspector Intrusion Rule Options 18

CIP Inspector 19C H A P T E R 4

CIP Inspector Overview 19

Best Practices for Configuring the CIP Inspector 19

CIP Inspector Parameters 20

CIP Inspector Rules 21

Snort 3 Inspector Reference
iii

CIP Inspector Intrusion Rule Options 22

DCE SMB Inspector 25C H A P T E R 5

DCE SMB Inspector Overview 25

DCE SMB Inspector Parameters 27

DCE SMB Inspector Rules 31

DCE Inspectors Intrusion Rule Options 32

DCE TCP Inspector 37C H A P T E R 6

DCE TCP Inspector Overview 37

DCE TCP Inspector Parameters 39

DCE TCP Inspector Rules 40

DCE Inspectors Intrusion Rule Options 41

DNP3 Inspector 45C H A P T E R 7

DNP3 Inspector Overview 45

DNP3 Inspector Parameters 45

DNP3 Inspector Rules 46

DNP3 Inspector Intrusion Rule Options 46

FTP Client Inspector 51C H A P T E R 8

FTP Client Inspector Overview 51

FTP Client Inspector Parameters 51

FTP Client Inspector Rules 52

FTP Client Inspector Intrusion Rule Options 53

FTP Server Inspector 55C H A P T E R 9

FTP Server Inspector Overview 55

FTP Server Inspector Parameters 55

FTP Server Inspector Rules 60

FTP Server Inspector Intrusion Rule Options 61

GTP Inspect Inspector 63C H A P T E R 1 0

Snort 3 Inspector Reference
iv

Contents

GTP Inspect Inspector Overview 63

GTP Inspect Inspector Parameters 63

GTP Inspect Inspector Rules 65

GTP Inspect Inspector Intrusion Rule Options 66

HTTP Inspect Inspector 79C H A P T E R 1 1

HTTP Inspect Inspector Overview 79

Best Practices for Configuring the HTTP Inspect Inspector 81

HTTP Inspect Inspector Parameters 81

HTTP Inspect Inspector Rules 88

HTTP Inspect Inspector Intrusion Rule Options 93

IEC104 Inspector 109C H A P T E R 1 2

IEC104 Inspector Overview 109

IEC104 Inspector Parameters 109

IEC104 Inspector Rules 110

IEC104 Inspector Intrusion Rule Options 112

IMAP Inspector 115C H A P T E R 1 3

IMAP Inspector Overview 115

IMAP Inspector Parameters 115

IMAP Inspector Rules 118

IMAP Inspector Intrusion Rule Options 118

MMS Inspector 119C H A P T E R 1 4

MMS Inspector Overview 119

MMS Inspector Parameters 120

MMS Inspector Rules 120

MMS Inspector Intrusion Rule Options 120

Modbus Inspector 123C H A P T E R 1 5

Modbus Inspector Overview 123

Best Practices for Configuring the Modbus Inspector 123

Snort 3 Inspector Reference
v

Contents

Modbus Inspector Parameters 124

Modbus Inspector Rules 124

Modbus Inspector Intrusion Rule Options 125

Normalizer Inspector 127C H A P T E R 1 6

Normalizer Inspector Overview 127

Normalizer Inspector Parameters 128

Normalizer Inspector Rules 132

Normalizer Inspector Intrusion Rule Options 133

POP Inspector 135C H A P T E R 1 7

POP Inspector Overview 135

POP Inspector Parameters 136

POP Inspector Rules 138

POP Inspector Intrusion Rule Options 138

Port Scan Inspector 139C H A P T E R 1 8

Port Scan Inspector Overview 139

Best Practices for Configuring the Port Scan Inspector 141

Port Scan Inspector Parameters 142

Port Scan Inspector Rules 153

Port Scan Inspector Intrusion Rule Options 154

Rate Filter 155C H A P T E R 1 9

Rate Filter Overview 155

Rate Filter Parameters 156

Rate Filter Rules 158

Rate Filter Intrusion Rule Options 158

S7CommPlus Inspector 159C H A P T E R 2 0

S7CommPlus Inspector Overview 159

Best Practices for Configuring the S7CommPlus Inspector 159

S7CommPlus Inspector Parameters 160

Snort 3 Inspector Reference
vi

Contents

S7CommPlus Inspector Rules 160

S7CommPlus Inspector Intrusion Rule Options 161

SIP Inspector 163C H A P T E R 2 1

SIP Inspector Overview 163

SIP Inspector Parameters 164

SIP Inspector Rules 167

SIP Inspector Intrusion Rule Options 168

SMTP Inspector 171C H A P T E R 2 2

SMTP Inspector Overview 171

Best Practices for Configuring the SMTP Inspector 172

SMTP Inspector Parameters 172

SMTP Inspector Rules 180

SMTP Inspector Intrusion Rule Options 181

SnortML 183C H A P T E R 2 3

SnortML Rules 183

SnortML Parameters 184

SSH Inspector 185C H A P T E R 2 4

SSH Inspector Overview 185

Best Practices for Configuring the SSH Inspector 186

SSH Inspector Parameters 186

SSH Inspector Rules 187

SSH Inspector Intrusion Rule Options 188

Stream ICMP Inspector 189C H A P T E R 2 5

Stream ICMP Inspector Overview 189

Best Practices for Configuring the Stream ICMP Inspector 189

Stream ICMP Inspector Parameters 190

Stream ICMP Inspector Rules 190

Stream ICMP Inspector Intrusion Rule Options 190

Snort 3 Inspector Reference
vii

Contents

Stream IP Inspector 191C H A P T E R 2 6

Stream IP Inspector Overview 191

Best Practices for Configuring the Stream IP Inspector 191

Stream IP Inspector Parameters 192

Stream IP Inspector Rules 194

Stream IP Inspector Intrusion Rule Options 194

Stream TCP Inspector 195C H A P T E R 2 7

Stream TCP Inspector Overview 195

Best Practices for Configuring the Stream TCP Inspector 196

Best Practices for TCP Stream Reassembly 196

Stream TCP Inspector Parameters 197

Stream TCP Inspector Rules 202

Stream TCP Inspector Intrusion Rule Options 203

Stream UDP Inspector 207C H A P T E R 2 8

Stream UDP Inspector Overview 207

Best Practices for Configuring the Stream UDP Inspector 207

Stream UDP Inspector Parameters 208

Stream UDP Inspector Rules 208

Stream UDP Inspector Intrusion Rule Options 208

Telnet Inspector 209C H A P T E R 2 9

Telnet Inspector Overview 209

Telnet Inspector Parameters 209

Telnet Inspector Rules 210

Telnet Inspector Intrusion Rule Options 211

Snort 3 Inspector Reference
viii

Contents

C H A P T E R 1
Introduction

• About Snort 3 Inspection, on page 1
• Introduction to Snort 3 Inspectors, on page 3
• Protocol and Service Identification in Snort 3, on page 7

About Snort 3 Inspection
The Snort Intrusion Prevention System (IPS) analyzes network traffic in real time to provide deep packet
inspection. Snort can detect and block traffic anomalies, and network probes and attacks. Snort 3 is the latest
version of Snort. For more information, see https://snort.org/snort3.

Snort is designed for high performance and scalability. Snort includes a set of configurable plugins called
inspectors. A Snort inspector can detect and analyze traffic for a certain type of network protocol or probe,
normalize messages to enhance packet analysis, and inspect specific types of files embedded in a message.
You configure the Snort inspectors in a Network Analysis Policy (NAP) and enable intrusion rules in an
Intrusion policy.

Access Control Policies

Access control policies process traffic in several stages. The following diagram represents an example of a
policy deployment. The elements addressed in this document are the Snort 3 inspectors and rule options used
in intrusion rules, both highlighted in blue.

Snort 3 Inspector Reference
1

https://snort.org/snort3

Network analysis policies enable you to configure Snort 3 inspectors to determine the traffic protocol and
extract and normalize data. You can configure multiple network analysis policies, each using a uniquely
configured collection of Snort 3 inspectors to normalize the data. Inspectors can alert when they detect
irregularities in the data stream, but their main purpose is to prepare the data for the intrusion rules. The
intrusion policies apply their configured intrusion rules to examine the data for signs of evasions, intrusions,
or attacks.

Within a network analysis policy, you can customize inspection behavior for data using a given protocol by
setting configuration parameters specific to the inspector that handles that protocol. For example, to configure
inspection behavior for POP data, set the configuration parameters for the pop inspector.

You can also customize the intrusion policy for some protocols by writing custom intrusion rules using rule
options specific to those protocols.

If you establish a complex configuration using multiple network analysis policies and multiple intrusion
policies, the system first chooses the network analysis policy to handle the data. After the network analysis
policy has applied the appropriate inspectors to perform its analysis, the data does not automatically get handed
off to the corresponding intrusion policy for that protocol. The access control policy performs additional tests
to determine which intrusion policy gets the data. For this reason, when configuring your access control,
network analysis, and intrusion policies, ensure that data is analyzed by the correct network analysis and
intrusion policy pair. For more information, see the Cisco Secure Firewall Management Center Snort 3
Configuration Guide.

Intrusion Rule Updates

Cisco periodically issues intrusion rule updates in the form of Lightweight Security Packages (LSPs). These
updates may change the default values of a Snort 3 inspector's configuration parameters and intrusion rule
options.

Inspector Configuration

You can enable and disable Snort inspectors as well as view and change their configurations through the
Secure Firewall Management Center web interface. The Secure Firewall Management Center web interface
uses the JSON format to describe the inspector configurations. For more information, see the Cisco Secure
Firewall Management Center Snort 3 Configuration Guide.

Snort 3 Inspector Reference
2

Introduction
About Snort 3 Inspection

https://www.cisco.com/go/fmc-snort3
https://www.cisco.com/go/fmc-snort3
https://www.cisco.com/go/fmc-snort3
https://www.cisco.com/go/fmc-snort3

To use an inspector, you must enable it through the management center web interface. In addition, for service
inspectors, you must configure an entry for the service inspector in the binder inspector. For more information,
see Binder Inspector Overview, on page 13.

The Snort 3 Inspector Reference reflects the default settings for Snort 3 inspector parameters and built-in
intrusion rule options. Your system may use different defaults depending upon LSP updates, or the base
network access policies provided with the system. To get the most accurate understanding of inspector settings
for your network access policies, view the settings in the management center web interface.

Introduction to Snort 3 Inspectors
Snort 3 inspectors are plugins that analyze and normalize packets, similar to the Snort 2 preprocessors. The
list of inspectors and settings in Snort 3 does not directly correspond to the list of preprocessors and settings
in Snort 2.

Snort 3 Inspectors

• ARP Spoof Inspector, on page 11

• Binder Inspector, on page 13

• CIP Inspector, on page 19

• DCE SMB Inspector, on page 25

• DCE TCP Inspector, on page 37

• DNP3 Inspector, on page 45

• FTP Client Inspector, on page 51

• FTP Server Inspector, on page 55

• GTP Inspect Inspector, on page 63

• HTTP Inspect Inspector, on page 79

• IEC104 Inspector, on page 109

• IMAP Inspector, on page 115

• MMS Inspector, on page 119

• Modbus Inspector, on page 123

• Normalizer Inspector, on page 127

• POP Inspector, on page 135

• Port Scan Inspector, on page 139

• Rate Filter, on page 155

• S7CommPlus Inspector, on page 159

• SIP Inspector, on page 163

• SMTP Inspector, on page 171

Snort 3 Inspector Reference
3

Introduction
Introduction to Snort 3 Inspectors

• SSH Inspector, on page 185

• Stream ICMP Inspector, on page 189

• Stream IP Inspector, on page 191

• Stream TCP Inspector, on page 195

• Stream UDP Inspector, on page 207

• Telnet Inspector, on page 209

For each Snort 3 inspector, this document describes:

• General information about the purpose and function of the inspector.

• The type of inspector:

• Service: Inspectors that analyze protocol data units (PDUs) used in internet service protocols (HTTP,
FTP, TCP, or UDP). Examples include: http_inspect, ftp_server.

• Passive: Inspectors that provide only configuration (ftp_client, ftp_server) or facilitate other
processing (binder).

• Packet: Inspectors that perform processing on raw packets before other inspectors do their processing.
Examples include: normalizer.

• Probe: Inspectors that perform processing on all packets after all detection has completed. Examples
include: port_scan.

• Stream: Inspectors that perform flow tracking, internet protocol defragmentation, and TCP
reassembly. Examples include: stream_tcp, stream_ip.

• Basic module: A configurable, built-in Snort 3 component which provides functionality to support
the inspection process for multiple types of traffic. Examples include: rate_filter.

• Usage:

• Inspect: Configure these inspectors within a network analysis policy (NAP). Examples include:
imap, ssh.

• Global, Context: Configure these inspectors once. Examples include: port_scan, rate_filter.

• Instance Type:

• Singleton: Configure these inspectors for a single instance within a network access policy. For more
details, see Singleton Inspectors, on page 5.

• Multiton: Configure these inspectors for multiple instances within a network access policy (NAP).
A NAP can contain multiple instances differentiated by network, port, or VLAN. Each instance is
uniquely configured to process a specific traffic segment. For more details, see Multiton Inspectors,
on page 6.

• Other inspectors required: Many inspectors depend upon other inspectors to fully process the data stream.
When an inspector requires that you configure other inspectors, the documentation identifies those
additional inspectors.

Snort 3 Inspector Reference
4

Introduction
Introduction to Snort 3 Inspectors

• Best practices for configuring the inspector: These are recommendations for optimal performance specific
to each inspector.

• Configuration parameters for the inspector: You can set configuration parameters in the management
center web interface under Policies>Access Control>Network Analysis Policy>Policy Name>Snort
3 Version>Inspector Name.

Before modifying inspector parameters, we recommend that you understand the
interaction between the inspector and enabled intrusion rules.

Note

• Rules: The Snort 3 inspectors use rules to generate events. The built-in rules may contain classtype,
references, and other metadata.

• Intrusion rule options: Customize intrusion rules by defining intrusion rule options for the data type
handled by the inspector. See the Cisco Secure Firewall Management Center Snort 3 Configuration Guide
for information on managing custom intrusion rules.

Writing custom intrusion rules is an advanced activity and must be undertaken
with care. You may need to use inspectors and rule options not described in this
documentation. Using some of the inspectors and intrusion rule options described
in this document require specific settings in inspectors and rule options
documented in the Snort open-source documentation. Some rule options have an
impact on the Snort fast pattern matcher or placement of the detection cursor.
For more information, see the Snort 3 open-source documentation, available at
https://www.snort.org/snort3.

Note

Singleton Inspectors

A network access policy (NAP) can use only one instance of a singleton inspector.

• A singleton inspector does not support multiple instances per NAP like multiton inspectors.

• A singleton inspector may not apply to some specific flows.

For example:
{

"normalizer":{
"enabled":true,
"type":"singleton",
"data":{

"ip4":{
"df":true

}
}

}
}

Snort 3 Inspector Reference
5

Introduction
Introduction to Snort 3 Inspectors

https://www.cisco.com/go/fmc-snort3
https://www.snort.org/snort3

Multiton Inspectors

A network access policy may use one or more instances of multiton inspectors, which you can configure as
needed. A multiton inspector supports configuring settings based on specific conditions, including network,
port, and VLAN. One set of supported settings comprises an instance. A multiton provides a default instance,
and you can define additional instances based on specific conditions. If the traffic matches the conditions in
an customized instance, the settings from that instance are applied. Otherwise, the settings from the default
instance are applied. The name of the default instance is the same as the inspector's name.

For a multiton inspector, when you upload the overridden inspector configuration, you also need to define a
matching binder configuration for each instance in the JSON file, otherwise, the upload results in an error.
You can also create new instances, but make sure that you include a binder condition for every new instance
that you create to avoid errors.

For example:

• Multiton inspector where the default instance is modified:
{

"http_inspect":{
"instances":[

{
"name":"http_inspect",
"data":{

"response_depth":5000
}

}
]

}
}

• Multiton inspector where the default instance and default binder is modified:
{

"http_inspect":{
"instances":[

{
"name":"http_inspect",
"data":{

"response_depth":5000
}

}
]

},
"binder":{

"rules":[
{

"use":{
"type":"http_inspect"

},
"when":{

"role":"any",
"ports":"8080",
"proto":"tcp",
"service":"http"

}
}

]
}

}

• Multiton inspector where a custom instance and a custom binder is added:

Snort 3 Inspector Reference
6

Introduction
Introduction to Snort 3 Inspectors

{
"http_inspect":{

"instances":[
{

"name":"http_inspect1",
"data":{

"response_depth":5000
}

}
]

},
"binder":{

"rules":[
{

"use":{
"type":"http_inspect",
"name":"http_inspect1"

},
"when":{

"role":"any",
"ports":"8080",
"proto":"tcp",
"service":"http"

}
}

]
}

}

Protocol and Service Identification in Snort 3
The binder inspector performs a unique function that affects all Snort service inspectors. Along with the
Snort wizardmodule, the binder determines which stream or service inspector can inspect the network traffic.
The configurations in the binder inspector include the ports, hosts, CIDRs, and services that define when
another inspector in the same network analysis policy needs to inspect traffic.

The wizard supports port-independent configuration of services which allows for the detection of malware
command and control channels.

You cannot configure the wizard through the Secure Firewall Management Center web interface.Note

When traffic arrives at a firewall device, the binder inspector searches for intrusion policies and selects the
appropriate network access policy (NAP) to apply. Within a NAP, the binder determines the appropriate
stream and service inspectors to use for the data flow. Later, if the service associated with a flow changes,
the NAP uses the binder to select a different service inspector.

The binder inspector configuration includes when parameters that describe traffic characteristics, and use

parameters that specify which inspector to apply to traffic matching those characteristics. When determining
which inspector to apply to a data flow, the binder inspector compares traffic against its when clauses in order,
from the top down, and applies the use clause that corresponds to the first when clause that matches the traffic.

If no specific binder criteria match a data flow, the wizard analyzes the data flow to determine the service.
The wizard invokes the binder to select the appropriate inspector for that service. If no service can be
identified, the binder typically binds a stream inspector to the flow, and the system performs
non-protocol-specific reassembly of the data packets without regard to payload content.

Snort 3 Inspector Reference
7

Introduction
Protocol and Service Identification in Snort 3

The following diagram illustrates how inspectors perform protocol-specific or non-protocol-specific inspection.
Service inspection depends on how you configure port, host, service, and CIDR parameters in the binder
inspector:

You can customize the inspector selection criteria by defining the use and when parameters in the binder
inspector for a NAP in the management center web interface. For more information on the binder parameters,
see Binder Inspector Overview, on page 13. For information on navigating the management center web
interface to configure inspectors, see the Cisco Secure Firewall Management Center Snort 3 Configuration
Guide.

If you configure the binder incorrectly, it cannot detect the service for the flow or bind an inspector to it. If
the rules engine and autodetection cannot understand and identify the traffic, configuring a when criteria such
as the port in the binder inspector does not force inspection. For example, if you configure port 88 in the
binder as an HTTP port, the binder binds the http_inspect inspector to any flow on that port. But if the
flow is not HTTP, the rules engine does not inspect the data as HTTP, but instead performs port-based detection.

Autodetection and Enabled or Disabled Inspectors in the Network Analysis Policy

The behavior of autodetection changes, depending upon whether the targeted inspector is enabled or disabled
in the network analysis policy. If the targeted inspector is enabled in the network analysis policy, autodetection
works as described above.

If the targeted inspector is disabled in the network analysis policy, typically, autodetection still binds a stream
inspector, such as stream TCP or stream UDP, to the flow. However, the rules engine does not perform service
inspection or detection. For a TCP flow, the stream TCP inspector performs reassembly.

Snort 3 Inspector Reference
8

Introduction
Protocol and Service Identification in Snort 3

https://www.cisco.com/go/fmc-snort3
https://www.cisco.com/go/fmc-snort3

P A R T I
Snort 3 Inspectors

• ARP Spoof Inspector, on page 11
• Binder Inspector, on page 13
• CIP Inspector, on page 19
• DCE SMB Inspector, on page 25
• DCE TCP Inspector, on page 37
• DNP3 Inspector, on page 45
• FTP Client Inspector, on page 51
• FTP Server Inspector, on page 55
• GTP Inspect Inspector, on page 63
• HTTP Inspect Inspector, on page 79
• IEC104 Inspector, on page 109
• IMAP Inspector, on page 115
• MMS Inspector, on page 119
• Modbus Inspector, on page 123
• Normalizer Inspector, on page 127
• POP Inspector, on page 135
• Port Scan Inspector, on page 139
• Rate Filter, on page 155
• S7CommPlus Inspector, on page 159
• SIP Inspector, on page 163
• SMTP Inspector, on page 171
• SnortML, on page 183
• SSH Inspector, on page 185
• Stream ICMP Inspector, on page 189

• Stream IP Inspector, on page 191
• Stream TCP Inspector, on page 195
• Stream UDP Inspector, on page 207
• Telnet Inspector, on page 209

C H A P T E R 2
ARP Spoof Inspector

• ARP Spoof Inspector Overview, on page 11
• ARP Spoof Inspector Parameters, on page 12
• ARP Spoof Inspector Rules, on page 12
• ARP Spoof Inspector Intrusion Rule Options, on page 12

ARP Spoof Inspector Overview
Inspector (network)Type

InspectUsage

SingletonInstance Type

NoneOther Inspectors Required

trueEnabled

Address Resolution Protocol (ARP) is a stateless, communication protocol used within a single network for
address resolution. When exchanging requests and responses, ARP does not provide authentication between
hosts.

ARP spoof is a type of man-in-the-middle attack using ARPwithin a Local Area Network (LAN). An attacker
alters the communication to a host by intercepting messages intended for a specific host media access control
(MAC) address.

The arp_spoof inspector analyzes ARP packets and detects unicast ARP requests. To detect ARP cache
overwrite attacks, the ARP Spoof inspector identifies inconsistent Ethernet-to-IP mapping.

If enabled, the arp_spoof inspector:

• Inspects Ethernet addresses and the addresses in the ARP packets. When an inconsistency occurs, the
inspector uses rule 112:2 or rule 112:3 to generate alerts, and in an inline deployment, drop offending
packets.

• Checks for unicast ARP requests. If a unicast ARP request is detected, the inspector uses rule 112:1 to
generate alerts, and in an inline deployment, drop offending packets.

Snort 3 Inspector Reference
11

• If the hosts[] parameter is specified, the inspector uses that information to detect ARP cache overwrite
attacks. If such an attack is detected, the inspector uses rule 112:4 to generate alerts, and in an inline
deployment, drop offending packets.

ARP Spoof Inspector Parameters
The arp_spoof inspector does not provide default configuration parameter values in the Secure Firewall
Management Center web interface.

ARP Spoof Inspector Rules
Enable the arp_spoof inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 1: ARP Spoof Inspector Rules

Rule MessageGID:SID

unicast ARP request112:1

ethernet/ARP mismatch request for source112:2

ethernet/ARP mismatch request for destination112:3

attempted ARP cache overwrite attack112:4

ARP Spoof Inspector Intrusion Rule Options
The arp_spoof inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
12

Snort 3 Inspectors
ARP Spoof Inspector Parameters

C H A P T E R 3
Binder Inspector

• Binder Inspector Overview, on page 13
• Autodetection of Services for Portless Configuration, on page 14
• Best Practices for Configuring the Binder Inspector, on page 15
• Binder Inspector Parameters, on page 16
• Binder Inspector Rules, on page 18
• Binder Inspector Intrusion Rule Options, on page 18

Binder Inspector Overview
Inspector (passive)Type

InspectUsage

SingletonInstance Type

Depends upon bindings establishedOther Inspectors Required

trueEnabled

Each Network Analysis Policy (NAP) has one binder inspector. The binder determines when to use a certain
service inspector to inspect traffic. The configurations in the binder inspector include the ports, hosts, CIDRs,
and services that define when another inspector in the same NAP needs to inspect traffic. When a binder rule
matches a new flow, the targeted inspector is bound to the flow.

The binder inspector can work with the autodetection wizard to perform port-independent configuration of
services and detection of malware command and control channels. For more information, see Protocol and
Service Identification in Snort 3, on page 7.

Bindings are evaluated when a session starts and then again if and when an appropriate service is identified
in the session. The bindings are a list of when-use rules evaluated from top to bottom. Snort uses the first
matching network and service configurations to inspect traffic.

Example

For example, if you want to configure a NAP to inspect CIP traffic:

Snort 3 Inspector Reference
13

• In the binder inspector for the NAP, update the "type":"cip" section with the correct ports, role, and
protocol information for the traffic that you want to inspect.

• Review the default values in the cip inspector for that same NAP and make any adjustments required to
inspect the CIP traffic.

The following is an example of the cip configuration and binding. This example uses options described in
Binder Inspector Parameters, on page 16.

{
"use": {
"type":"cip"

},
"when": {
"proto":"udp",
"ports":"22222 33333",
"role":"server"

}
},
{
"use": {
"type":"cip"

},
"when": {
"role":"server",
"ports":"44818",
"proto":"tcp"

}
},

Autodetection of Services for Portless Configuration
The autodetection wizard enables port-independent configuration of services and the detection of malware
command and control channels. When traffic arrives, the binder inspector attaches the autodetection wizard
to the flow at the outset and it checks the initial payload to determine the service the traffic is using. For
example, GET would indicate HTTP and HELO would indicate SMTP. After the service is determined, Snort
bounds the the appropriate service inspector to the flow and detaches the autodetection wizard from the flow.

You cannot configure the autodetection wizard through the Secure FirewallManagement Center web interface.Note

If the rules engine and autodetection wizard cannot understand and identify the traffic, configuring a port in
the binder inspector does not force inspection.

Autodetection and Binder Configuration

The binder inspector matches intrusion rules in order, from the top down, and applies the first rule to match
the traffic. If you haven't configured the binder inspector for the service detected in the flow, the autodetection
wizard can still bind the flow to the relevant inspector. For example:

• If the payload is GET and the autodetection wizard identifies the traffic type as HTTP, the binder inspector
binds the HTTP inspector to that flow.

• If the traffic type cannot be identified, the rules engine performs a non-protocol specific inspection.

Snort 3 Inspector Reference
14

Snort 3 Inspectors
Autodetection of Services for Portless Configuration

If you configure a port incorrectly, the binder inspector cannot autodetect the service for that flow nor can it
bind an inspector to it. For example, if you configure port 88 into the binder as an HTTP port, the binder
inspector will bind the HTTP inspector to any flow on that port. However, if the flow is not HTTP, the rules
engine will not inspect it as HTTP. Instead, the inspection and detection will timeout.

Autodetection and Enable or Disable of Inspectors in the Network Analysis Policy

The behavior of autodetection changes, depending upon whether the targeted inspector is enabled or disabled
in the network analysis policy. If the targeted inspector is enabled in the network analysis policy, autodetection
works as expected.

If the targeted inspector is disabled in the network analysis policy, typically, autodetection still binds a stream
inspector, such as stream TCP or stream UDP, to the flow. However, the rules engine does not perform service
inspection or detection. For a TCP flow, the stream TCP inspector performs reassembly.

Best Practices for Configuring the Binder Inspector
Consider the following best practices when you configure the binder inspector:

• Do not configure ports in the binder inspector unless it's required for that inspector. The port configuration
does not improve efficacy if the rules engine can autodetect the traffic. However, an incorrect port
configuration can lead to failure to detect evasions.

• Configure a port for only one inspector. If a port is configured twice in the binder for different protocols
and inspectors, it will automatically trigger the first inspector.

• Add the configuration for a service inspector to the binder inspector if you do not see it in the default
binder inspector configuration. For example, if you want to use the cip inspector, add the use and when
options for the cip inspector to the binder.

• For the stream TCP inspector, configure networks to custom bind operating system configurations. The
network configurations apply to all ports.

• For service inspectors, avoid hard port bindings if the binder can autodetect the protocol in the flow. If
the protocol is not detectable, a hard port binding does not ensure detection and inspection.

Inspectors that Require Port Configuration

Configure ports in the binder inspector for the following inspectors, because autodetection does not work for
the related protocols:

• cip

• gtp_inspect

• iec104

• modbus

• s7commplus

Snort 3 Inspector Reference
15

Snort 3 Inspectors
Best Practices for Configuring the Binder Inspector

Inspectors that Do Not Require Port Configuration

Do not configure ports in the binder inspector for the following inspectors, because autodetection does work
for the related protocols:

• arp_spoof

• dce_smb

• dce_tcp

• dnp3

• ftp_client

• ftp_server

• http_inspect

• imap

• normalizer

• pop

• port_scan

• sip

• smtp

• ssh

• stream_icmp

• stream_ip

• stream_tcp

• stream_udp

• telnet

Binder Inspector Parameters
binder[]

A binder includes an array of rules defined as a pair of when and use objects.

Type: array

Example:

{
binder: {

rules: [
{

"when": {
...

},

Snort 3 Inspector Reference
16

Snort 3 Inspectors
Binder Inspector Parameters

"use": {
...

}
},
{

"when": {
...

},
"use": {

...
}

}
]

}
}

binder[].use.type

Specifies the inspector to bind to the data flow when the criteria in the when parameter matches. For example,
to inspect CIP traffic, add use.type with a value of cip.

Type: string

Valid values: The name of any Snort 3 inspector described in this document.

Default value: The binder inspector includes a use.type parameter for each supported inspector.

binder[].when.proto

Specifies the protocol that the traffic must match to bind the data flow to the inspector specified in use.type.
For example, if the network analysis policy is configured to inspect TCP traffic, the binder inspector must
have this parameter set to tcp.

Type: enum

Valid values: any, ip, icmp, tcp, udp, user, file

Default value: The binder inspector includes a when.proto parameter for each protocol.

binder[].when.ports

Specifies the ports that the traffic must match to bind the data flow to the inspector specified in use.type.
For example, to inspect traffic on TCP port 80, set when.proto to tcp and when.ports to 80.

Specify a list of one or more ports represented as decimal or hex integers. Separate multiple ports with a space
and enclose the list with double quotes.

Type: string

Valid range: 1 - 65535

Default value: 65535 (This value may vary depending upon the value of when.proto.)

binder[].when.role

Specifies the roles that the traffic must match to bind the flow to the inspector specified in use.type.

Type: enum

Valid values: client, server, any

Default value: any

Snort 3 Inspector Reference
17

Snort 3 Inspectors
Binder Inspector Parameters

Specifies the service that the traffic must match to bind the flow to the inspector specified in use.type.

Type: string

Valid values:A name of a service that may encapsulate incoming data, for example: netbios-ssn or dcerpc.

Default value: None

Binder Inspector Rules
The binder inspector does not have any associated rules.

Binder Inspector Intrusion Rule Options
The binder inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
18

Snort 3 Inspectors
Binder Inspector Rules

C H A P T E R 4
CIP Inspector

• CIP Inspector Overview, on page 19
• Best Practices for Configuring the CIP Inspector, on page 19
• CIP Inspector Parameters, on page 20
• CIP Inspector Rules, on page 21
• CIP Inspector Intrusion Rule Options, on page 22

CIP Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcpOther Inspectors Required

falseEnabled

The Common Industrial Protocol (CIP) is an application protocol that supports industrial automation
applications. EtherNet/IP (ENIP) is an implementation of CIP that is used on Ethernet-based networks.

The cip inspector detects CIP and ENIP traffic running on TCP or UDP and sends it to the intrusion rules
engine. You can use CIP and ENIP keywords in custom intrusion rules to detect attacks in CIP and ENIP
traffic.

In Snort 3, the cip inspector does not support CIP application detectors. To implement CIP application
detection, you can create and import custom CIP intrusion rules and enable the appropriate IPS rules. For
more information, see the Snort 3 configuration documentation for your management application.

Note

Best Practices for Configuring the CIP Inspector
Consider the following best practices when configuring the cip inspector:

Snort 3 Inspector Reference
19

• You must add the default CIP detection port 44818 and any other CIP ports in the binder inspector.

• We recommend that you use an intrusion prevention action as the default action for your access control
policy.

• To detect CIP and ENIP applications, you must enable the cip inspector in the corresponding custom
network analysis policy.

• To block CIP or ENIP application traffic using access control rules, ensure that the normalizer inspector
and its inline mode option are enabled (the default setting) in the corresponding network analysis policy.

• To drop traffic that triggers cip inspector rules and CIP intrusion rules, ensure that Drop when Inline
is enabled in the corresponding intrusion policy.

• The cip inspector does not support an access control policy default action of either of the following:

• Access Control: Trust All Traffic

• Access Control: Block All Traffic

• The cip inspector does not support application visibility for CIP applications, including network discovery.

CIP Inspector Parameters
CIP TCP port configuration

The binder inspector defines the CIP TCP port configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

[
{

"when": {
"role": "server",
"proto": "tcp",
"ports": "44818"

},
"use": {

"type": "cip"
}

}
]

embedded_cip_path

Determines whether the inspector checks the embedded CIP connection path.

Type: string

Valid values:

• "false"

• CIP path enclosed in double quotation marks, for example, "0x2 0x36".

Default value: "false"

Snort 3 Inspector Reference
20

Snort 3 Inspectors
CIP Inspector Parameters

unconnected_timeout

Sets the default unconnected timeout in seconds. When a CIP request message does not contain a
protocol-specific timeout value and the maximum number of concurrent unconnected requests per TCP
connection is reached, the system times the message for the number of seconds specified by this parameter.
When the timer expires, the message is removed to make room for future requests.

When you specify 0, all traffic that does not have a protocol-specific timeout configured times out first.

Type: integer

Valid range: 0 to 360

Default value: 300

max_unconnected_messages

Sets the maximum number of concurrent unconnected CIPmessages per TCP connection. If the system reaches
the maximum number of concurrent requests that can go unanswered, the system closes the connection.

Type: integer

Valid range: 1 to 10000

Default value: 100

max_cip_connections

Sets the maximum number of simultaneous CIP connections allowed by the system per TCP connection.

Type: integer

Valid range: 1 to 10000

Default value: 100

CIP Inspector Rules
Enable the cip inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 2: CIP Inspector Rules

Rule MessageGID:SID

CIP data is malformed148:1

CIP data is non-conforming to ODVA standard148:2

CIP connection limit exceeded. Least recently used connection removed148:3

CIP unconnected request limit exceeded. Oldest request removed148:4

Snort 3 Inspector Reference
21

Snort 3 Inspectors
CIP Inspector Rules

CIP Inspector Intrusion Rule Options
cip_attribute

Detection parameter to match the CIP attribute.

Type: interval

Syntax: cip_attribute: <range_operator><positive integer>; or cip_attribute: <positive

integer><range_operator><positive integer>;

Valid values: A set of one or more integers between 0 and 65535, and a range_operator as specified in the
Table 3: Range Formats.

Examples: cip_attribute: <100;

cip_class

Detection parameter to match the CIP class.

Type: interval

Syntax: cip_class: <range_operator><positive integer>; or cip_class: <positive

integer><range_operator><positive integer>;

Valid values: A set of one or more integers between 0 and 65535, and a range_operator as specified in the
Table 3: Range Formats.

Examples: cip_class: <25;

cip_conn_path_class

Detection parameter to match the CIP connection path class.

Type: interval

Syntax: cip_conn_path_class: <range_operator><positive integer>; or cip_conn_path_class:
<positive integer><range_operator><positive integer>;

Valid values: A set of one or more integers between 0 and 65535, and a range_operator as specified in the
Table 3: Range Formats.

Examples: cip_conn_path_class: <85;

cip_instance

Detection parameter to match the CIP instance.

Type: interval

Syntax: cip_instance: <range_operator><positive integer>; or cip_instance: <positive

integer><range_operator><positive integer>;

Valid values: A set of one or more integers between 0 and 65535, and a range_operator as specified in the
Table 3: Range Formats.

Examples: cip_instance: <15;

Snort 3 Inspector Reference
22

Snort 3 Inspectors
CIP Inspector Intrusion Rule Options

cip_req

Detection parameter to match the CIP request.

Syntax: cip_req;

Examples: cip_req;

cip_rsp

Detection parameter to match the CIP response.

Syntax: cip_rsp;

Examples: cip_rsp;

cip_service

Detection parameter to match the CIP service.

Type: interval

Syntax: cip_service: <range_operator><positive integer>; or cip_service: <positive

integer><range_operator><positive integer>;

Valid values: A set of one or more integers between 0 and 127, and a range_operator as specified in the
Table 3: Range Formats.

Examples: cip_service: <50;

cip_status

Detection parameter to match the CIP response status.

Type: interval

Syntax: cip_status: <range_operator><positive integer>; or cip_status: <positive

integer><range_operator><positive integer>;

Valid values: A set of one or more integers between 0 and 255, and a range_operator as specified in the
Table 3: Range Formats.

Examples: cip_status: <250;

Table 3: Range Formats

DescriptionOperatorRange Format

operator i

Less than<

Greater than>

Equal=

Not equal≠

Less than or equal≤

Snort 3 Inspector Reference
23

Snort 3 Inspectors
CIP Inspector Intrusion Rule Options

DescriptionOperatorRange Format

Greater than or equal≥

j operator k

Greater than j and less than k<>

Greater than or equal to j and less than or equal to k<=>

Snort 3 Inspector Reference
24

Snort 3 Inspectors
CIP Inspector Intrusion Rule Options

C H A P T E R 5
DCE SMB Inspector

• DCE SMB Inspector Overview, on page 25
• DCE SMB Inspector Parameters, on page 27
• DCE SMB Inspector Rules, on page 31
• DCE Inspectors Intrusion Rule Options, on page 32

DCE SMB Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

NoneOther Inspectors Required

trueEnabled

The DCE/RPC protocol allows processes on separate network hosts to communicate as if the processes were
on the same host. These inter-process communications are commonly transported between hosts over TCP
and UDP. Within the TCP transport, DCE/RPC might also be further encapsulated in the Windows Server
Message Block (SMB) protocol or in Samba, an open-source SMB implementation used for inter-process
communication in a mixed environment comprised of Windows, and UNIX or Linux operating systems.

Although most DCE/RPC exploits occur in DCE/RPC client requests targeted for DCE/RPC servers, which
could be practically any host on your network that is running Windows or Samba, exploits can also occur in
server responses.

IP encapsulates all DCE/RPC transports. TCP transports all connection-oriented DCE/RPC, such as SMB.

The dce_smb inspector detects connection-oriented DCE/RPC in the SMB protocol and uses protocol-specific
characteristics including header length and data fragment order to:

• Detect DCE/RPC requests and responses encapsulated in SMB transports.

• Analyze DCE/RPC data streams and detect anomalous behavior and evasion techniques in DCE/RPC
traffic.

• Analyze SMB data streams and detect anomalous SMB behavior and evasion techniques.

Snort 3 Inspector Reference
25

• Desegment SMB and defragment DCE/RPC.

• Normalize DCE/RPC traffic for processing by the rules engine.

The following diagram illustrates the point at which the DCE SMB inspector begins processing traffic for the
SMB transport.

The dce_smb inspector typically receives SMB traffic on the well-known TCP port 139 for the NetBIOS
Session Service or the similarly implementedwell-knownWindows port 445. Because SMBhasmany functions
other than transporting DCE/RPC, the inspector first tests whether the SMB traffic is carrying DCE/RPC
traffic and stops processing if it is not, or continues processing if it is.

Descriptions of the dce_smb inspector parameters and functionality include the Microsoft implementation of
DCE/RPC known as Microsoft Remote Procedure Call (MSRPC), as well as both SMB and Samba.

Target-Based Policies

Windows and Samba DCE/RPC implementations differ significantly. For example, all versions of Windows
use the DCE/RPC context ID in the first fragment when defragmenting DCE/RPC traffic, and all versions of
Samba use the context ID in the last fragment. As another example, Windows Vista uses the opnum (operation
number) header field in the first fragment to identify a specific function call, and Samba and all otherWindows
versions use the opnum field in the last fragment.

There are significant differences in Windows and Samba SMB implementations. For example, Windows
recognizes the SMB OPEN and READ commands when working with named pipes, but Samba does not
recognize these commands.

For this reason, the dce_smb inspector uses a target-based approach. When you configure a dce_smb inspector
instance, the policy parameter specifies an implementation of theDCE/RPCSMBprotocol. This in combination
with the host information establishes a default target-based server policy. Optionally, you can configure
additional inspectors that target other hosts and DCE/RPC SMB implementations. The DCE/RPC SMB
implementation specified by the default target-based server policy applies to any host not targeted by another
dce_smb inspector instance.

DCE/RPC SMB implementations which the dce_smb inspector can target with the policy parameter are:

• WinXP (default)

• Win2000

• WinVista

• Win2003

• Win2008

• Win7

• Samba

• Samba-3.0.37

Snort 3 Inspector Reference
26

Snort 3 Inspectors
DCE SMB Inspector Overview

• Samba-3.0.22

• Samba-3.0.20

File Inspection

The dce_smb inspector supports file inspection for SMB versions 1, 2, and 3.

The dce_smb inspector examines normal SMB file transfers. This includes checks of the file type and signature
through the file processing as well as setting a pointer for the file_data rule option. The dce_smb inspector
supports inspection of normal SMB file transfers for SMB version 1, 2, and 3 when used in coordination with
the file_id inspector (described in Snort 3 open source documentation, available at https://www.snort.org/
snort3). To enable file inspection, configure the file_id inspector as needed, and set the dce_smb
smb_file_inspection and smb_file_depth parameters. The smb_file_depth parameter indicates the number
of file data bytes the file_id inspector examines beginning at the pointer indicated by the file_data IPS
rule option. For more information, see the Snort 3 open source documentation, available at
https://www.snort.org/snort3).

Defragmentation

The dce_smb inspector supports reassembling fragmented data packets. This feature is useful in inline mode
to catch exploits early in the inspection process before full defragmentation is done, or to catch exploits that
take advantage of fragmentation to conceal themselves. Be aware that disabling defragmentation may result
in a large number of false negatives.

DCE SMB Inspector Parameters
DCE SMB port configuration

The binder inspector defines the DCE SMB port configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

[
{

"when": {
"role":"any",
"service":"netbios-ssn",
"ports": ""

},
"use": {

"type":"dce_smb"
}

}
]

max_frag_len

Specifies the maximum fragment length in bytes allowed for defragmentation. For processing larger fragments
the inspector considers packet content to this size before defragmenting.

Snort 3 Inspector Reference
27

Snort 3 Inspectors
DCE SMB Inspector Parameters

https://www.snort.org/snort3
https://www.snort.org/snort3
https://www.snort.org/snort3

The value specified in this parameter must be greater than or equal to the depth to which the rules need to
examine the data to ensure detection. To ensure that all data goes through detection, use the default value.

Note

Type: integer

Valid range: 1514 to 65535

Default value: 65535

smb_max_compound

Specifies the maximum number of commands to process in one SMB request.

Type: integer

Valid range: 0 to 255

Default value: 3

smb_max_chain

Specifies the maximum number of chained SMB AndX commands allowed. Typically, more than a few
chained AndX commands represent anomalous behavior and could indicate an evasion attempt. Specify 1 to
permit no chained commands or 0 to disable detecting the number of chained commands.

The dce_smb inspector first counts the number of chained commands and generates an event if accompanying
SMB inspector rules are enabled and the number of chained commands equals or exceeds the configured
value. It then continues processing.

You can enable rule 133:20 to generate events and, in an inline deployment, drop offending packets for this
parameter.

Type: integer

Valid range: 0 to 255

Default value: 3

disable_defrag

Specifies whether to defragment fragmented DCE/RPC traffic. When enabled, the dce_smb inspector detects
anomalies and sends DCE/RPC data to the rules engine, but at the risk of missing exploits in fragmented
DCE/RPC data.

Although disable_defrag provides the flexibility of not defragmenting traffic and can speed processing,
most DCE/RPC exploits attempt to take advantage of fragmentation to hide the exploit. Enabling this parameter
would bypass most known exploits, resulting in a large number of false negatives.

Type: boolean

Valid values: true, false

Default value: false

limit_alerts

Specifies whether to limit the DCE alerts to at most one per signature per flow.

Snort 3 Inspector Reference
28

Snort 3 Inspectors
DCE SMB Inspector Parameters

Type: boolean

Valid values: true, false

Default value: true

reassemble_threshold

Specifies the minimum number of bytes in the DCE/RPC desegmentation and defragmentation buffers to
queue before sending a reassembled packet to the rules engine. This parameter is useful in inline mode so as
to potentially catch an exploit early before full defragmentation is done.

Note that a low value increases the likelihood of early detection but could have a negative impact on
performance. You should test for performance impact if you enable this parameter.

A value of 0 disables reassembly.

Type: integer

Valid range: 0 to 65535

Default value: 0

policy

Specifies the Windows or Samba DCE/RPC implementation used by the targeted host or hosts on your
monitored network segment.

Type: enum

Valid values: A string selected from the following list: Win2000, WinXP, WinVista, Win2003, Win2008, Win7,
Samba, Samba-3.0.37, Samba-3.0.22, Samba-3.0.20

Default value: WinXP

smb_max_credit

Specifies the maximum number of outstanding requests.

Type: integer

Valid range: 1 to 65536

Default value: 8192

smb_file_depth

Specifies the number of bytes inspected when a file is detected in SMB traffic, beginning at the location
specified by the file_data IPS rule option (described in Snort 3 open source documentation, available at
https://www.snort.org/snort3).

Specify -1 to disable file inspection.

Specify 0 to indicate unlimited file inspection.

Type: integer

Valid range: -1 to 32767

Default value: 16384

Snort 3 Inspector Reference
29

Snort 3 Inspectors
DCE SMB Inspector Parameters

https://www.snort.org/snort3

When a file is detected in SMB traffic, the smb_file_depth parameter indicates the number of file data bytes
the inspector will examine beginning at the pointer set in the file_data IPS rule option. To inspect the file
type and signature, dce_smb uses the enable_type, type_depth, enable_signature, and signature_depth

parameters set in the file_id inspector. For more information on the file_id inspector, see the Snort open
source documentation, available at https://www.snort.org/snort3.

memcap

Specifies the maximum memory limit in bytes allocated to the inspector. When the maximum memory cap
is reached or exceeded, the dce_smb inspector deletes the least recently used data to create more space.

Type: integer

Valid range: 512 to 9,007,199,254,740,992 (maxSZ)

Default value: 8,388,608

smb_fingerprint_policy

Causes the inspector to detect the Windows or Samba version that is identified in SMB Session Setup AndX

requests and responses.When the detected version is different from theWindows or Samba version configured
for the policy inspector parameter, the detected version overrides the configured version for that session only.

For example, if you set policy to Windows XP and the inspector detects Windows Vista, the inspector uses
a Windows Vista policy for that session. Other settings remain in effect.

Type: enum

Valid values: none, client, server, or both

• Use client to inspect server-to-client traffic for the policy type.

• Use server to inspect client-to-server traffic for the policy type.

• Use both to inspect server-to-client and client-to-server traffic for the policy type.

• Use none to disable Windows or Samba version inspection.

Default value: none

smb_legacy_mode

When smb_legacy_mode is true, the system applies SMB intrusion rules only to SMB Version 1 traffic, and
applies DCE/RPC intrusion rules to DCE/RPC traffic using SMB Version 1 as a transport.

When smb_legacy_mode is false, the system applies SMB intrusion rules to traffic using SMB Versions 1,
and 2, and:

• For Versions 7.0 and 7.0.x the system applies DCE/RPC intrusion rules to DCE/RPC traffic using SMB
as a transport only for SMB Version 1.

• For Versions 7.1+ the system applies DCE/RPC intrusion rules to DCE/RPC traffic using SMB as a
transport for SMB Versions 1 and 2.

Type: boolean

Valid values: true, false

Default value: false

Snort 3 Inspector Reference
30

Snort 3 Inspectors
DCE SMB Inspector Parameters

https://www.snort.org/snort3

valid_smb_versions

Specifies which SMB versions to inspect. Separate multiple SMB versions with a space character.

Type: string

Valid values: v1, v2, v3, all

Default value: all

DCE SMB Inspector Rules
Enable the dce_smb inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 4: DCE SMB Inspector Rules

Rule MessageGID:SID

SMB - bad NetBIOS session service session type133:2

SMB - bad SMB message type133:3

SMB - bad SMB Id (not \xffSMB for SMB1 or not \xfeSMB for SMB2)133:4

SMB - bad word count or structure size133:5

SMB - bad byte count133:6

SMB - bad format type133:7

SMB - bad offset133:8

SMB - zero total data count133:9

SMB - NetBIOS data length less than SMB header length133:10

SMB - remaining NetBIOS data length less than command length133:11

SMB - remaining NetBIOS data length less than command byte count133:12

SMB - remaining NetBIOS data length less than command data size133:13

SMB - remaining total data count less than this command data size133:14

SMB - total data sent (STDu64) greater than command total data expected133:15

SMB - byte count less than command data size (STDu64)133:16

SMB - invalid command data size for byte count133:17

SMB - excessive tree connect requests with pending tree connect responses133:18

SMB - excessive read requests with pending read responses133:19

SMB - excessive command chaining133:20

Snort 3 Inspector Reference
31

Snort 3 Inspectors
DCE SMB Inspector Rules

Rule MessageGID:SID

SMB - multiple chained login requests133:21

SMB - multiple chained tree connect requests133:22

SMB - chained/compounded login followed by logoff133:23

SMB - chained/compounded tree connect followed by tree disconnect133:24

SMB - chained/compounded open pipe followed by close pipe133:25

SMB - invalid share access133:26

SMB - invalid SMB version 1 seen133:44

SMB - invalid SMB version 2 seen133:45

SMB - invalid user, tree connect, file binding133:46

SMB - excessive command compounding133:47

SMB - zero data count133:48

SMB - maximum number of outstanding requests exceeded133:50

SMB - outstanding requests with same MID133:51

SMB - deprecated dialect negotiated133:52

SMB - deprecated command used133:53

SMB - unusual command used133:54

SMB - invalid setup count for command133:55

SMB - client attempted multiple dialect negotiations on session133:56

SMB - client attempted to create or set a file’s attributes to readonly/hidden/system133:57

SMB - file offset provided is greater than file size specified133:58

SMB - next command specified in SMB2 header is beyond payload boundary133:59

DCE Inspectors Intrusion Rule Options
dce_iface

Specifies the following comma-separated elements:

• The UUID for a service interface.

• The interface version (optional). The default setting matches any version.

Snort 3 Inspector Reference
32

Snort 3 Inspectors
DCE Inspectors Intrusion Rule Options

• An indicator of whether a rule should match on any fragment in a request (optional). The default setting
matches only the first fragment.

In the DCE/RPC protocol, a client must bind to a service before making a call to it. When a client sends a
bind request to the server, it can specify one or more service interfaces to bind to. Each interface is represented
by a UUID, and each interface UUID is paired with a unique index (or context ID) that future requests can
use to reference the service that the client is calling. The server responds with the interface UUIDs it accepts
as valid and allows the client to make requests to those services. When a client makes a request, it will specify
the context ID so the server knows to what service the client is making a request.

Using the dce_iface rule option, a rule can ask the inspector whether the client has bound to a specific interface
UUID and whether this client request is making a request to that interface. This can eliminate false positives
where more than one service is bound to successfully since the inspector can correlate the bind UUID to the
context id used in the request.

The dce_iface option requires tracking client Bind and Alter Context requests as well as server Bind Ack
and Alter Context responses for connection-oriented DCE/RPC in the inspector. For each Bind and Alter
Context request, the client specifies a list of interface UUIDs along with a handle (or context id) for each
interface UUID that will be used during the DCE/RPC session to reference the interface. The server response
indicates which interfaces it allows the client to make requests to—it either accepts or rejects the client’s wish
to bind to a certain interface. This tracking is required so that when a request is processed, the context id used
in the request can be correlated with the interface UUID for which it is a handle.

The dce_iface rule option matches if:

• the specified interface UUID matches the interface UUID (as referred to by the context ID) of the
DCE/RPC request

and

• the version argument is not supplied, or the version argument is supplied and matches the interface
UUID of the DCE/RPC request

and

• the any_frag argument is supplied, or the any_frag argument is absent and the dce_iface option matches
the UUID and version criteria on the initial request fragment

Examples:

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188;

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188, <2;

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188,any_frag;

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188, =1, any_frag;

dce_iface.uuid

A DCE/RPC request can specify whether UUID numbers are represented as big endian or little endian. The
representation of the interface UUID in a request is different depending on the endianness specified in the
request. The dce_rpc inspector normalizes the UUID. This means that the UUID specification in the dce_iface
rule option must be written the same way regardless of the endianness of the request.

For example, a little endian Bind request would represent a UUID as follows:
|f8 91 7b 5a 00 ff d0 11 a9 b2 00 c0 4f b6 e6 fc|

Snort 3 Inspector Reference
33

Snort 3 Inspectors
DCE Inspectors Intrusion Rule Options

and a big-endian Bind request would represent the same UUID as follows:

|5a 7b 91 f8 ff 00 11 d0 a9 b2 00 c0 4f b6 e6 fc|

In Snort 3 rules using the dce_iface option, the UUID must be represented in a string using big endian order
regardless of the endian-ness of the request:

5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc

Type: string

Syntax: dce_iface: <UUID>;

Valid values: Where: UUID is 32 hexadecimal digits, displayed in five groups separated by hyphens, in the
form: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Examples: dce_iface: 5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc;

dce_iface.version

A service interface has a version associated with it. Some versions of an interface may not be vulnerable to
certain exploits. For this reason you can specify one or more version numbers in the dce_iface option, to
determine whether it is necessary to check for a particular exploit.

Type: interval

Syntax: dce_iface: <range_operator><positive integer>; or dce_iface: <positive

integer><range_operator><positive integer>;

Valid values: A set of one or more positive version numbers and a range_operator as specified in the Table
5: Range Formats.

Examples: dce_iface: =6;

dce_iface.any_frag

A DCE/RPC request can be broken up into one or more fragments. Flags are set in the DCE/RPC header to
indicate whether the current fragment is the first, a middle, or the last fragment of the request. Many checks
for data in the DCE/RPC request are relevant only if the DCE/RPC request is a first fragment (or full request).
Thus, fragments that follow the first fragment contain data deeper into the DCE/RPC request. For example,
a rule that looks for data in the first five bytes of the request (for example, a length field), finds the wrong
data on a fragment other than the first. The start of subsequent fragments is offset some length from the
beginning of the request. This can be a source of false positives in fragmented DCE/RPC traffic.

For this reason, by default the DCE_RPC inspector matches only the initial fragment in a request. To force
the inspector to examine all fragments in a request for a match, add any_frag to the dce_iface rule option.
Note that a defragmented DCE/RPC request is considered a full request.

Syntax: dec_iface: any_frag;

Examples: dce_iface: any_frag;

dce_opnum

Match a DCE RPC operation number, range of operation number, or list of operation number. This option
represents one or more a specific function calls that can be made to an interface. After a client has bound to
a specific service interface and makes a request to it, rules need to determine what function call the client is
making to the service, to check for exploits that may lie within the function call. The functions call(s) are
specified as a double-quote-enclosed list of operation numbers (opnums)

Snort 3 Inspector Reference
34

Snort 3 Inspectors
DCE Inspectors Intrusion Rule Options

Type: string

Syntax: dce_opnum: <opnum_list>;

Where opnum_list is one of the following:

• A single integer.

• A comma-separated list of integers.

• A range of integers specified with a hyphen separating the lowest and highest numbers in the range.

• A combination of the above.

Valid values: A list of DCE/RPC request opnums.

Examples:

dce_opnum: "15";

dce_opnum: "15-18";

dce_opnum: "15, 18-20";

dce_opnum: "15, 17, 20-22";

dce_stub_data

This option places the detection cursor (used to traverse the packet payload in rules processing) at the beginning
of the DCE/RPC stub data, regardless of preceding rule options. This option matches if there is DCE/RPC
stub data present.

Syntax: dce_stub_data;

Examples: dce_stub_data;

Table 5: Range Formats

DescriptionOperatorRange Format

operator i

Less than<

Greater than>

Equal=

Not equal≠

Less than or equal≤

Greater than or equal≥

j operator k

Greater than j and less than k<>

Greater than or equal to j and less than or equal to k<=>

Snort 3 Inspector Reference
35

Snort 3 Inspectors
DCE Inspectors Intrusion Rule Options

Snort 3 Inspector Reference
36

Snort 3 Inspectors
DCE Inspectors Intrusion Rule Options

C H A P T E R 6
DCE TCP Inspector

• DCE TCP Inspector Overview, on page 37
• DCE TCP Inspector Parameters, on page 39
• DCE TCP Inspector Rules, on page 40
• DCE Inspectors Intrusion Rule Options, on page 41

DCE TCP Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

NoneOther Inspectors Required

trueEnabled

The DCE/RPC protocol allows processes on separate network hosts to communicate as if the processes were
on the same host. These inter-process communications are commonly transported between hosts over TCP.
Within the TCP transport, DCE/RPC might also be further encapsulated in the Windows Server Message
Block (SMB) protocol or in Samba, an open-source SMB implementation used for inter-process communication
in a mixed environment comprised of Windows, and UNIX or Linux operating systems.

Although most DCE/RPC exploits occur in DCE/RPC client requests targeted for DCE/RPC servers, which
could be practically any host on your network that is running Windows or Samba, exploits can also occur in
server responses.

IP encapsulates all DCE/RPC transports. TCP transports all connection-oriented DCE/RPC. The DCE TCP
inspector detects connection-oriented DCE/RPC and uses protocol-specific characteristics (such as header
length and data fragment order) to:

• Detect DCE/RPC requests and responses encapsulated in TCP transports, including TCP-transported
DCE/RPC using version 1 RPC over HTTP.

• Analyze DCE/RPC data streams and detect anomalous behavior and evasion techniques in DCE/RPC
traffic.

• Defragment DCE/RPC.

Snort 3 Inspector Reference
37

• Normalize DCE/RPC traffic for processing by the rules engine.

The following diagram illustrates the point at which the DCE TCP inspector begins processing traffic for the
TCP transport.

The well-known TCP port 135 identifies DCE/RPC traffic in the TCP transport. The figure does not include
RPC over HTTP. For RPC over HTTP, connection-oriented DCE/RPC is transported directly over TCP as
shown in the figure after an initial setup sequence over HTTP.

Target-Based Policies

Windows and Samba DCE/RPC implementations differ significantly. For example, all versions of Windows
use the DCE/RPC context ID in the first fragment when defragmenting DCE/RPC traffic, and all versions of
Samba use the context ID in the last fragment. As another example,Windows Vista uses the opnum (operation
number) header field in the first fragment to identify a specific function call, and Samba and all otherWindows
versions use the opnum field in the last fragment.

For this reason, the dce_tcp inspector uses a target-based approach. When you configure a dce_tcp inspector
instance, the policy parameter specifies a specific implementation of the DCE/RPC TCP protocol. This in
combination with the host information establishes a default target-based server policy. Optionally, you can
configure additional inspectors that target other hosts and DCE/RPC TCP implementations. The DCE/RPC
TCP implementation specified by the default target-based server policy applies to any host not targeted by
another dce_tcp inspector instance.

The DCE/RPC implementations the DCE TCP inspector can target with the policy parameter are:

• WinXP (default)

• Win2000

• WinVista

• Win2003

• Win2008

• Win7

• Samba

• Samba-3.0.37

• Samba-3.0.22

• Samba-3.0.20

Snort 3 Inspector Reference
38

Snort 3 Inspectors
DCE TCP Inspector Overview

Defragmentation

The DCE TCP inspector supports reassembling fragmented data packets before sending them to the detection
engine. This feature is useful in inline mode to catch exploits early in the inspection process before full
defragmentation is done, or to catch exploits that take advantage of fragmentation to conceal themselves. Be
aware that disabling defragmentation may result in a large number of false negatives.

DCE TCP Inspector Parameters
DCE TCP port configuration

The binder inspector defines the DCE TCP port configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

[
{

"when": {
"role": "any",
"proto": "tcp",
"service": "dcerpc",
"ports": ""

},
"use": {

"type": "dce_tcp"
}

}
]

max_frag_len

Specifies the maximum fragment length in bytes allowed for defragmentation. For processing larger fragments
the inspector considers packet content to the specified size before defragmenting.

The value specified in this parameter must be greater than or equal to the depth to which the rules need to
examine the data to ensure detection. To ensure that all data goes through detection, use the default value.

Note

Type: integer

Valid range: 1514 to 65535

Default value: 65535

disable_defrag

Specifies whether to defragment fragmented DCE/RPC traffic. When this parameter is true, the inspector
still detects anomalies and sends DCE/RPC data to the rules engine, but at the risk of missing exploits in
fragmented DCE/RPC data.

Although this parameter provides the flexibility of not defragmenting traffic and can speed processing, most
DCE/RPC exploits attempt to take advantage of fragmentation to hide the exploit. Enabling this parameter
would bypass most known exploits, resulting in a large number of false negatives.

Snort 3 Inspector Reference
39

Snort 3 Inspectors
DCE TCP Inspector Parameters

Type: boolean

Valid values: true, false

Default value: false

limit_alerts

Specifies whether to limit DCE alerts to at most one per signature per flow.

Type: boolean

Valid values: true, false

Default value: true

reassemble_threshold

Specifies the minimum number of bytes in the DCE/RPC desegmentation and defragmentation buffers to
queue before sending a reassembled packet to the rules engine. This parameter is useful in inline mode so as
to potentially catch an exploit early before full defragmentation is done.

A low value increases the likelihood of early detection but could have a negative impact on performance. You
should test for performance impact if you enable this parameter.

A value of 0 disables reassembly.

Type: integer

Valid range: 0 to 65535

Default value: 0

policy

Specifies the Windows or Samba DCE/RPC implementation used by the targeted host or hosts on your
monitored network segment.

Type: enum

Valid values: A string selected from the following list: Win2000, WinXP, WinVista, Win2003, Win2008, Win7,
Samba, Samba-3.0.37, Samba-3.0.22, Samba-3.0.20

Default value: WinXP

DCE TCP Inspector Rules
Enable the dce_tcp inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 6: DCE TCP Inspector Rules

Rule MessageGID:SID

connection oriented DCE/RPC - invalid major version133:27

connection oriented DCE/RPC - invalid minor version133:28

connection-oriented DCE/RPC - invalid PDU type133:29

Snort 3 Inspector Reference
40

Snort 3 Inspectors
DCE TCP Inspector Rules

Rule MessageGID:SID

connection-oriented DCE/RPC - fragment length less than header size133:30

connection-oriented DCE/RPC - remaining fragment length less than size needed133:31

connection-oriented DCE/RPC - no context items specified133:32

connection-oriented DCE/RPC -no transfer syntaxes specified133:33

connection-oriented DCE/RPC - fragment length on non-last fragment less than
maximum negotiated fragment transmit size for client

133:34

connection-oriented DCE/RPC - fragment length greater than maximum negotiated
fragment transmit size

133:35

connection-oriented DCE/RPC - alter context byte order different from bind133:36

connection-oriented DCE/RPC - call id of non first/last fragment different from call
id established for fragmented request

133:37

connection-oriented DCE/RPC - opnum of non first/last fragment different from
opnum established for fragmented request

133:38

connection-oriented DCE/RPC - context id of non first/last fragment different from
context id established for fragmented request

133:39

DCE Inspectors Intrusion Rule Options
dce_iface

Specifies the following comma-separated elements:

• The UUID for a service interface.

• The interface version (optional). The default setting matches any version.

• An indicator of whether a rule should match on any fragment in a request (optional). The default setting
matches only the first fragment.

In the DCE/RPC protocol, a client must bind to a service before making a call to it. When a client sends a
bind request to the server, it can specify one or more service interfaces to bind to. Each interface is represented
by a UUID, and each interface UUID is paired with a unique index (or context ID) that future requests can
use to reference the service that the client is calling. The server responds with the interface UUIDs it accepts
as valid and allows the client to make requests to those services. When a client makes a request, it will specify
the context ID so the server knows to what service the client is making a request.

Using the dce_iface rule option, a rule can ask the inspector whether the client has bound to a specific interface
UUID and whether this client request is making a request to that interface. This can eliminate false positives
where more than one service is bound to successfully since the inspector can correlate the bind UUID to the
context id used in the request.

Snort 3 Inspector Reference
41

Snort 3 Inspectors
DCE Inspectors Intrusion Rule Options

The dce_iface option requires tracking client Bind and Alter Context requests as well as server Bind Ack
and Alter Context responses for connection-oriented DCE/RPC in the inspector. For each Bind and Alter
Context request, the client specifies a list of interface UUIDs along with a handle (or context id) for each
interface UUID that will be used during the DCE/RPC session to reference the interface. The server response
indicates which interfaces it allows the client to make requests to—it either accepts or rejects the client’s wish
to bind to a certain interface. This tracking is required so that when a request is processed, the context id used
in the request can be correlated with the interface UUID for which it is a handle.

The dce_iface rule option matches if:

• the specified interface UUID matches the interface UUID (as referred to by the context ID) of the
DCE/RPC request

and

• the version argument is not supplied, or the version argument is supplied and matches the interface
UUID of the DCE/RPC request

and

• the any_frag argument is supplied, or the any_frag argument is absent and the dce_iface option matches
the UUID and version criteria on the initial request fragment

Examples:

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188;

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188, <2;

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188,any_frag;

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188, =1, any_frag;

dce_iface.uuid

A DCE/RPC request can specify whether UUID numbers are represented as big endian or little endian. The
representation of the interface UUID in a request is different depending on the endianness specified in the
request. The dce_rpc inspector normalizes the UUID. This means that the UUID specification in the dce_iface
rule option must be written the same way regardless of the endianness of the request.

For example, a little endian Bind request would represent a UUID as follows:
|f8 91 7b 5a 00 ff d0 11 a9 b2 00 c0 4f b6 e6 fc|

and a big-endian Bind request would represent the same UUID as follows:

|5a 7b 91 f8 ff 00 11 d0 a9 b2 00 c0 4f b6 e6 fc|

In Snort 3 rules using the dce_iface option, the UUID must be represented in a string using big endian order
regardless of the endian-ness of the request:

5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc

Type: string

Syntax: dce_iface: <UUID>;

Valid values: Where: UUID is 32 hexadecimal digits, displayed in five groups separated by hyphens, in the
form: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Examples: dce_iface: 5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc;

Snort 3 Inspector Reference
42

Snort 3 Inspectors
DCE Inspectors Intrusion Rule Options

dce_iface.version

A service interface has a version associated with it. Some versions of an interface may not be vulnerable to
certain exploits. For this reason you can specify one or more version numbers in the dce_iface option, to
determine whether it is necessary to check for a particular exploit.

Type: interval

Syntax: dce_iface: <range_operator><positive integer>; or dce_iface: <positive

integer><range_operator><positive integer>;

Valid values: A set of one or more positive version numbers and a range_operator as specified in the Table
7: Range Formats.

Examples: dce_iface: =6;

dce_iface.any_frag

A DCE/RPC request can be broken up into one or more fragments. Flags are set in the DCE/RPC header to
indicate whether the current fragment is the first, a middle, or the last fragment of the request. Many checks
for data in the DCE/RPC request are relevant only if the DCE/RPC request is a first fragment (or full request).
Thus, fragments that follow the first fragment contain data deeper into the DCE/RPC request. For example,
a rule that looks for data in the first five bytes of the request (for example, a length field), finds the wrong
data on a fragment other than the first. The start of subsequent fragments is offset some length from the
beginning of the request. This can be a source of false positives in fragmented DCE/RPC traffic.

For this reason, by default the DCE_RPC inspector matches only the initial fragment in a request. To force
the inspector to examine all fragments in a request for a match, add any_frag to the dce_iface rule option.
Note that a defragmented DCE/RPC request is considered a full request.

Syntax: dec_iface: any_frag;

Examples: dce_iface: any_frag;

dce_opnum

Match a DCE RPC operation number, range of operation number, or list of operation number. This option
represents one or more a specific function calls that can be made to an interface. After a client has bound to
a specific service interface and makes a request to it, rules need to determine what function call the client is
making to the service, to check for exploits that may lie within the function call. The functions call(s) are
specified as a double-quote-enclosed list of operation numbers (opnums)

Type: string

Syntax: dce_opnum: <opnum_list>;

Where opnum_list is one of the following:

• A single integer.

• A comma-separated list of integers.

• A range of integers specified with a hyphen separating the lowest and highest numbers in the range.

• A combination of the above.

Valid values: A list of DCE/RPC request opnums.

Examples:

Snort 3 Inspector Reference
43

Snort 3 Inspectors
DCE Inspectors Intrusion Rule Options

dce_opnum: "15";

dce_opnum: "15-18";

dce_opnum: "15, 18-20";

dce_opnum: "15, 17, 20-22";

dce_stub_data

This option places the detection cursor (used to traverse the packet payload in rules processing) at the beginning
of the DCE/RPC stub data, regardless of preceding rule options. This option matches if there is DCE/RPC
stub data present.

Syntax: dce_stub_data;

Examples: dce_stub_data;

Table 7: Range Formats

DescriptionOperatorRange Format

operator i

Less than<

Greater than>

Equal=

Not equal≠

Less than or equal≤

Greater than or equal≥

j operator k

Greater than j and less than k<>

Greater than or equal to j and less than or equal to k<=>

Snort 3 Inspector Reference
44

Snort 3 Inspectors
DCE Inspectors Intrusion Rule Options

C H A P T E R 7
DNP3 Inspector

• DNP3 Inspector Overview, on page 45
• DNP3 Inspector Parameters, on page 45
• DNP3 Inspector Rules, on page 46
• DNP3 Inspector Intrusion Rule Options, on page 46

DNP3 Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcp, stream_udpOther Inspectors Required

falseEnabled

Distributed Network Protocol (DNP3) is a Supervisory Control and Data Acquisition (SCADA) protocol that
was originally developed to provide consistent communication between electrical stations. DNP3 is widely
used in the water, waste, and transportation industries.

The dnp3 inspector detects anomalies in DNP3 traffic and analyzes the DNP3 protocol. The dnp3 intrusion
rule options access certain DNP3 protocol fields.

DNP3 Inspector Parameters
DNP3 TCP port configuration

The binder inspector defines the DNP3 TCP port configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

[
{

"when": {
"role": "any",

Snort 3 Inspector Reference
45

"service": "dnp3"
},

"use": {
"type": "dnp3"

}
}

]

check_crc

Specifies whether to validate the checksums contained in DNP3 Link-Layer Frames. The dnp3 inspector
ignores frames with invalid checksums. If intrusion rule 145:1 is enabled, Snort generates alerts for invalid
checksums.

Type: boolean

Valid values: true, false

Default value: false

DNP3 Inspector Rules
Enable the dnp3 inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 8: DNP3 Inspector Rules

Rule MessageGID:SID

DNP3 link-layer frame contains bad CRC145:1

DNP3 link-layer frame was dropped145:2

DNP3 transport-layer segment was dropped during reassembly145:3

DNP3 reassembly buffer was cleared without reassembling a complete message145:4

DNP3 link-layer frame uses a reserved address145:5

DNP3 application-layer fragment uses a reserved function code145:6

DNP3 Inspector Intrusion Rule Options
dnp3_data

The dnp3_data keyword positions the detection cursor to the beginning of the DNP3 data in an application
layer fragment, regardless of preceding rule options. With this option you can write rules based on the data
within fragments without splitting up the data and adding CRCs every 16 bytes.

Syntax: dnp3_data;

Examples: dnp3_data;

Snort 3 Inspector Reference
46

Snort 3 Inspectors
DNP3 Inspector Rules

dnp3_func

This option matches against the function code inside a DNP3 application layer request/response header. The
code may be a decimal number or a string from the list below.

Type: string

Syntax: dnp3_func: <DNP3_function>;

Valid values: DNP3_function is one of the following:

• An integer from 0 to 255

• confirm (Corresponds to function code 0.)

• read (Corresponds to function code 1.)

• write (Corresponds to function code 2.)

• select (Corresponds to function code 3.)

• operate (Corresponds to function code 4.)

• direct_operate (Corresponds to function code 5.)

• direct_operat_nr (Corresponds to function code 6.)

• immed_freeze (Corresponds to function code 7.)

• immed_freeze_nr (Corresponds to function code 8.)

• freeze_clear (Corresponds to function code 9.)

• freeze_clear_nr (Corresponds to function code 10.)

• freeze_at_time (Corresponds to function code 11.)

• freeze_at_time_nr (Corresponds to function code 12.)

• cold_restart (Corresponds to function code 13.)

• warm_restart (Corresponds to function code 14.)

• initialize_data (Corresponds to function code 15.)

• initialize_appl (Corresponds to function code 16.)

• start_appl (Corresponds to function code 17.)

• stop_appl (Corresponds to function code 18.)

• save_config (Corresponds to function code 19.)

• enable_unsolicited (Corresponds to function code 20.)

• disable_unsolicited (Corresponds to function code 21.)

• assign_class (Corresponds to function code 22.)

• delay_measure (Corresponds to function code 23.)

• record_current_time (Corresponds to function code 24.)

• open_file (Corresponds to function code 25.)

Snort 3 Inspector Reference
47

Snort 3 Inspectors
DNP3 Inspector Intrusion Rule Options

• close_file (Corresponds to function code 26.)

• delete_file (Corresponds to function code 27.)

• get_file_info (Corresponds to function code 28.)

• authenticate_file (Corresponds to function code 29.)

• abort_file (Corresponds to function code 30.)

• activate_config (Corresponds to function code 31.)

• authenticate_req (Corresponds to function code 32.)

• authenticate_err (Corresponds to function code 33.)

• response (Corresponds to function code 129.)

• unsolicited_response (Corresponds to function code 130.)

• authenticate_resp (Corresponds to function code 131.)

Examples:

dnp3_func: 1;

dnp3_func: delete_file;

dnp3_ind

Provide a list of Internal Indicator flags to match against the Internal Indicator flags in a DNP3 application
layer response header. If you provide multiple flags in one option, the rule fires if any one of the flags is set.
To alert on multiple flags, use multiple rule options.

Type: string

Syntax: dnp3_ind: "<flag> <flag>";

Valid values: One or more DNP3 Internal Indicator flags where flag is one of the following:

• all_stations

• class_1_events

• class_2_events

• class_3_events

• need_time

• local_control

• device_trouble

• device_restart

• no_func_code_support

• object_unknown

• parameter_error

Snort 3 Inspector Reference
48

Snort 3 Inspectors
DNP3 Inspector Intrusion Rule Options

• event_buffer_overflow

• already_executing

• config_corrupt

• reserved_2

• reserved_1

Examples:

Alert on device restart OR on initiation of time synchronization:
dnp3_ind:"device_restart need_time";

Alert on class_1 AND class_2 AND class_3 events:
dnp3_ind:class_1_events; dnp3_ind:class_2_events; dnp3_ind:class_3_events;

dnp3_obj

Matches on DNP3 object header groups and variations.

Type: integer

Syntax: dnp3_obj:<groupnum>,<varnum>;

Valid values: DNP3 object group identifiers and variation identifiers, where:

• groupnum is an integer from 0 to 255 specifying a DNP3 object group.

• varnum is an integer from 0 to 255 specifying a variation within the object group.

Examples:

Alert on DNP3 Date and Time object:
dnp3_obj:50,1;

Snort 3 Inspector Reference
49

Snort 3 Inspectors
DNP3 Inspector Intrusion Rule Options

Snort 3 Inspector Reference
50

Snort 3 Inspectors
DNP3 Inspector Intrusion Rule Options

C H A P T E R 8
FTP Client Inspector

• FTP Client Inspector Overview, on page 51
• FTP Client Inspector Parameters, on page 51
• FTP Client Inspector Rules, on page 52
• FTP Client Inspector Intrusion Rule Options, on page 53

FTP Client Inspector Overview
Inspector (passive)Type

InspectUsage

MultitonInstance Type

ftp_server, stream_tcpOther Inspectors Required

trueEnabled

File Transfer Protocol (FTP) is a network protocol used to transfer files between clients and servers over
TCP/IP. Once a client and server establish a connection, the client issues commands to the server to upload
files to or download files from the server, and interprets responses from the server.

The ftp_client inspector examines and normalizes responses on the FTP command channel.

Given an FTP command channel buffer, the ftp_client inspector interprets FTP response codes andmessages.
The ftp_client inspector enforces correctness of the parameters, determines when an FTP command
connection is encrypted and when an FTP data channel is opened.

FTP Client Inspector Parameters
bounce

Specifies whether to check for FTP bounces by examining the host information in ftp port commands issued
by the client. When bounce is true, if the host information in an ftp port command does not match the
configured client IP address or host information , and rule 125:8 is enabled, the system generates an alert, and

Snort 3 Inspector Reference
51

in an inline deployment drops offending packets. This can be used to prevent FTP bounce attacks and permit
FTP connections where the FTP data channel destination is different from the client.

Type: boolean

Valid values: true, false

Default value: false

ignore_telnet_erase_cmds

Specifies whether to ignore the telnet escape sequences for the erase character (TNC EAC) and the erase line
character (TNC EAL) when normalizing the FTP command channel. You should set this parameter to match
how the FTP client handles telnet erase commands. Newer FTP clients typically ignore these telnet escape
sequences, while legacy clients typically process them. When the ignore_telnet_erase_cmds parameter is
false, the inspector uses rule 125:1 to generate alerts, and in an inline deployment, drop offending packets.

Type: boolean

Valid values: true, false

Default value: false

max_resp_len

Specifies the maximum length for all response messages accepted by the client in bytes. If the message for
an FTP response (everything after the 3 digit return code) exceeds that length, and rule 125:6 is enabled, the
system generates an alert, and, in an inline deployments, drop offending packets. This is used to check for
buffer overflow exploits within FTP clients.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 4,294,967,295

telnet_cmds

Specifies whether to check for telnet commands on the FTP command channel. The presence of such commands
could indicate an evasion attempt on the FTP command channel.

You can enable rule 125:1 to generate events for this parameter, and in an inline deployment, drop offending
packets.

Type: boolean

Valid values: true, false

Default value: false

FTP Client Inspector Rules
Enable the ftp_client inspector rules to generate events and, in an inline deployment, drop offending packets.

Snort 3 Inspector Reference
52

Snort 3 Inspectors
FTP Client Inspector Rules

Table 9: FTP Client Inspector Rules

Rule MessageGID:SID

TELNET cmd on FTP command channel125:1

FTP response message was too long125:6

FTP bounce attempt125:8

FTP Client Inspector Intrusion Rule Options
The ftp_client inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
53

Snort 3 Inspectors
FTP Client Inspector Intrusion Rule Options

Snort 3 Inspector Reference
54

Snort 3 Inspectors
FTP Client Inspector Intrusion Rule Options

C H A P T E R 9
FTP Server Inspector

• FTP Server Inspector Overview, on page 55
• FTP Server Inspector Parameters, on page 55
• FTP Server Inspector Rules, on page 60
• FTP Server Inspector Intrusion Rule Options, on page 61

FTP Server Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

ftp_client, stream_tcpOther Inspectors Required

trueEnabled

File Transfer Protocol (FTP) is a network protocol used to transfer files between clients and servers over
TCP/IP. Once a client and server establish a connection, the client issues commands to the server to upload
files to or download files from the server, and interprets responses from the server.

The ftp_server inspector examines and normalizes commands on the FTP command channel.

Given an FTP command channel buffer, the ftp_server inspector identifies the FTP commands and parameters,
and enforces correctness of the parameters. The ftp_server determines when an FTP command connection
is encrypted and when an FTP data channel is opened.

FTP Server Inspector Parameters
FTP Server port configuration

The binder inspector defines the FTP Server configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

Snort 3 Inspector Reference
55

[
{

"when": {
"role":"any",
"service":"ftp",
"ports": ""

},
"use": {

"type":"ftp_server"
}

}
]

chk_str_fmt

Specifies a list of FTP commands to check for string format attacks. You can enable rule 125:5 to generate
an alert, and in an inline deployment, drop offending packets when the inspector detects this condition. Separate
multiple commands with a space character.

Type: string

Valid values: A list of valid FTP commands.

Default value: None

data_chan_cmds

Specifies a list of FTP commands to check for correct formatting. Separate multiple commands with a space
character.

Type: string

Valid values: A list of one or more of the following commands: PORT PASV LPRT LPSV EPRT EPSV.

Default value: None

data_xfer_cmds

Specifies a list of data transfer commands. Check for correct formatting of the commands. Separate multiple
commands with a space character.

Type: string

Valid values: A list of one or more of the following commands: RETR STOR STOU APPE LIST NLST.

Default value: None

file_put_cmds

Specifies a list of PUT commands. Check for correct formatting of the commands. Separate multiple commands
with a space character.

Type: string

Valid values: A list of one or more of the following commands: STOR STOU APPE.

Default value: None

Do not change the file_put_cmds parameter unless directed to do so by Support.Caution

Snort 3 Inspector Reference
56

Snort 3 Inspectors
FTP Server Inspector Parameters

file_get_cmds

Specifies a list of GET commands. Check for correct formatting of the commands. Separate multiple commands
with a space character.

Type: string

Valid values: A list of GET command, such as RETR.

Default value: None

Do not change the file_get_cmds parameter unless directed to do so by Support.Caution

encr_cmds

Specifies a list of commands related to secure connections. Check for correct formatting of the commands.
Separate multiple commands with a space character.

Type: string

Valid values: A list of commands related to secure connections, for example: AUTH.

Default value: None

login_cmds

Specifies a list of commands related to the login process. Check for correct formatting of the commands.
Separate multiple commands with a space character.

Type: string

Valid values: Specify a list of one or more commands: USER, PASS.

Default value: None

check_encrypted

Specifies whether to check an encrypted session for a command to end encryption. Use with the
encrypted_traffic parameter.

You can enable rule 125:7 to generate events and, in an inline deployment, drop offending packets for this
parameter.

Type: boolean

Valid values: true, false

Default value: false

cmd_validity[]

An array of FTP commands and the criteria the inspector uses to validate them. These validity checks override
the default checks performed by the ftp_server inspector (RFC 959).

You can enable rules 125:2 and 125:4 to generate events, and, in an line deployment, drop offending packets
for this parameter.

Type: array (object)

Snort 3 Inspector Reference
57

Snort 3 Inspectors
FTP Server Inspector Parameters

Example:

{
"cmd_validity": [

{
"command": "CWD",
"format": "abc",
"length": 250

}
]

}

cmd_validity[].command

Specifies the name of an FTP command to validate.

Type: string

Valid values: A valid FTP command enclosed in double quotation marks.

Default value: None

cmd_validity[].format

Describes the valid format for cmd_validity[].command

Type: string

Valid values: One of the following formats:

• int – The parameter must be an integer

• number – The parameter much be an integer between 1 and 255

• char chars – The parameter must be a single character from chars, a list of one or more characters with
no separators between them.

• date datefmt – The parameter follows the format specified, where datefmt is constructed using the
following elements:

• # = Number

• C = Char

• [] = Optional format enclosed

• | = OR

• {} = Choice of formats enclosed

• .+- literal characters

• string – The parameter is an unlimited string.

• host_port – The parameter must be a host port specifier, per RFC 959.

• long_host_port – The parameter must be a long host port specifier per RFC 1639.

• extended_host_port – The parameter must be an extended host port specifier per RFC 2428.

• {},| – The parameter must be one of the choices enclosed within the braces, separated by |.

Snort 3 Inspector Reference
58

Snort 3 Inspectors
FTP Server Inspector Parameters

• {}, [] – The parameter must be one of the choices enclosed within the braces. Optional values are enclosed
within the brackets.

Default value: None

cmd_validity[].length

Specifies the maximum length in bytes for the cmd_validity[].command parameter, overriding the default
value defined in def_max_param_len. If the parameter for the FTP command exceeds the
cmd_validity[].length, and rule 125:3 is enabled, Snort generates an alert. Use cmd_validity[].length
to restrict specific commands to small parameter values.

Specify 0 to indicate unlimited length.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 0

def_max_param_len

Specifies the default maximum length in bytes that the inspector permits for all FTP commands handled by
the server. Use def_max_param_len for basic buffer overflow detection. (This can be overridden for individual
commands using cmd_validity[].length.) You can enable rule 125:3 to generate events and, in an inline
deployment, drop offending packets for this parameter.

Specify 0 to indicate unlimited length.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 100

encrypted_traffic

Specifies whether to check for encrypted FTP traffic. Use with the check_encrypted parameter. You can
enable rule 125:7 to generate events and, in an inline deployment, drop offending packets for this parameter.

Type: boolean

Valid values: true, false

Default value: false

ftp_cmds

A list of FTP commands the server supports beyond those described in RFC 959. (If your installation uses
the "X" commands specified in RFC 775, for instance, you can add them to the inspector using this parameter.)

Type: string

Valid values: Space-separated list of valid FTP commands, enclosed in double quotation marks.

Default value: None

ignore_data_chan

Specifies whether to ignore the FTP data channels.

Snort 3 Inspector Reference
59

Snort 3 Inspectors
FTP Server Inspector Parameters

Type: boolean

Valid values: true, false

Default value: false

ignore_telnet_erase_cmds

Specifies whether to ignore the telnet escape sequences for the erase character (TNC EAC) and the erase line
character (TNC EAL) when normalizing the FTP command channel. Set ignore_telnet_erase_cmds to
match how your FTP server handles telnet erase commands. Newer FTP clients typically ignore these telnet
escape sequences, while legacy clients typically process them.

If telnet erase commands are not ignored, and rule 125:1 is enabled, Snort generates an event, and, in an inline
deployment, drops offending packets.

Type: boolean

Valid values: true, false

Default value: false

print_cmds

Specifies whether to print the configuration for each FTP command for this server on initialization.

Type: boolean

Valid values: true, false

Default value: false

telnet_cmds

Specifies whether to check for telnet commands on the FTP command channel. The presence of such commands
could indicate an evasion attempt on the FTP command channel.

Type: boolean

Valid values: true, false

Default value: false

FTP Server Inspector Rules
Enable the ftp_server inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 10: FTP Server Inspector Rules

Rule MessageGID:SID

TELNET command on FTP command channel125:1

invalid FTP command125:2

FTP command parameters were too long125:3

FTP command parameters were malformed125:4

Snort 3 Inspector Reference
60

Snort 3 Inspectors
FTP Server Inspector Rules

Rule MessageGID:SID

FTP command parameters contained potential string format125:5

FTP traffic encrypted125:7

evasive (incomplete) TELNET cmd on FTP command channel125:9

FTP Server Inspector Intrusion Rule Options
The ftp_server inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
61

Snort 3 Inspectors
FTP Server Inspector Intrusion Rule Options

Snort 3 Inspector Reference
62

Snort 3 Inspectors
FTP Server Inspector Intrusion Rule Options

C H A P T E R 10
GTP Inspect Inspector

• GTP Inspect Inspector Overview, on page 63
• GTP Inspect Inspector Parameters, on page 63
• GTP Inspect Inspector Rules, on page 65
• GTP Inspect Inspector Intrusion Rule Options, on page 66

GTP Inspect Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_udpOther Inspectors Required

falseEnabled

The General Service Packet Radio (GPRS) Tunneling Protocol (GTP) provides communication over a GTP
core network.

The gtp_inspect inspector detects anomalies in GTP traffic and forwards command channel signaling
messages to the rules engine for inspection.

GTP Inspect Inspector Parameters
GTP Inspect service and ports configuration

The binder inspector defines the GTP Inspect service and ports configuration. For more information, see
the Binder Inspector Overview, on page 13.

Example:

[
{

"when": {
"service": "gtp_inspect",
"role": any

Snort 3 Inspector Reference
63

},
"use": {

"type": "gtp_inspect"
}

},
{

"when": {
"proto": "tcp",
"role": "server",
"ports": "2123 2152 3386"

},
"use": {

"type": "gtp_inspect"
}

}
]

version

Specifies a valid GTP version.

Type: integer

Valid values: 0, 1, 2

Default value: 2

messages[]

Specifies an array of information about valid GTP messages.

Type: array (object)

Example:

{
messages: [

{
"type": 0,
"name": ""

}
]

}

messages[].type

Specifies a valid GTP message type. See Table 12: GTP Message Types table.

Type: integer

Valid range: 0 to 255

Default value: None

messages[].name

Specifies a valid GTP message name. See Table 12: GTP Message Types table.

Type: string

Valid values: A valid GTP message name

Default value: None

Snort 3 Inspector Reference
64

Snort 3 Inspectors
GTP Inspect Inspector Parameters

infos[]

Specifies an array of GTP information elements.

Type: array (object)

Example:

{
infos: [

{
"type": 0,
"name": "echo_request",
"length": 0

}
]

}

infos[].type

Specifies a valid GTP element type code. See Table 13: GTP Information Elements table.

Type: integer

Valid range: 0 to 255

Default value: 0

infos[].name

Specifies a valid GTP element name.

Type: string

Valid values: Valid GTP information element names. See Table 13: GTP Information Elements table.

infos[].length

Specifies the length of a valid GTP information element.

Type: integer

Valid range: 0 to 255

Default value: 0

GTP Inspect Inspector Rules
Enable the gtp_inspect inspector rules to generate events and, in an inline deployment, drop offending
packets.

Table 11: GTP Inspector Rules

Rule MessageGID:SID

message length is invalid143:1

information element length is invalid143:2

Snort 3 Inspector Reference
65

Snort 3 Inspectors
GTP Inspect Inspector Rules

Rule MessageGID:SID

information elements are out of order143:3

TEID is missing143:4

GTP Inspect Inspector Intrusion Rule Options
The gtp_inspect inspector intrusion rule options allow you to inspect the GTP command channel for the
GTP version, message type, and information elements.

You cannot use GTP options in combination with content or byte_jump. You must use gtp_version in each
rule that uses gtp_info or gtp_type.

gtp_version

Check the specified GTP version against the version of the GTP control messages.

Type: integer

Syntax: gtp_version: <version>;

Valid values: 0, 1, 2

Examples: gtp_version: 1;

gtp_type

Each GTP message is identified by a message type, which is comprised of both a numeric value and a string.
Check the specified GTP types against the type of the GTP messages.

You can specify a defined decimal value for a message type, a defined string, or a comma-separated list of
either or both in any combination, as seen in the following example:

Type: string

Syntax: gtp_type: <message_type>;

Valid values: Listed in the GTP Message Types table. See Table 12: GTP Message Types table.

Examples: gtp_type: "10, 11, echo_request";

The system uses an OR operation to match each value or string that you list. The order in which you list values
and strings does not matter. Any single value or string in the list matches the keyword. The system generates
an error if you attempt to save a rule that includes an unrecognized string or an out-of-range value.

Note that different GTP versions sometimes use different values for the same message type. For example, the
sgsn_context_request message type has a value of 50 in GTPv0 and GTPv1, but a value of 130 in GTPv2.

The gtp_type option matches different values depending on the version number in the packet. For instance
the sgsn_context_requestmessage matches the value 50 in a GTPv0 or GTPv1 packet and the value 130 in
a GTPv2 packet. The option does not match a packet when the message type value in the packet is not a known
value for the version specified in the packet.

If you specify an integer for the message type, the option matches if the message type matches the value in
the GTP packet, regardless of the version specified in the packet.

Snort 3 Inspector Reference
66

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

gtp_message_type is a numeric value or keyword from the Table 12: GTP Message Types table.

Table 12: GTP Message Types

Name for Version 2Name for Version 1Name for Version 0Type

echo_requestecho_requestecho_request1

echo_responseecho_responseecho_response2

version_not_supportedversion_not_supportedversion_not_supported3

N/Anode_alive_requestnode_alive_request4

N/Anode_alive_responsenode_alive_response5

N/Aredirection_requestredirection_request6

N/Aredirection_responseredirection_response7

N/Acreate_pdp_context_requestcreate_pdp_context_request16

N/Acreate_pdp_context_responsecreate_pdp_context_response17

N/Aupdate_pdp_context_requestupdate_pdp_context_request18

N/Aupdate_pdp_context_responseupdate_pdp_context_response19

N/Adelete_pdp_context_requestdelete_pdp_context_request20

N/Adelete_pdp_context_responsedelete_pdp_context_response21

N/Ainit_pdp_context_activation_requestcreate_aa_pdp_context_request22

N/Ainit_pdp_context_activation_responsecreate_aa_pdp_context_response23

N/AN/Adelete_aa_pdp_context_request24

N/AN/Adelete_aa_pdp_context_response25

N/Aerror_indicationerror_indication26

N/Apdu_notification_requestpdu_notification_request27

N/Apdu_notification_responsepdu_notification_response28

N/Apdu_notification_reject_requestpdu_notification_reject_request29

N/Apdu_notification_reject_responsepdu_notification_reject_response30

N/Asupported_ext_header_notificationN/A31

create_session_requestsend_routing_info_requestsend_routing_info_request32

create_session_responsesend_routing_info_responsesend_routing_info_response33

modify_bearer_requestfailure_report_requestfailure_report_request34

Snort 3 Inspector Reference
67

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

Name for Version 2Name for Version 1Name for Version 0Type

modify_bearer_responsefailure_report_responsefailure_report_response35

delete_session_requestnote_ms_present_requestnote_ms_present_request36

delete_session_responsenote_ms_present_responsenote_ms_present_response37

change_notification_requestN/AN/A38

change_notification_responseN/AN/A39

N/Aidentification_requestidentification_request48

N/Aidentification_responseidentification_response49

N/Asgsn_context_requestsgsn_context_request50

N/Asgsn_context_responsesgsn_context_response51

N/Asgsn_context_acksgsn_context_ack52

N/Aforward_relocation_requestN/A53

N/Aforward_relocation_responseN/A54

N/Aforward_relocation_completeN/A55

N/Arelocation_cancel_requestN/A56

N/Arelocation_cancel_responseN/A57

N/Aforward_srns_contexN/A58

N/Aforward_relocation_complete_ackN/A59

N/Aforward_srns_contex_ackN/A60

modify_bearer_commandN/AN/A64

modify_bearer_failure_indicationN/AN/A65

delete_bearer_commandN/AN/A66

delete_bearer_failure_indicationN/AN/A67

bearer_resource_commandN/AN/A68

bearer_resource_failure_indicationN/AN/A69

downlink_failure_indicationran_info_relayN/A70

trace_session_activationN/AN/A71

trace_session_deactivationN/AN/A72

stop_paging_indicationN/AN/A73

Snort 3 Inspector Reference
68

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

Name for Version 2Name for Version 1Name for Version 0Type

create_bearer_requestN/AN/A95

create_bearer_responsembms_notification_requestN/A96

update_bearer_requestmbms_notification_responseN/A97

update_bearer_responsembms_notification_reject_requestN/A98

delete_bearer_requestmbms_notification_reject_responseN/A99

delete_bearer_responsecreate_mbms_context_requestN/A100

delete_pdn_requestcreate_mbms_context_responseN/A101

delete_pdn_responseupdate_mbms_context_requestN/A102

N/Aupdate_mbms_context_responseN/A103

N/Adelete_mbms_context_requestN/A104

N/Adelete_mbms_context_responseN/A105

N/Ambms_register_requestN/A112

N/Ambms_register_responseN/A113

N/Ambms_deregister_requestN/A114

N/Ambms_deregister_responseN/A115

N/Ambms_session_start_requestN/A116

N/Ambms_session_start_responseN/A117

N/Ambms_session_stop_requestN/A118

N/Ambms_session_stop_responseN/A119

N/Ambms_session_update_requestN/A120

N/Ambms_session_update_responseN/A121

identification_requestms_info_change_requestN/A128

identification_responsems_info_change_responseN/A129

sgsn_context_requestN/AN/A130

sgsn_context_responseN/AN/A131

sgsn_context_ackN/AN/A132

forward_relocation_requestN/AN/A133

forward_relocation_responseN/AN/A134

Snort 3 Inspector Reference
69

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

Name for Version 2Name for Version 1Name for Version 0Type

forward_relocation_completeN/AN/A135

forward_relocation_complete_ackN/AN/A136

forward_accessN/AN/A137

forward_access_ackN/AN/A138

relocation_cancel_requestN/AN/A139

relocation_cancel_responseN/AN/A140

configuration_transfer_tunnelN/AN/A141

detachN/AN/A149

detach_ackN/AN/A150

cs_pagingN/AN/A151

ran_info_relayN/AN/A152

alert_mmeN/AN/A153

alert_mme_ackN/AN/A154

ue_activityN/AN/A155

ue_activity_ackN/AN/A156

create_forward_tunnel_requestN/AN/A160

create_forward_tunnel_responseN/AN/A161

suspendN/AN/A162

suspend_ackN/AN/A163

resumeN/AN/A164

resume_ackN/AN/A165

create_indirect_forward_tunnel_requestN/AN/A166

create_indirect_forward_tunnel_responseN/AN/A167

delete_indirect_forward_tunnel_requestN/AN/A168

delete_indirect_forward_tunnel_responseN/AN/A169

release_access_bearer_requestN/AN/A170

release_access_bearer_responseN/AN/A171

downlink_dataN/AN/A176

Snort 3 Inspector Reference
70

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

Name for Version 2Name for Version 1Name for Version 0Type

downlink_data_ackN/AN/A177

pgw_restartN/AN/A179

pgw_restart_ackN/AN/A180

update_pdn_requestN/AN/A200

update_pdn_responseN/AN/A201

modify_access_bearer_requestN/AN/A211

modify_access_bearer_responseN/AN/A212

mbms_session_start_requestN/AN/A231

mbms_session_start_responseN/AN/A232

mbms_session_update_requestN/AN/A233

mbms_session_update_responseN/AN/A234

mbms_session_stop_requestN/AN/A235

mbms_session_stop_responseN/AN/A236

N/Adata_record_transfer_requestdata_record_transfer_request240

N/Adata_record_transfer_responsedata_record_transfer_response241

N/Aend_markerN/A254

N/Apdupdu255

gtp_info

A GTP message can include multiple information elements, each of which is identified by both a defined
numeric value and a defined string. You can use the gtp_info option to start inspection at the beginning of
a specified information element, and restrict inspection to that information element.

You can specify either the defined decimal value or the defined string for an information element. You can
specify a single value or string, and you can use multiple gtp_info options in a rule to inspect multiple
information elements.

When a message includes multiple information elements of the same type, all are inspected for a match.When
information elements occur in an invalid order, only the last instance is inspected.

Depending on the version, a GTP message can use different values for the same information element. For
example, the cause information element has a value of 1 in GTPv0 and GTPv1, but a value of 2 in GTPv2.

The gtp_info option matches different values depending on the version number in the packet. In the example
above, the keyword matches the information element value 1 in a GTPv0 or GTPv1 packet and the value 2
in a GTPv2 packet. The option does not match a packet when the information element value in the packet is
not a known value for the version specified in the packet.

Snort 3 Inspector Reference
71

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

If you specify an integer for the information element, the option matches if the message type matches the
value in the GTP packet, regardless of the version specified in the packet.

Type: string

Syntax: gtp_info: <identifier>;

Valid values: Listed in the Table 13: GTP Information Elements table.

Examples: gtp_info: "qos";

Table 13: GTP Information Elements

Name for Version 2Name for Version 1Name for Version 0Type

imsicausecause1

causeimsiimsi2

recoveryrairai3

N/Atllitlli4

N/Ap_tmsip_tmsi5

N/AN/Aqos6

N/Arecording_requiredrecording_required8

N/Aauthenticationauthentication9

N/AN/AN/A10

N/Amap_causemap_cause11

N/Ap_tmsi_sigp_tmsi_sig12

N/Ams_validatedms_validated13

N/Arecoveryrecovery14

N/Aselection_modeselection_mode15

N/Ateid_1flow_label_data_116

N/Ateid_controlflow_label_signalling17

N/Ateid_2flow_label_data_218

N/Ateardown_indms_unreachable19

N/AnsapiN/A20

N/AranapN/A21

N/Arab_contextN/A22

N/Aradio_priority_smsN/A23

Snort 3 Inspector Reference
72

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

Name for Version 2Name for Version 1Name for Version 0Type

N/Aradio_priorityN/A24

N/Apacket_flow_idN/A25

N/Acharging_charN/A26

N/Atrace_refN/A27

N/Atrace_typeN/A28

N/Ams_unreachableN/A29

apnN/AN/A71

ambrN/AN/A72

ebiN/AN/A73

ip_addrN/AN/A74

meiN/AN/A75

msisdnN/AN/A76

indicationN/AN/A77

pcoN/AN/A78

paaN/AN/A79

bearer_qosN/AN/A80

flow_qosN/AN/A80

rat_typeN/AN/A82

serving_networkN/AN/A83

bearer_tftN/AN/A84

tadN/AN/A85

uliN/AN/A86

f_teidN/AN/A87

tmsiN/AN/A88

cn_idN/AN/A89

s103pdfN/AN/A90

s1udfN/AN/A91

delay_valueN/AN/A92

Snort 3 Inspector Reference
73

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

Name for Version 2Name for Version 1Name for Version 0Type

bearer_contextN/AN/A93

charging_idN/AN/A94

charging_charN/AN/A95

trace_infoN/AN/A96

bearer_flagN/AN/A97

pdn_typeN/AN/A99

ptiN/AN/A100

drx_parameterN/AN/A101

gsm_key_triN/AN/A103

umts_key_cipher_quinN/AN/A104

gsm_key_cipher_quinN/AN/A105

umts_key_quinN/AN/A106

eps_quadN/AN/A107

umts_key_quad_quinN/AN/A108

pdn_connectionN/AN/A109

pdn_numberN/AN/A110

p_tmsiN/AN/A111

p_tmsi_sigN/AN/A112

hop_counterN/AN/A113

ue_time_zoneN/AN/A114

trace_refN/AN/A115

complete_request_msgN/AN/A116

gutiN/AN/A117

f_containerN/AN/A118

f_causeN/AN/A119

plmn_idN/AN/A120

target_idN/AN/A121

packet_flow_idN/AN/A123

Snort 3 Inspector Reference
74

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

Name for Version 2Name for Version 1Name for Version 0Type

rab_contexN/AN/A124

src_rnc_pdcpN/AN/A125

udp_src_portN/AN/A126

apn_restrictioncharge_idcharge_id127

selection_modeend_user_addressend_user_address128

src_idmm_contextmm_context129

N/Apdp_contextpdp_context130

change_report_actionapnapn131

fq_csidprotocol_configprotocol_config132

channelgsngsn133

emlpp_primsisdnmsisdn134

node_typeqosN/A135

fqdnauthentication_quN/A136

titftN/A137

mbms_session_durationtarget_idN/A138

mbms_service_areautran_transN/A139

mbms_session_idrab_setupN/A140

mbms_flow_idext_headerN/A141

mbms_ip_multicasttrigger_idN/A142

mbms_distribution_ackomc_idN/A143

rfsp_indexran_transN/A144

ucipdp_context_priN/A145

csg_infoaddi_rab_setupN/A146

csg_idsgsn_numberN/A147

cmicommon_flagN/A148

service_indicatorapn_restrictionN/A149

detach_typeradio_priority_lcsN/A150

ldnrat_typeN/A151

Snort 3 Inspector Reference
75

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

Name for Version 2Name for Version 1Name for Version 0Type

node_featureuser_loc_infoN/A152

mbms_time_to_transferms_time_zoneN/A153

throttlingimei_svN/A154

arpcamelN/A155

epc_timermbms_ue_contextN/A156

signalling_priority_indicationtmp_mobile_group_idN/A157

tmgirim_routing_addrN/A158

mm_srvccmbms_configN/A159

flags_srvccmbms_service_areaN/A160

nmbrsrc_rnc_pdcpN/A161

N/Aaddi_trace_infoN/A162

N/Ahop_counterN/A163

N/Aplmn_idN/A164

N/Ambms_session_idN/A165

N/Ambms_2g3g_indicatorN/A166

N/Aenhanced_nsapiN/A167

N/Ambms_session_durationN/A168

N/Aaddi_mbms_trace_infoN/A169

N/Ambms_session_repetition_numN/A170

N/Ambms_time_to_dataN/A171

N/AbssN/A173

N/Acell_idN/A174

N/Apdu_numN/A175

N/Ambms_bearer_capabN/A177

N/Arim_routing_discN/A178

N/Alist_pfcN/A179

N/Aps_xidN/A180

N/Ams_info_change_reportN/A181

Snort 3 Inspector Reference
76

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

Name for Version 2Name for Version 1Name for Version 0Type

N/Adirect_tunnel_flagsN/A182

N/Acorrelation_idN/A183

N/Abearer_control_modeN/A184

N/Ambms_flow_idN/A185

N/Ambms_ip_multicastN/A186

N/Ambms_distribution_ackN/A187

N/Areliable_inter_rat_handoverN/A188

N/Arfsp_indexN/A189

N/AfqdnN/A190

N/Aevolved_allocation1N/A191

N/Aevolved_allocation2N/A192

N/Aextended_flagsN/A193

N/AuciN/A194

N/Acsg_infoN/A195

N/Acsg_idN/A196

N/AcmiN/A197

N/Aapn_ambrN/A198

N/Aue_networkN/A199

N/Aue_ambrN/A200

N/Aapn_ambr_nsapiN/A201

N/Aggsn_backoff_timerN/A202

N/Asignalling_priority_indicationN/A203

N/Asignalling_priority_indication_nsapiN/A204

N/Ahigh_bitrateN/A205

N/Amax_mbrN/A206

N/Acharging_gateway_addrcharging_gateway_addr251

private_extensionprivate_extensionprivate_extension255

Snort 3 Inspector Reference
77

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

Snort 3 Inspector Reference
78

Snort 3 Inspectors
GTP Inspect Inspector Intrusion Rule Options

C H A P T E R 11
HTTP Inspect Inspector

• HTTP Inspect Inspector Overview, on page 79
• Best Practices for Configuring the HTTP Inspect Inspector, on page 81
• HTTP Inspect Inspector Parameters, on page 81
• HTTP Inspect Inspector Rules, on page 88
• HTTP Inspect Inspector Intrusion Rule Options, on page 93

HTTP Inspect Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcpOther Inspectors Required

trueEnabled

Hypertext Transfer Protocol (HTTP) is an application layer protocol that enables the exchange of hypermedia
(audio, video, images, and text) between a client and server. HTTP is a stateless protocol that requires reliable
message transmission. Communication between a client and a server is in the form of HTTP requests and
responses.

An HTTP/1.1 server typically uses port 80 over TCP/IP. The secure version of HTTP (HTTP/TLS or HTTPS)
uses port 443. HTTP defines access control and authentication mechanisms in the protocol.

HTTP/2 contains improvements to increase speed and push more information than the client requested, but
operates over the same ports and protocols as HTTP/1.1. HTTP/2-specific rules are configured with
service:http2.

HTTP/3 is connection-less, using the QUIC (Quick UDP Internet Connections) protocol rather than TCP, and
can support more active streams with better loss recovery. HTTP/3 uses the same messaging as prior versions
of HTTP. HTTP/3-specific rules are configured with service:http3.

The HTTP inspector supports all three versions of HTTP in an identical fashion.

The http_inspect inspector detects and analyzes the protocol data unit (PDU) of the HTTP message.
http_inspect receives the TCP payload from the TCP stream and examines the encapsulated HTTPmessage.

Snort 3 Inspector Reference
79

The HTTP inspector can detect the following HTTP message sections:

• Request line

• Status line

• Headers

• Content-Length message body (message body defined by Content-length header)

• Chunked message body

• Previous message body (message body with no Content-Length header

• Trailers

The http_inspect inspector detects and normalizes all HTTP header fields and the components of the HTTP
URI. The http_inspect inspector does not normalize the TCP port.

The http_inspect inspector can detect four types of URI:

• Asterisk (*): not normalized

• Authority: a URI used with the HTTP CONNECT method

• Origin: a URI that begins with a slash (no scheme or authority present)

• Absolute: a URI that includes a scheme, host, and an absolute path

An HTTP URI can include:

• Scheme (ftp, http, or https)

• Host (domain name of server)

• TCP port

• Path (directory and file)

• Query (request parameters)

• Fragment (part of the file)

You can configure the http_inspect inspector to alert on the sections of the HTTP message. For example:

• Specify the amount of bytes to read from the HTTP request or response body

• Enable JavaScript detection and normalization

• Handle various types of file decompression

• Customize the decoding of the HTTP URI

The http_inspect inspector can partially inspect the stream TCP payload.Note

Snort 3 Inspector Reference
80

Snort 3 Inspectors
HTTP Inspect Inspector Overview

Best Practices for Configuring the HTTP Inspect Inspector
Consider the following best practices when configuring the http_inspect inspector:

• Set the request_depth and response_depth parameters if your HTTP traffic includes large video files.

• Use the default settings for the HTTP URI inspection parameters:
"utf8": "true"

"plus_to_space": "true"

"percent_u": "true"

"utf8_bare_byte": "true"

"iis_unicode": "true"

"iis_double_decode": "true"

HTTP Inspect Inspector Parameters
HTTP service configuration

The binder inspector defines the HTTP service configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

[
{

"when": {
"service": "http",
"role": any

},
"use": {

"type": "http_inspect"
}

}
]

request_depth

Specifies the number of bytes to read from the HTTP message request body.

Specify -1 to place no limit on the number of bytes to inspect. We recommend that you specify the
request_depth and response_depth parameters to limit the amount of HTTP body data to analyze.

To inspect only the HTTP headers, set request_depth to 0.

Type: integer

Valid range: -1 to 9,007,199,254,740,992 (max53)

Default Value: -1

response_depth

Specifies the number of bytes to read from the HTTP message response body.

Snort 3 Inspector Reference
81

Snort 3 Inspectors
Best Practices for Configuring the HTTP Inspect Inspector

Specify -1 to place no limit on the number of bytes to inspect. We recommend that you specify the
request_depth and response_depth parameters to limit the amount of HTTP body data to analyze.

To inspect only the HTTP headers, set response_depth to 0.

Type: integer

Valid range: -1 to 9,007,199,254,740,992 (max53)

Default Value: -1

unzip

Specifies whether to decompress gzip files and deflate message bodies before inspecting them. When you
turn off decompression, the HTTP inspector is unable to process all parts of the HTTP message body. The
http_inspect inspector can process the HTTP headers.

Type: boolean

Valid values: true, false

Default value: true

maximum_host_length

Specifies the maximum number of bytes allowed in the Host HTTP header value.

Specify -1 to place no limit on the header value length.

Type: integer

Valid range: -1 to 9,007,199,254,740,992 (max53)

Default value: -1

maximum_chunk_length

Specifies the maximum number of bytes allowed in an HTTP message body chunk.

Specify -1 to place no limit on the number of bytes in an HTTP chunk.

Type: integer

Valid range: -1 to 9,007,199,254,740,992 (max53)

Default value: -1

normalize_utf

Specifies whether to normalize UTF encodings (UTF-8, UTF-7, UTF-16LE, UTF-16BE, UTF-32LE, and
UTF-32BE) found in the HTTP response body. The http_inspect inspector determines the UTF character
encoding from the HTTP Content-Type header.

Type: boolean

Valid values: true, false

Default value: true

Snort 3 Inspector Reference
82

Snort 3 Inspectors
HTTP Inspect Inspector Parameters

decompress_pdf

Specifies whether to decompress the deflate-compatible compressed portions of the application/pdf (PDF)
files found in the HTTP response body. The http_inspect inspector decompresses PDF files with the
/FlateDecode stream filter.

Type: boolean

Valid values: true, false

Default value: false

decompress_swf

Specifies whether to decompress application/vnd.adobe.flash-movie (SWF) files found in the HTTP
response body.

You can only decompress the compressed portions of files found in the HTTP GET responses.Note

Type: boolean

Valid values: true, false

Default value: false

decompress_vba

Specifies whether to decompress Microsoft Office Visual Basic for Applications macro files found in the
HTTP response body.

Type: boolean

Valid values: true, false

Default value: false

decompress_zip

Specifies whether to decompress application/zip (ZIP) files found in the HTTP response body.

Type: boolean

Valid values: true, false

Default value: false

script_detection

Specifies whether to inspect the JavaScript content after detecting the script end element (<\script>). When
http_inspect detects the end of a script, it immediately forwards the partially read message body for early
detection. Script detection enables Snort to quickly block response messages that may contain malicious
JavaScript.

Type: boolean

Valid values: true, false

Default value: false

Snort 3 Inspector Reference
83

Snort 3 Inspectors
HTTP Inspect Inspector Parameters

normalize_javascript

Specifies whether to use the legacy mechanism to normalize JavaScript in the HTTP response body. This
option configures the legacy JavaScript normalizer. The http_inspect inspector normalizes obfuscated
JavaScript data including the unescape and decodeURI functions, and the String.fromCharCodemethod. The
HTTP inspector normalizes encodings within the unescape, decodeURI, and decodeURIComponent functions:
%XX, %uXXXX, XX, and uXXXXi.

The http_inspect inspector detects consecutive white spaces and normalizes them into a single space. When
normalize_javascript is enabled, you can set max_javascript_whitespaces to limit the number of
consecutive white spaces in the obfuscated JavaScript.

Type: boolean

Valid values: true, false

Default value: false

js_norm_bytes_depth

Specifies the number of input JavaScript bytes to normalize. This option is specific to the enhanced JavaScript
normalizer.

If you use the enhanced JavaScript normalizer, the default settings from the Lightweight Security Package
(LSP) and Snort 3 are used. JavaScript-specific configurations are blocked from the network analysis policy
(NAP) user interface. To override the default settings and customize the normalizer settings, you can modify
the NAPOverride.lua file located at
/ftd/app_data/Volume/root1/ngfw/var/cisco/deploy.

Note

The http_inspect inspector detects consecutive white spaces and normalizes them into a single space. The
inspector keeps track of scripts in different PDUs where the start <script> is in one PDU and the end </script>
is in another PDU to normalize the traffic effectively. A new buffer js_data was added to the Snort 3 IPS
buffer that uses the Just in Time (JIT) approach to detect and normalize JavaScript code where the normalizer
is called only when this option is used in the rule.

The http_inspect inspector normalizes the function name, variable name, and the label name associated
with the JavaScript code. In addition, the inspector normalizes JavaScript code transferred in the form of
external script using the application/javascript or similar MIME type. The normalizer performs automatic
semicolon insertion where the JavaScript functionality is not altered from its original input from the client
side.

The http_inspect inspector normalizes obfuscated JavaScript data including the unescape, decodeURI, and
decodeURIComponent functions, and the String.fromCharCode and String.fromCodePoint methods. The
HTTP inspector normalizes encodings within the unescape, decodeURI, and decodeURIComponent functions:
%XX, %uXXXX, \uXX, \u{XXXX}\xXX, decimal code point, and hexadecimal code point.

The http_inspect inspector also normalizes the Javascript plus (+) operator and concatenates strings using
the operator.

Specify -1 to place no limit on the number of JavaScript bytes.

Type: integer

Valid range: -1 to 9,007,199,254,740,992 (max53)

Default value: -1

Snort 3 Inspector Reference
84

Snort 3 Inspectors
HTTP Inspect Inspector Parameters

js_norm_identifier_depth

Specifies the maximum number of unique JavaScript identifiers to normalize. This option is specific to the
enhanced JavaScript normalizer.

If you use the enhanced JavaScript normalizer, the default settings from the Lightweight Security Package
(LSP) and Snort 3 are used. JavaScript-specific configurations are blocked from the network analysis policy
(NAP) user interface. To override the default settings and customize the normalizer settings, you can modify
the NAPOverride.lua file located at
/ftd/app_data/Volume/root1/ngfw/var/cisco/deploy.

Note

Type: integer

Valid range: 0 to 65536

Default value: 65536

js_norm_max_bracket_depth

Specifies the maximum depth of JavaScript bracket nesting to normalize. This option is specific to the enhanced
JavaScript normalizer.

If you use the enhanced JavaScript normalizer, the default settings from the Lightweight Security Package
(LSP) and Snort 3 are used. JavaScript-specific configurations are blocked from the network analysis policy
(NAP) user interface. To override the default settings and customize the normalizer settings, you can modify
the NAPOverride.lua file located at
/ftd/app_data/Volume/root1/ngfw/var/cisco/deploy.

Note

Type: integer

Valid range: 1 to 65535

Default value: 256

js_norm_max_scope_depth

Specifies the maximum depth of JavaScript scope nesting to normalize. This option is specific to the enhanced
JavaScript normalizer.

If you use the enhanced JavaScript normalizer, the default settings from the Lightweight Security Package
(LSP) and Snort 3 are used. JavaScript-specific configurations are blocked from the network analysis policy
(NAP) user interface. To override the default settings and customize the normalizer settings, you can modify
the NAPOverride.lua file located at
/ftd/app_data/Volume/root1/ngfw/var/cisco/deploy.

Note

Type: integer

Valid range: 1 to 65535

Default value: 256

Snort 3 Inspector Reference
85

Snort 3 Inspectors
HTTP Inspect Inspector Parameters

js_norm_max_tmpl_nest

Specifies the maximum depth of JavaScript template literal nesting to normalize. This option is specific to
the enhanced JavaScript normalizer.

If you use the enhanced JavaScript normalizer, the default settings from the Lightweight Security Package
(LSP) and Snort 3 are used. JavaScript-specific configurations are blocked from the network analysis policy
(NAP) user interface. To override the default settings and customize the normalizer settings, you can modify
the NAPOverride.lua file located at
/ftd/app_data/Volume/root1/ngfw/var/cisco/deploy.

Note

Type: integer

Valid range: 0 to 255

Default value: 32

max_javascript_whitespaces

Specifies the maximum consecutive whitespaces allowed within the JavaScript obfuscated data.

Type: integer

Valid range: 1 to 65535

Default value: 200

percent_u

Specifies whether to normalize the %uNNNN and %UNNNN encodings. The four N characters represent a hex-encoded
value that correlates to a Microsoft internet information services (IIS) Unicode code point. As legitimate
clients rarely use %u encodings, we recommend that you normalize the HTTP traffic encodedwith %u encodings.

Type: boolean

Valid values: true, false

Default value: false

utf8

Specifies whether to normalize the standard UTF-8Unicode sequences in the URI. The http_inspect inspector
can normalize two or three byte UTF-8 characters into a single byte.

Type: boolean

Valid values: true, false

Default value: true

utf8_bare_byte

Specifies whether to normalize UTF-8 characters which include bytes that are not URL or percent encoded.
We recommend that you enable the utf8_bare_byte parameter.

Type: boolean

Snort 3 Inspector Reference
86

Snort 3 Inspectors
HTTP Inspect Inspector Parameters

Valid values: true, false

Default value: false

iis_unicode

Specifies whether to normalize the characters in the HTTP message with the Unicode code point.

We recommend that you enable the iis_unicode parameter. Unicode is commonly seen in attacks and evasion
attempts.

Note

Type: boolean

Valid values: true, false

Default value: false

iis_unicode_code_page

Specifies whether to use the code page from the IIS Unicode map file.

Type: integer

Valid range: 1 to 65535

Default value: 1252

iis_double_decode

Specifies whether to normalize characters by performing double decoding of URL encoded characters. Decodes
IIS double encoded traffic by making two passes through the request URI. We recommend that you enable
the iis_double_decode parameter. Double encoding is typically found only in attack scenarios.

Type: boolean

Valid values: true, false

Default value: true

oversize_dir_length

Specifies the maximum number of bytes allowed for the URL directory.

Type: integer

Valid range: 1 to 65535

Default value: 300

backslash_to_slash

Specifies whether to replace the backslash (\) with forward slash (/) in the URIs.

Type: boolean

Valid values: true, false

Default value: true

Snort 3 Inspector Reference
87

Snort 3 Inspectors
HTTP Inspect Inspector Parameters

plus_to_space

Specifies whether to replace the plus sign (+) with <sp> in the URIs.

Type: boolean

Valid values: true, false

Default value: true

simplify_path

Specifies whether to reduce the URI directory path to the simplest form. A URI directory path that includes
extra traversals may include: ., .., and /.

Type: boolean

Valid values: true, false

Default value: true

xff_headers

Specifies the types of X-Forwarded-For HTTP header to examine. In the xff_headers parameter, list the
X-Forwarded-For headers from highest to lowest preference.

You can define custom X-Forwarded-For type headers. The HTTP header, which carries the original client
IP address, can have a vendor-specific header name. In this scenario, the xff_headers parameter provides a
way to introduce custom headers to the HTTP inspector.

The xff_headers default value is x-forwarded-for true-client-ip, two commonly known headers. If both
default headers are present in the stream, x-forwarded-for is preferred over true-client-ip. When specifying
multiple X-Forwarded-For HTTP headers, delimit the header names with a space.

Type: string

Valid values: x-forwarded-for, true-client-ip

Default value: x-forwarded-for true-client-ip

HTTP Inspect Inspector Rules
Enable the http_inspect inspector rules to generate events and, in an inline deployment, drop offending
packets.

Table 14: HTTP Inspect Inspector Rules

Rule MessageGID:SID

URI has percent-encoding of an unreserved character119:1

URI is percent encoded and the result is percent encoded again119:2

URI has non-standard %u-style Unicode encoding119:3

URI has Unicode encodings containing bytes that were not percent-encoded119:4

URI has two-byte or three-byte UTF-8 encoding119:6

Snort 3 Inspector Reference
88

Snort 3 Inspectors
HTTP Inspect Inspector Rules

Rule MessageGID:SID

URI has unicode map code point encoding119:7

URI path contains consecutive slash characters119:8

backslash character appears in the path portion of a URI119:9

URI path contains /./ pattern repeating the current directory119:10

URI path contains /../ pattern moving up a directory119:11

Tab character in HTTP start line119:12

HTTP start line or header line terminated by LF without a CR119:13

Normalized URI includes character from bad_characters list119:14

URI path contains a segment that is longer than the oversize_dir_length parametery119:15

chunk length exceeds configured maximum_chunk_length119:16

URI path includes /../ that goes above the root directory119:18

HTTP header line exceeds 4096 bytes119:19

HTTP message has more than 200 header fields119:20

HTTP message has more than one Content-Length header value119:21

Host header field appears more than once or has multiple values119:24

length of HTTP Host header field value exceeds maximum_host_length option119:25

HTTP POST or PUT request without content-length or chunks119:28

HTTP request method is not known to Snort119:31

HTTP request uses primitive HTTP format known as HTTP/0.9119:32

HTTP request URI has space character that is not percent-encoded119:33

HTTP connection has more than 100 simultaneous pipelined requests that have not
been answered

119:34

invalid status code in HTTP response119:102

HTTP response has UTF character set that failed to normalize119:104

HTTP response has UTF-7 character set119:105

more than one level of JavaScript obfuscation119:109

consecutive JavaScript whitespaces exceed maximum allowed119:110

multiple encodings within JavaScript obfuscated data119:111

Snort 3 Inspector Reference
89

Snort 3 Inspectors
HTTP Inspect Inspector Rules

Rule MessageGID:SID

SWF file zlib decompression failure119:112

SWF file LZMA decompression failure119:113

PDF file deflate decompression failure119:114

PDF file unsupported compression type119:115

PDF file with more than one compression applied119:116

PDF file parse failure119:117

not HTTP traffic or unrecoverable HTTP protocol error119:201

chunk length has excessive leading zeros119:202

white space before or between HTTP messages119:203

request message without URI119:204

control character in HTTP response reason phrase119:205

illegal extra whitespace in start line119:206

corrupted HTTP version119:207

format error in HTTP header119:209

chunk header options present119:210

URI badly formatted119:211

unrecognized type of percent encoding in URI119:212

HTTP chunk misformatted119:213

white space adjacent to chunk length119:214

white space within header name119:215

excessive gzip compression119:216

gzip decompression failed119:217

HTTP 0.9 requested followed by another request119:218

HTTP 0.9 request following a normal request119:219

message has both Content-Length and Transfer-Encoding119:220

status code implying no body combined with Transfer-Encoding or nonzero
Content-Length

119:221

Transfer-Encoding not ending with chunked119:222

Snort 3 Inspector Reference
90

Snort 3 Inspectors
HTTP Inspect Inspector Rules

Rule MessageGID:SID

Transfer-Encoding with encodings before chunked119:223

misformatted HTTP traffic119:224

unsupported Content-Encoding used119:225

unknown Content-Encoding used119:226

multiple Content-Encodings applied119:227

server response before client request119:228

PDF/SWF/ZIP decompression of server response too big119:229

nonprinting character in HTTP message header name119:230

bad Content-Length value in HTTP header119:231

HTTP header line wrapped119:232

HTTP header line terminated by CR without a LF119:233

chunk terminated by nonstandard separator119:234

chunk length terminated by LF without CR119:235

more than one response with 100 status code119:236

100 status code not in response to Expect header119:237

1XX status code other than 100 or 101119:238

Expect header sent without a message body119:239

HTTP 1.0 message with Transfer-Encoding header119:240

Content-Transfer-Encoding used as HTTP header119:241

illegal field in chunked message trailers119:242

header field inappropriately appears twice or has two values119:243

invalid value chunked in Content-Encoding header119:244

206 response sent to a request without a Range header119:245

HTTP in version field not all upper case119:246

white space embedded in critical header value119:247

gzip compressed data followed by unexpected non-gzip data119:248

excessive HTTP parameter key repeats119:249

HTTP CONNECT request with a message body119:253

Snort 3 Inspector Reference
91

Snort 3 Inspectors
HTTP Inspect Inspector Rules

Rule MessageGID:SID

HTTP client-to-server traffic after CONNECT request but before CONNECT response119:254

HTTP CONNECT 2XX response with Content-Length header119:255

HTTP CONNECT 2XX response with Transfer-Encoding header119:256

HTTP CONNECT response with 1XX status code119:257

HTTP CONNECT response before request message completed119:258

malformed HTTP Content-Disposition filename parameter119:259

HTTP Content-Length message body was truncated119:260

HTTP chunked message body was truncated119:261

HTTP URI scheme longer than 10 characters119:262

HTTP/1 client requested HTTP/2 upgrade119:263

HTTP/1 server granted HTTP/2 upgrade119:264

bad token in JavaScript119:265

unexpected script opening tag in JavaScript119:266

unexpected script closing tag in JavaScript119:267

JavaScript code under the external script tags119:268

script opening tag in a short form119:269

max number of unique JavaScript identifiers119:270

JavaScript bracket nesting is over capacity119:271

Consecutive commas in HTTP Accept-Encoding header119:272

missed PDUs during JavaScript normalization119:273

JavaScript scope nesting is over capacity119:274

HTTP/1 version other than 1.0 or 1.1e119:275

HTTP version in start line is 0119:276

HTTP version in start line is higher than 1119:277

Snort 3 Inspector Reference
92

Snort 3 Inspectors
HTTP Inspect Inspector Rules

HTTP Inspect Inspector Intrusion Rule Options
http_client_body

Sets the detection cursor to the body of an HTTP request. When an HTTP message does not specify an HTTP
header, Snort normalizes http_client_body using URI normalization. URI normalization is typically applied
to http_header.

Syntax: http_client_body;

Examples: http_client_body;

http_cookie

Sets the detection cursor to the extracted HTTP Cookie header field. The http_cookie rule option includes
the parameters: http_cookie.request, http_cookie.with_header, http_cookie.with_body, and
http_cookie.with_trailer.

Syntax: http_cookie: <parameter>, <parameter>

Examples: http_cookie: request;

http_cookie.request

Matches the HTTP cookie found in the HTTP request message. Use the HTTP request cookie when examining
the HTTP response. The http_cookie.request parameter is optional.

Syntax: http_cookie: request;

Examples: http_cookie: request;

http_cookie.with_header

Specifies that the rule can only examine the HTTPmessage headers. The http_cookie.with_header parameter
is optional.

Syntax: http_cookie: with_header;

Examples: http_cookie: with_header;

http_cookie.with_body

Specifies that another part of the rule examines the HTTP message body, not the http_cookie rule option.
The http_cookie.with_body parameter is optional.

Syntax: http_cookie: with_body;

Examples: http_cookie: with_body;

http_cookie.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_cookie rule option.
The http_cookie.with_trailer parameter is optional.

Syntax: http_cookie: with_trailer;

Examples: http_cookie: with_trailer;

Snort 3 Inspector Reference
93

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

http_header

Sets the detection cursor to the normalized HTTP headers. You can specify individual header names using
the field option.

The http_header rule option includes the parameters: http_header.field, http_header.request,
http_header.with_header, http_header.with_body, and http_header.with_trailer.

Syntax: http_header: field <field_name>,<parameter>, <parameter>

Examples: http_header: field Content-Type, with_trailer;

http_header.field

Matches the specified header name to the normalized HTTP headers. The header name is case insensitive. If
you do not specify a header name, the HTTP inspector examines all headers except the HTTP cookie headers
(Cookie and Set-Cookie).

Type: string

Syntax: http_header: field <field_name>;

Valid values: An HTTP header name.

Examples: http_header: field Content-Type;

http_header.request

Matches the headers found in the HTTP request. Use the HTTP request headers when examining the HTTP
response. The http_header.request parameter is optional.

Syntax: http_header: request;

Examples: http_header: request;

http_header.with_header

Specifies that the rule can only examine the HTTPmessage headers. The http_header.with_header parameter
is optional.

Syntax: http_header: with_header;

Examples: http_header: with_header;

http_header.with_body

Specifies that another part of the rule examines the HTTP message body, not the http_header rule option.
The http_header.with_body parameter is optional.

Syntax: http_header: with_body;

Examples: http_header: with_body;

http_header.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_header rule option.
The http_header.with_trailer parameter is optional.

Syntax: http_header: with_trailer;

Examples: http_header: with_trailer;

Snort 3 Inspector Reference
94

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

http_method

Sets the detection cursor to the method of the HTTP request. The common HTTP request method values are
GET, POST, OPTIONS, HEAD, DELETE, PUT, TRACE, and CONNECT.

The http_method rule option includes the parameters: http_method.with_header, http_method.with_body,
and http_method.with_trailer.

Syntax: http_method: <parameter>, <parameter>;

Examples: http_method; content:"GET";

http_method.with_header

Specifies that the rule can only examine the HTTPmessage headers. The http_method.with_header parameter
is optional.

Syntax: http_method: with_header;

Examples: http_method: with_header;

http_method.with_body

Specifies that another part of the rule examines the HTTP message body, not the http_header rule option.
The http_method.with_body parameter is optional.

Syntax: http_method: with_body;

Examples: http_method: with_body;

http_method.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_header rule option.
The http_method.with_trailer parameter is optional.

Syntax: http_method: with_trailer;

Examples: http_method: with_trailer;

http_param

Sets the detection cursor to the specified HTTP parameter key. The HTTP parameter key may appear in the
query or request body.

The http_param rule option includes the parameters: http_param.param and http_method.nocase.

Syntax: http_param: <parameter_key>, nocase;

Examples: http_param: offset, nocase;

http_param.param

Matches the specified parameter.

Type: string

Syntax: http_param: <http_parameter>;

Valid values: A request query parameter or request body field.

Examples: http_param: offset;

Snort 3 Inspector Reference
95

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

http_param.nocase

Match the specified parameter, but do not consider case. The http_param.nocase parameter is optional.

Syntax: http_param: nocase;

Examples: http_param: nocase;

http_raw_body

Sets the detection cursor to the unnormalized request or response message body.

Syntax: http_raw_body;

Examples: http_raw_body;

http_raw_cookie

Sets the detection cursor to the unnormalized HTTP Cookie header. The http_raw_cookie rule option includes
the parameters: http_raw_cookie.request, http_raw_cookie.with_header, http_raw_cookie.with_body,
and http_raw_cookie.with_trailer.

Syntax: http_raw_cookie: <parameter>, <parameter>;

Examples: http_raw_cookie: request;

http_raw_cookie.request

Matches the cookie found in the HTTP request. Use the HTTP request cookie when examining the response
message. The http_raw_cookie.request parameter is optional.

Syntax: http_raw_cookie: request;

Examples: http_raw_cookie: request;

http_raw_cookie.with_header

Specifies that the rule can only examine the HTTP message headers. The http_raw_cookie.with_header
parameter is optional.

Syntax: http_raw_cookie: with_header;

Examples: http_raw_cookie: with_header;

http_raw_cookie.with_body

Specifies that another part of the rule examines the HTTPmessage body, not the http_raw_cookie rule option.
The http_raw_cookie.with_body parameter is optional.

Syntax: http_raw_cookie: with_body;

Examples: http_raw_cookie: with_body;

http_raw_cookie.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_raw_cookie rule
option. The http_raw_cookie.with_trailer parameter is optional.

Syntax: http_raw_cookie: with_trailer;

Snort 3 Inspector Reference
96

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

Examples: http_raw_cookie: with_trailer;

http_raw_header

Sets the detection cursor to the unnormalized headers. http_raw_header includes all of the unmodified header
names and values in the original message.

The http_raw_header rule option includes the parameters: http_raw_header.field,
http_raw_header.request, http_raw_header.with_header, http_raw_header.with_body, and
http_raw_header.with_trailer.

Syntax: http_raw_header: field <field_name>, <parameter>, <parameter>;

Examples: http_raw_header: field Content-Type, with_trailer;

http_raw_header.field

Matches the specified header name to the unnormalized HTTP headers. The header name is case insensitive.
If you do not specify a header name, the HTTP inspector examines all headers except the HTTP cookie headers
(Cookie and Set-Cookie).

Type: string

Syntax: http_raw_header: field <field_name>

Valid values: An HTTP header name.

Examples: http_raw_header: field Content-Type;

http_raw_header.request

Matches the headers found in the HTTP request message. Use the HTTP request headers when examining
the response message. The http_raw_header.request parameter is optional.

Syntax: http_raw_header: request;

Examples: http_raw_header: request;

http_raw_header.with_header

Specifies that the rule can only examine the HTTP message headers. The http_raw_header.with_header
parameter is optional.

Syntax: http_raw_header: with_header;

Examples: http_raw_header: with_header;

http_raw_header.with_body

Specifies that another part of the rule examines the HTTPmessage body, not the http_raw_header rule option.
The http_raw_header.with_body parameter is optional.

Syntax: http_raw_header: with_body;

Examples: http_raw_header: with_body;

Snort 3 Inspector Reference
97

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

http_raw_header.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_raw_header rule
option. The http_raw_header.with_trailer parameter is optional.

Syntax: http_raw_header: with_trailer;

Examples: http_raw_header: with_trailer;

http_raw_request

Sets the detection cursor to the unnormalized request line. To examine a specific part of the first header line,
use one of the following rule options: http_method, http_raw_uri, or http_version.

The http_raw_request rule option includes the parameters: http_raw_request.with_header,
http_raw_request.with_body, and http_raw_request.with_trailer.

Syntax: http_raw_request: <parameter>, <parameter>;

Examples: http_raw_request: with_header;

http_raw_request.with_header

Specifies that the rule can only examine the HTTP message headers. The http_raw_request.with_header
parameter is optional.

Syntax: http_raw_request: with_header;

Examples: http_raw_request: with_header;

http_raw_request.with_body

Specifies that another part of the rule examines the HTTP message body, not the http_raw_request rule
option. The http_raw_request.with_body parameter is optional.

Syntax: http_raw_request: with_body;

Examples: http_raw_request: with_body;

http_raw_request.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_raw_request rule
option. The http_raw_request.with_trailer parameter is optional.

Syntax: http_raw_request: with_trailer;

Examples: http_raw_request: with_trailer;

http_raw_status

Sets the detection cursor to the unnormalized status line. To examine a specific part of the status line, use one
of the following rule options: http_version, http_stat_code, or http_stat_msg.

The http_raw_status rule option includes the parameters: http_raw_status.with_body and
http_raw_status.with_trailer.

Syntax: http_raw_status: <parameter>, <parameter>;

Examples: http_raw_status: with_body;

Snort 3 Inspector Reference
98

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

http_raw_status.with_body

Specifies that another part of the rule examines the HTTPmessage body, not the http_raw_status rule option.
The http_raw_status.with_body parameter is optional.

Syntax: http_raw_status: with_body;

Examples: http_raw_status: with_body;

http_raw_status.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_raw_status rule
option. The http_raw_status.with_trailer parameter is optional.

Syntax: http_raw_status: with_trailer;

Examples: http_raw_status: with_trailer;

http_raw_trailer

Sets the detection cursor to the unnormalized HTTP trailers. Trailers contain information about the message
content. The trailers are not available when the client request creates HTTP headers.

http_raw_trailer is identical to http_raw_header, except that it applies to the end headers. You must create
separate rules to inspect the HTTP headers and trailers.

The http_raw_trailer rule option includes the parameters: http_raw_trailer.field,
http_raw_trailer.request, http_raw_trailer.with_header, http_raw_trailer.with_body.

Syntax: http_raw_trailer: field <field_name>, <parameter>, <parameter>;

Examples: http_raw_trailer: field <field_name>, request;

http_raw_trailer.field

Matches the specified trailer name to the unnormalized HTTP trailers. The trailer name is case insensitive.

Type: string

Syntax: http_raw_trailer: field <field_name>;

Valid values: An HTTP trailer name.

Examples: http_raw_trailer: field trailer-timestamp;

http_raw_trailer.request

Matches the trailers found in the HTTP request message. Use the HTTP request trailers when examining the
response message. The http_raw_trailer.request parameter is optional.

Syntax: http_raw_trailer: request;

Examples: http_raw_trailer: request;

http_raw_trailer.with_header

Specifies that the rule can only examine the HTTP response headers. The http_raw_trailer.with_header
parameter is optional.

Syntax: http_raw_trailer: with_header;

Snort 3 Inspector Reference
99

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

Examples: http_raw_trailer: with_header;

http_raw_trailer.with_body

Specifies that another part of the rule examines the HTTP response message body, not the http_raw_trailer
rule option. The http_raw_trailer.with_body parameter is optional.

Syntax: http_raw_trailer: with_body;

Examples: http_raw_trailer: with_body;

http_raw_uri

Sets the detection cursor to the unnormalized URI.

The http_raw_uri rule option includes:

• http_raw_uri.with_header

• http_raw_uri.with_body

• http_raw_uri.with_trailer

• http_raw_uri.scheme

• http_raw_uri.host

• http_raw_uri.port

• http_raw_uri.path

• http_raw_uri.query

• http_raw_uri.fragment

Syntax: http_raw_uri: <parameter>, <parameter>;

Examples: http_raw_uri: with_header, path, query;

http_raw_uri.with_header

Specifies that the rule can only examine theHTTPmessage headers. The http_raw_uri.with_header parameter
is optional.

Syntax: http_raw_uri: with_header;

Examples: http_raw_uri: with_header;

http_raw_uri.with_body

Specifies that another part of the rule examines the HTTP message body, not the http_raw_uri rule option.
The http_raw_uri.with_body parameter is optional.

Syntax: http_raw_uri: with_body;

Examples: http_raw_uri: with_body;

Snort 3 Inspector Reference
100

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

http_raw_uri.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_raw_uri rule option.
The http_raw_uri.with_trailer parameter is optional.

Syntax: http_raw_uri: with_trailer;

Examples: http_raw_uri: with_trailer;

http_raw_uri.scheme

Matches only against the scheme of the URI. The http_raw_uri.scheme parameter is optional.

Syntax: http_raw_uri: scheme;

Examples: http_raw_uri: scheme;

http_raw_uri.host

Matches only against the host (domain name) of the URI. The http_raw_uri.host parameter is optional.

Syntax: http_raw_uri: host;

Examples: http_raw_uri: host;

http_raw_uri.port

Matches only against the port (TCP port) of the URI. The http_raw_uri.port parameter is optional.

Syntax: http_raw_uri: port;

Examples: http_raw_uri: port;

http_raw_uri.path

Matches only against the path section (directory and file) of the URI. The http_raw_uri.path parameter is
optional.

Syntax: http_raw_uri: path;

Examples: http_raw_uri: path;

http_raw_uri.query

Matches only against the query parameters in the URI. The http_raw_uri.query parameter is optional.

Syntax: http_raw_uri: query;

Examples: http_raw_uri: query;

http_raw_uri.fragment

Matches only against the fragment section of the URI. A fragment is part of the file requested, normally found
only inside a browser and not transmitted over the network. The http_raw_uri.fragment parameter is optional.

Syntax: http_raw_uri: fragment;

Examples: http_raw_uri: fragment;

Snort 3 Inspector Reference
101

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

http_stat_code

Sets the detection cursor to the HTTP status code. The HTTP status code is a three-digit number ranging
between 100 – 599.

The http_stat_code rule option includes the parameters: http_stat_code.with_body and
http_stat_code.with_trailer.

Syntax: http_stat_code: <parameter>, <parameter>;

Examples: http_stat_code: with_trailer;

http_stat_code.with_body

Specifies that another part of the rule examines the HTTPmessage body, not the http_stat_code rule option.
The http_stat_code.with_body parameter is optional.

Syntax: http_stat_code: with_body;

Examples: http_stat_code: with_body;

http_stat_code.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_stat_code rule
option. The http_stat_code.with_trailer parameter is optional.

Syntax: http_stat_code: with_trailer;

Examples: http_stat_code: with_trailer;

http_stat_msg

Sets the detection cursor to the HTTP status message. The HTTP status message describes the HTTP status
code in plain text, for example: OK.

The http_stat_msg rule option includes the parameters: http_stat_msg.with_body and
http_stat_msg.with_trailer.

Syntax: http_stat_msg: <parameter>, <parameter>;

Examples: http_stat_msg: with_body;

http_stat_msg.with_body

Specifies that another part of the rule examines the HTTP message body, not the http_stat_msg rule option.
The http_stat_msg.with_body parameter is optional.

Syntax: http_stat_msg: with_body;

Examples: http_stat_msg: with_body;

http_stat_msg.with_trailer

Specifies that another part of the rule examines the HTTPmessage trailers, not the http_stat_msg rule option.
The http_stat_msg.with_trailer parameter is optional.

Syntax: http_stat_msg: with_trailer;

Examples: http_stat_msg: with_trailer;

Snort 3 Inspector Reference
102

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

http_trailer

Sets the detection cursor to the normalized trailers. Trailers contain information about the message content.
The trailers are not available when the client request creates HTTP headers.

http_trailer is identical to http_header, except that it applies to the end headers. You must create separate
rules to inspect the HTTP headers and trailers.

The http_trailer rule option includes the parameters: http_trailer.field, http_trailer.request,
http_trailer.with_header, http_trailer.with_body.

Syntax: http_trailer: field <field_name>, <parameter>, <parameter>;

Examples: http_trailer: field trailer-timestamp, with_body;

http_trailer.field

Matches the specified trailer name to the normalized HTTP trailers. The trailer name is case insensitive.

Type: string

Syntax: http_trailer: field <field_name>;

Valid values: An HTTP trailer name.

Examples: http_trailer: field trailer-timestamp;

http_trailer.request

Matches the trailers found in the HTTP request message. Use the HTTP request trailers when examining the
response message. The http_trailer.request parameter is optional.

Syntax: http_trailer: request;

Examples: http_trailer: request;

http_trailer.with_header

Specifies that another part of the rule examines the HTTPmessage headers, not the http_trailer rule option.
The http_trailer.with_header parameter is optional.

Syntax: http_trailer: with_header;

Examples: http_trailer: with_header;

http_trailer.with_body

Specifies that another part of the rule examines the HTTP message body, not the http_trailer rule option.
The http_trailer.with_body parameter is optional.

Syntax: http_trailer: with_body;

Examples: http_trailer: with_body;

http_true_ip

Sets the detection cursor to the final client IP address. When a client sends a request, the proxy server stores
the final client IP address. A client IP address is the last IP address listed in the X-Forwarded-For,
True-Client-IP, or any other custom X-Forwarded-For type header. If multiple headers are present, Snort
considers the headers defined in xff_headers.

Snort 3 Inspector Reference
103

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

The http_true_ip rule option includes the parameters: http_true_ip.with_header, http_true_ip.with_body,
and http_true_ip.with_trailer.

Syntax: http_true_ip: <parameter>, <parameter>;

Examples: http_true_ip: with_header;

http_true_ip.with_header

Specifies that the rule can only examine theHTTPmessage headers. The http_true_ip.with_header parameter
is optional.

Syntax: http_true_ip: with_header;

Examples: http_true_ip: with_header;

http_true_ip.with_body

Specifies that another part of the rule examines the HTTP message body, not the http_true_ip rule option.
The http_true_ip.with_body parameter is optional.

Syntax: http_true_ip: with_body;

Examples: http_true_ip: with_body;

http_true_ip.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_true_ip rule option.
The http_true_ip.with_trailer parameter is optional.

Syntax: http_true_ip: with_trailer;

Examples: http_true_ip: with_trailer;

http_uri

Sets the detection cursor to the normalized URI buffer.

• http_uri.with_header

• http_uri.with_body

• http_uri.with_trailer

• http_uri.scheme

• http_uri.host

• http_uri.port

• http_uri.path

• http_uri.query

• http_uri.fragment

Syntax: http_uri: <parameter>, <parameter>;

Examples: http_uri: with_trailer, path, query;

Snort 3 Inspector Reference
104

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

http_uri.with_header

Specifies that the rule can only examine the HTTP message headers. The http_uri.with_header parameter
is optional.

Syntax: http_uri: with_header;

Examples: http_uri: with_header;

http_uri.with_body

Specifies that another part of the rule examines the HTTP message body, not the http_uri rule option. The
http_uri.with_body parameter is optional.

Syntax: http_uri: with_body;

Examples: http_uri: with_body;

http_uri.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_uri rule option. The
http_uri.with_trailer parameter is optional.

Syntax: http_uri: with_trailer;

Examples: http_uri: with_trailer;

http_uri.scheme

Matches only against the scheme of the URI. The http_uri.scheme parameter is optional.

Syntax: http_uri: scheme;

Examples: http_uri: scheme;

http_uri.host

Matches only against the host (domain name) of the URI. The http_uri.host parameter is optional.

Syntax: http_uri: host;

Examples: http_uri: host;

http_uri.port

Matches only against the port (TCP port) of the URI. The http_uri.port parameter is optional.

Syntax: http_uri: port;

Examples: http_uri: port;

http_uri.path

Matches only against the path (directory and file) of the URI. The http_uri.path parameter is optional.

Syntax: http_uri: path;

Examples: http_uri: path;

Snort 3 Inspector Reference
105

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

http_uri.query

Matches only against the query parameters in the URI. The http_uri.query parameter is optional.

Syntax: http_uri: uri;

Examples: http_uri: query;

http_uri.fragment

Matches only against the fragment section of the URI. A fragment is part of the file requested, normally found
only inside a browser and not transmitted over the network. The http_uri.fragment parameter is optional.

Syntax: http_uri: fragment;

Examples: http_uri: fragment;

http_version

Sets the detection cursor to the beginning of the HTTP version buffer. http_version accepts various HTTP
versions. The most commonly found versions are: HTTP/1.0 and HTTP/1.1. The http_version rule option
includes the parameters: http_version.request, http_version.with_header, http_version.with_body,
and http_version.with_trailer.

Syntax: http_version: <parameter>, <parameter>;

Examples: http_version; content:"HTTP/1.1";

http_version.request

Matches the version found in the HTTP request. Use the request version when examining the responsemessage.
The http_version.request parameter is optional.

Syntax: http_version: request;

Examples: http_version: request;

http_version.with_header

Specifies that the rule can only examine theHTTPmessage headers. The http_version.with_header parameter
is optional.

Syntax: http_version: with_header;

Examples: http_version: with_header;

http_version.with_body

Specifies that another part of the rule examines the HTTP message body, not the http_version rule option.
The http_version.with_body parameter is optional.

Syntax: http_version: with_body;

Examples: http_version: with_body;

http_version.with_trailer

Specifies that another part of the rule examines the HTTP message trailers, not the http_version rule option.
The http_version.with_trailer parameter is optional.

Snort 3 Inspector Reference
106

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

Syntax: http_version: with_trailer;

Examples: http_version: with_trailer;

http_version_match

Specifies a list of HTTP versions to match against the standard HTTP versions. Separate multiple versions
with a space character. An HTTP request or status line may contain a version. If the version is present, Snort
compares this version with the list specified in http_version_match.

If the version doesn’t have a format of [0-9].[0-9] it is considered malformed. A version in the format of
[0-9].[0-9] that is not 1.0 or 1.1 is considered other.

Type: string

Syntax: http_version_match: <version_list>

Valid values: 1.0, 1.1, 2.0, 0.9, other, malformed

Examples: http_version_match: "1.0 1.1";

js_data

Sets the detection cursor to the normalized JavaScript data. This option is specific to the enhanced JavaScript
normalizer.

Syntax: js_data;

Examples: js_data;

vba_data

Sets the detection cursor to the Microsoft Office Visual Basic for Applications macros buffer.

Syntax: vba_data;

Examples: vba_data;

Snort 3 Inspector Reference
107

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

Snort 3 Inspector Reference
108

Snort 3 Inspectors
HTTP Inspect Inspector Intrusion Rule Options

C H A P T E R 12
IEC104 Inspector

• IEC104 Inspector Overview, on page 109
• IEC104 Inspector Parameters, on page 109
• IEC104 Inspector Rules, on page 110
• IEC104 Inspector Intrusion Rule Options, on page 112

IEC104 Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcpOther Inspectors Required

falseEnabled

The IEC 60870-5-104 (IEC104) protocol describes a communication standard to exchange telecontrol messages
between electric power systems. The IEC104 protocol uses TCP port 2404.

The iec104 inspector detects IEC104messages in network traffic. The iec104 inspector analyzes and normalizes
IEC104 messages by either combining a message spread across multiple frames, or splitting apart multiple
messages within one frame.

When enabled, the intrusion rule options provide access to the IEC104 application protocol control information
(APCI) type and the application service data unit (ASDU) function code.

IEC104 Inspector Parameters
IEC104 TCP port configuration

The binder inspector defines the IEC104 TCP port configuration. For more information, see the Binder
Inspector Overview, on page 13.

Example:

Snort 3 Inspector Reference
109

[
{

"when": {
"role": "server",
"proto": "tcp",
"ports": "2404"

},
"use": {

"type": "iec104"
}

}
]

The iec104 inspector does not provide any parameters.Note

IEC104 Inspector Rules
Enable the iec104 inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 15: IEC104 Inspector Rules

Rule MessageGID:SID

Length in IEC104 APCI header does not match the length needed for the given
IEC104 ASDU type id

151:1

IEC104 Start byte does not match 0x68151:2

Reserved IEC104 ASDU type id in use151:3

IEC104 APCI U Reserved field contains a non-default value151:4

IEC104 APCI U message type was set to an invalid value151:5

IEC104 APCI S Reserved field contains a non-default value151:6

IEC104 APCI I number of elements set to zero151:7

IEC104 APCI I SQ bit set on an ASDU that does not support the feature151:8

IEC104 APCI I number of elements set to greater than one on an ASDU that does
not support the feature

151:9

IEC104 APCI I Cause of Initialization set to a reserved value151:10

IEC104 APCI I Qualifier of Interrogation Command set to a reserved value151:11

IEC104 APCI I Qualifier of Counter Interrogation Command request parameter set
to a reserved value

151:12

IEC104 APCI I Qualifier of Parameter of Measured Values kind of parameter set to
a reserved value

151:13

Snort 3 Inspector Reference
110

Snort 3 Inspectors
IEC104 Inspector Rules

Rule MessageGID:SID

IEC104 APCI I Qualifier of Parameter of Measured Values local parameter change
set to a technically valid but unused value

151:14

IEC104 APCI I Qualifier of Parameter of Measured Values parameter option set to
a technically valid but unused value

151:15

IEC104 APCI I Qualifier of Parameter Activation set to a reserved value151:16

IEC104 APCI I Qualifier of Command set to a reserved value151:17

IEC104 APCI I Qualifier of Reset Process set to a reserved value151:18

IEC104 APCI I File Ready Qualifier set to a reserved value151:19

IEC104 APCI I Section Ready Qualifier set to a reserved value151:20

IEC104 APCI I Select and Call Qualifier set to a reserved value151:21

IEC104 APCI I Last Section or Segment Qualifier set to a reserved value151:22

IEC104 APCI I Acknowledge File or Section Qualifier set to a reserved value151:23

IEC104 APCI I Structure Qualifier set on a message where it should have no effect151:24

IEC104 APCI I Single Point Information Reserved field contains a non-default value151:25

IEC104APCI I Double Point Information Reserved field contains a non-default value151:26

IEC104 APCI I Cause of Transmission set to a reserved value151:27

IEC104 APCI I Cause of Transmission set to a value not allowed for the ASDU151:28

IEC104 APCI I invalid two octet common address value detected151:29

IEC104 APCI I Quality Descriptor Structure Reserved field contains a non-default
value

151:30

IEC104 APCI I Quality Descriptor for Events of Protection Equipment Structure
Reserved field contains a non-default value

151:31

IEC104 APCI I IEEE STD 754 value results in NaN151:32

IEC104 APCI I IEEE STD 754 value results in infinity151:33

IEC104 APCI I Single Event of Protection Equipment Structure Reserved field
contains a non-default value

151:34

IEC104APCI I Start Event of Protection Equipment Structure Reserved field contains
a non-default value

151:35

IEC104 APCI I Output Circuit Information Structure Reserved field contains a
non-default value

151:36

IEC104 APCI I Abnormal Fixed Test Bit Pattern detected151:37

Snort 3 Inspector Reference
111

Snort 3 Inspectors
IEC104 Inspector Rules

Rule MessageGID:SID

IEC104 APCI I Single Command Structure Reserved field contains a non-default
value

151:38

IEC104 APCI I Double Command Structure contains an invalid value151:39

IEC104 APCI I Regulating Step Command Structure Reserved field contains a
non-default value

151:40

IEC104 APCI I Time2a Millisecond set outside of the allowable range151:41

IEC104 APCI I Time2a Minute set outside of the allowable range151:42

IEC104 APCI I Time2a Minute Reserved field contains a non-default value151:43

IEC104 APCI I Time2a Hours set outside of the allowable range151:44

IEC104 APCI I Time2a Hours Reserved field contains a non-default value151:45

IEC104 APCI I Time2a Day of Month set outside of the allowable range151:46

IEC104 APCI I Time2a Month set outside of the allowable range151:47

IEC104 APCI I Time2a Month Reserved field contains a non-default value151:48

IEC104 APCI I Time2a Year set outside of the allowable range151:49

IEC104 APCI I Time2a Year Reserved field contains a non-default value151:50

IEC104 APCI I a null Length of Segment value has been detected151:51

IEC104 APCI I an invalid Length of Segment value has been detected151:52

IEC104 APCI I Status of File set to a reserved value151:53

IEC104 APCI I Qualifier of Set Point Command ql field set to a reserved value151:54

IEC104 Inspector Intrusion Rule Options
iec104_apci_type

Verifies that the IEC104 message matches the IEC104 application protocol information control (APIC) type
set in the option.

The iec104_apci_type intrusion rule option accepts a string specified using the full APIC type name, or
uppercase or lowercase APIC type abbreviation.

Type: string

Syntax: iec104_apci_type: <apic_type>;

Examples:

iec104_apci_type: unnumbered_control_function;

Snort 3 Inspector Reference
112

Snort 3 Inspectors
IEC104 Inspector Intrusion Rule Options

iec104_apci_type: S;

iec104_apci_type: I;

iec104_apci_type: i;

iec104_asdu_func

Verifies that the IEC104 message matches the IEC104 application service data unit (ASDU) function code
set in the option.

The iec104_asdu_func intrusion rule option accepts a string specified using the uppercase or lowercase
ASDU function code.

Type: string

Syntax: iec104_asdu_func: <asdu_func>;

Examples:

iec104_asdu_func: M_SP_NA_1;

iec104_asdu_func: m_sp_na_1;

Snort 3 Inspector Reference
113

Snort 3 Inspectors
IEC104 Inspector Intrusion Rule Options

Snort 3 Inspector Reference
114

Snort 3 Inspectors
IEC104 Inspector Intrusion Rule Options

C H A P T E R 13
IMAP Inspector

• IMAP Inspector Overview, on page 115
• IMAP Inspector Parameters, on page 115
• IMAP Inspector Rules, on page 118
• IMAP Inspector Intrusion Rule Options, on page 118

IMAP Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcpOther Inspectors Required

trueEnabled

Internet Message Application Protocol (IMAP) enables email clients to retrieve messages from a remote
IMAP3 server. An IMAP3 server uses TCP port 143 for insecure sessions or TCP port 993 for IMAP over
SSL/TLS.

The imap inspector detects IMAP traffic and analyzes IMAP commands and responses.

The imap inspector can identify the command, header, and body sections of IMAP messages, and extract and
decode multi-purpose internet mail extensions (MIME) attachments. MIME attachments may include multiple
attachments and large attachments that span multiple packets.

The imap inspector identifies and adds IMAP traffic to the Snort allow list. When enabled, intrusion rules
generate events on anomalous IMAP traffic.

IMAP Inspector Parameters
IMAP service configuration

The binder inspector defines the IMAP service configuration. For more information, see the Binder Inspector
Overview, on page 13.

Snort 3 Inspector Reference
115

Example:

[
{

"when": {
"service": "imap",
"role": any

},
"use": {

"type": "imap"
}

}
]

b_64_decode_depth

Specifies the maximum number of bytes to extract and decode from each Base64 encoded MIME email
attachment. You can specify an integer less than 65535, or specify 0 to disable decoding. Specify -1 to place
no limit on the number of bytes to decode.

You can enable rule 141:4 to generate events for this parameter, and in an inline deployment, drop offending
packets when decoding fails (due to incorrect encoding or corrupted data).

Type: integer

Valid range: -1 to 65535

Default value: -1

bitenc_decode_depth

Specifies the maximum number of bytes to extract from each non-encoded MIME email attachment. You can
specify an integer less than 65535, or specify 0 to disable the extraction of the non-encodedMIME attachment.
Specify -1 to place no limit on the number of bytes to extract. These attachment types include 7-bit, 8-bit,
binary, and various multipart content types such as plain text, JPEG and PNG images, and MP4 files.

Type: integer

Valid range: -1 to 65535

Default value: -1

decompress_pdf

Specifies whether to decompress application/pdf (PDF) files in MIME attachments.

You can enable rule 141:8 to generate events for this parameter, and in an inline deployment, drop offending
packets.

Type: boolean

Valid values: true, false

Default value: false

decompress_swf

Specifies whether to decompress application/vnd.adobe.flash-movie (SWF) files in MIME attachments.

You can enable rule 141:8 to generate events for this parameter, and in an inline deployment, drop offending
packets.

Snort 3 Inspector Reference
116

Snort 3 Inspectors
IMAP Inspector Parameters

Type: integer

Valid values: true, false

Default value: false

decompress_vba

Specifies whether to decompress Microsoft Office Visual Basic for Applications macro files in MIME
attachments.

Type: boolean

Valid values: true, false

Default value: false

decompress_zip

Specifies whether to decompress application/zip (ZIP) files in MIME attachments.

You can enable rule 141:8 to generate events for this parameter, and in an inline deployment, drop offending
packets.

Type: boolean

Valid values: true, false

Default value: false

qp_decode_depth

Specifies the maximum number of bytes to extract and decode from each quoted-printable (QP) encoded
MIME email attachment. You can specify an integer less than 65535, or specify 0 to disable decoding. Specify
-1 to place no limit on the number of bytes to decode.

You can enable rule 141:5 to generate events for this parameter, and in an inline deployment, drop offending
packets when decoding fails (due to incorrect encoding or corrupted data).

Type: integer

Valid range: -1 to 65535

Default value: -1

uu_decode_depth

Specifies the maximum number of bytes to extract and decode from each Unix-to-Unix encoded (uuencoded)
MIME email attachment. You can specify an integer less than 65535, or specify 0 to disable decoding. Specify
-1 to place no limit on the number of bytes to decode.

You can enable rule 141:7 to generate events for this parameter, and in an inline deployment, drop offending
packets when decoding fails (due to incorrect encoding or corrupted data).

Type: integer

Valid range: -1 to 65535

Default value: -1

Snort 3 Inspector Reference
117

Snort 3 Inspectors
IMAP Inspector Parameters

IMAP Inspector Rules
Enable the imap inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 16: IMAP Inspector Rules

Rule MessageGID:SID

unknown IMAP3 command141:1

unknown IMAP3 response141:2

base64 decoding failed141:4

quoted-printable decoding failed141:5

Unix-to-Unix decoding failed141:7

file decompression failed141:8

IMAP Inspector Intrusion Rule Options
vba_data

Sets the detection cursor to the Microsoft Office Visual Basic for Applications macros buffer.

Syntax: vba_data;

Examples: vba_data;

Snort 3 Inspector Reference
118

Snort 3 Inspectors
IMAP Inspector Rules

C H A P T E R 14
MMS Inspector

• MMS Inspector Overview, on page 119
• MMS Inspector Parameters, on page 120
• MMS Inspector Rules, on page 120
• MMS Inspector Intrusion Rule Options, on page 120

MMS Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcpOther Inspectors Required

falseEnabled

IEC 61850 is an international standard that defines communication protocols for electric power systems. The
Manufacturing Message Specification (MMS) protocol is one of the IEC 61850 protocols. MMS enables the
real-time transfer of Supervisory Control and Data Acquisition (SCADA) data between various manufacturing
and process control devices. The MMS protocol uses TCP port 102 to exchange messages between client and
server devices.

The mms inspector detects and analyzes MMS traffic. MMS messages may include multiple Protocol Data
Units (PDUs) within one TCP packet, one PDU split across multiple TCP packets, or a combination of the
twomessage configurations. The mms inspector normalizes theMMS traffic to present completeMMSmessages
to a device.

You write Snort 3 rules for MMS messages without decoding the MMS protocol. The mms inspector analyzes
the OSI layers that encapsulate the MMS protocol, and provides access to certain MMS protocol fields and
data content through rule options. For information about the MMS rule options, see MMS Inspector Intrusion
Rule Options, on page 120

Snort 3 Inspector Reference
119

MMS Inspector Parameters
MMS service configuration

The binder inspector defines theMMS service configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

[
{

"when": {
"service": "mms"

},
"use": {

"type": "mms"
}

}
]

MMS Inspector Rules
The mms inspector does not have any associated rules.

MMS Inspector Intrusion Rule Options
mms_data

Sets the detection cursor position to the start of the MMS Protocol Data Unit (PDU), bypassing all of the OSI
encapsulation layers. When an intrusion rule includes mms_data, the next rule options in the rule begin
processing from the MMS PDU.

Syntax: mms_data;

Examples:

The following sample intrusion rule sets the mms_data rule option. The mms_data rule option positions the
detection cursor to the start of the MMS PDU, and checks the byte at that position for the value of an
Initiate-Request message.

alert tcp (\
msg: "PROTOCOL-SCADA MMS Initiate-Request"; \
flow: to_server, established; \
mms_data; \
content:"|A8|", depth 1; \
sid:1000000; \
)

mms_func

Compares the provided function name or number with the Confirmed Service field in the MMS request or
response. Alert when the MMS function name or number matches the Confirmed Service.

Snort 3 Inspector Reference
120

Snort 3 Inspectors
MMS Inspector Parameters

Type: string

Syntax: mms_func <function>;

Examples:

The following sample intrusion rule sets the mms_func rule option and alerts when the Confirmed Service

Request service matches the provided function name. In addition, mms_func enables the fast pattern matching
feature to match on the Confirmed Service Request (0xA0) message.

alert tcp (\
msg: "PROTOCOL-SCADA MMS svc get_name_list"; \
flow: to_server, established; \
content:"|A0|"; \
mms_func: get_name_list; \
sid:1000000; \
)

The following sample intrusion rule sets the mms_func rule option and alerts when the GetNameListmessage
matches the function number.

alert tcp (\
msg: "PROTOCOL-SCADA MMS svc get_name_list"; \
flow: to_server, established; \
content:"|A0|"; \
mms_func:1; \
sid:1000001; \
)

Snort 3 Inspector Reference
121

Snort 3 Inspectors
MMS Inspector Intrusion Rule Options

Snort 3 Inspector Reference
122

Snort 3 Inspectors
MMS Inspector Intrusion Rule Options

C H A P T E R 15
Modbus Inspector

• Modbus Inspector Overview, on page 123
• Best Practices for Configuring the Modbus Inspector, on page 123
• Modbus Inspector Parameters, on page 124
• Modbus Inspector Rules, on page 124
• Modbus Inspector Intrusion Rule Options, on page 125

Modbus Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcpOther Inspectors Required

falseEnabled

TheModbus protocol defines a communication standard to exchangemessages between a Supervisory Control
and Data Acquisition (SCADA) system and a Programmable Automation Controller (PLC). The Modbus
protocol uses TCP port 502.

The modbus inspector detects and analyzes Modbus messages in network traffic. When enabled, the Modbus
intrusion rule options provide access to certain Modbus protocol fields.

Best Practices for Configuring the Modbus Inspector
If your network does not contain an enabled Modbus device, you should not enable the modbus inspector in
a network analysis policy that you apply to traffic.

Snort 3 Inspector Reference
123

Modbus Inspector Parameters
Modbus TCP port configuration

The binder inspector defines the Modbus TCP port configuration. For more information, see the Binder
Inspector Overview, on page 13.

Example:

[
{

"when": {
"role": "server",
"proto": "tcp",
"ports": "502"

},
"use": {

"type": "modbus"
}

},
{

"when": {
"role": "any",
"service:" "modbus"

},
"use": {

"type":"modbus"
}

}
]

The modbus inspector does not provide any parameters.Note

Modbus Inspector Rules
Enable the modbus inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 17: Modbus Inspector Rules

Rule MessageGID:SID

length in Modbus MBAP header does not match the length needed for the given
function

144:1

Modbus protocol ID is non-zero144:2

reserved Modbus function code in use144:3

Snort 3 Inspector Reference
124

Snort 3 Inspectors
Modbus Inspector Parameters

Modbus Inspector Intrusion Rule Options
You can use a modbus option alone or in combination with the content and byte_jump intrusion rule options.

modbus_data

Sets the data cursor to the beginning of the Modbus Data field.

Syntax: modbus_data;

Examples: modbus_data;

modbus_func

Verifies that the Modbus Function field matches the specified Modbus function code. You can set a positive
integer or string literal to represent a Modbus function code.

Type: string

Syntax: modbus_func: <function>;

Valid values:

Table 18: Modbus Function Code Values

StringCode

read_coils1

read_discrete_inputs2

read_holding_registers3

read_input_registers4

write_single_coil5

write_single_register6

read_exception_status7

diagnostics8

get_comm_event_counter11

get_comm_event_log12

write_multiple_coils15

write_multiple_registers16

report_slave_id17

read_file_record20

write_file_record21

Snort 3 Inspector Reference
125

Snort 3 Inspectors
Modbus Inspector Intrusion Rule Options

StringCode

mask_write_register22

read_write_multiple_registers23

read_fifo_queue24

encapsulated_interface_transport43

Examples:

modbus_func: read_coils;

modbus_func: 8;

modbus_unit

Verifies that the Modbus Unit ID in the message matches the specified unit ID. You can set a number to
represent the Modbus Unit ID.

Type: integer

Syntax: modbus_unit: <unit_id>;

Valid range: 0 to 255

Examples:

modbus_unit: 1;

Snort 3 Inspector Reference
126

Snort 3 Inspectors
Modbus Inspector Intrusion Rule Options

C H A P T E R 16
Normalizer Inspector

• Normalizer Inspector Overview, on page 127
• Normalizer Inspector Parameters, on page 128
• Normalizer Inspector Rules, on page 132
• Normalizer Inspector Intrusion Rule Options, on page 133

Normalizer Inspector Overview
Inspector (packet)Type

ContextUsage

NetworkInstance Type

NoneOther Inspectors Required

trueEnabled

The normalizer inspector detects and removes protocol anomalies in packets. The normalizer inspector can
minimize the chances of attackers creating packets to evade detection in inline deployments.

Before your send traffic from your network, you must deploy relevant configurations to managed devices
using routed, switched, or transparent interfaces, or inline interface pairs.

Note

You can specify the normalization of any combination of IPv4, IPv6, ICMPv4, ICMPv6, and TCP protocols
in packets. The normalizer inspector conducts per-packet normalizations and handles most normalizations.
The stream_tcp inspector handles TCP state-related packet and stream normalizations, including TCP payload
normalization.

Inline normalization takes place immediately after decoding and before processing by other inspectors.
Normalization proceeds from the inner to outer packet layers.

The normalizer inspector does not generate events. The normalizer inspector prepares packets for use by
other inspectors and in inline deployments. The inspector helps ensure that the packets the system processes
are the same as the packets received by the hosts on your network.

Snort 3 Inspector Reference
127

Normalizer Inspector Parameters
Locate the normalizer scope in your configuration to set the normalizer inspector parameters.

ip6

Clears the Reserved flag in IPv6 traffic.

Type: boolean

Valid values: true, false

Default value: false

icmp4

Clears the Reserved flag in ICMPv4 traffic.

Type: boolean

Valid values: true, false

Default value: false

icmp6

Clears the Reserved flag in ICMPv6 traffic.

Type: boolean

Valid values: true, false

Default value: false

ip4.base

Clears the single-bit Reserved subfield of the IPv4 Flags header field as well as parameter padding. Fixes
urgent pointer/flag issues. We recommend that you enable ip4.base.

Type: boolean

Valid values: true, false

Default value: false

ip4.df

Clears the single-bit Don’t Fragment subfield of the IPv4 Flags header field. Enable ip4.df to allow a
downstream router to fragment packets instead of dropping them. The ip4.df parameter can prevent evasions
which create packets to be dropped.

Type: boolean

Valid values: true, false

Default value: false

Snort 3 Inspector Reference
128

Snort 3 Inspectors
Normalizer Inspector Parameters

ip4.rf

Clears the Reserved bits on incoming packets.

Type: boolean

Valid values: true, false

Default value: false

ip4.tos

Clears the one byte Differentiated Services field, formerly known as Type of Service.

Type: boolean

Valid values: true, false

Default value: false

ip4.trim

Truncates packets with excess payload to the datagram length specified in the IP header plus the Layer 2 (for
example, Ethernet) header, but does not truncate below the minimum frame length.

Type: boolean

Valid values: true, false

Default value: false

tcp.base

Clears the single-bit Reserved subfield of the TCP header as well as option padding bytes. Fixes urgent pointer
or flag issues.

Type: boolean

Valid values: true, false

Default value: false

tcp.block

Specfies whether to drop packets during TCP normalization.

When enabled, Snort blocks anomalous TCP packets that, if normalized, would be invalid and likely would
be blocked by the receiving host. For example, Snort blocks any SYN packet transmitted subsequent to an
established session.

Snort drops any packet that matches any of the following TCP stream inspector rules, regardless of whether
the rules are enabled:

• 129:1

• 129:3

• 129:4

• 129:6

• 129:8

Snort 3 Inspector Reference
129

Snort 3 Inspectors
Normalizer Inspector Parameters

• 129:11

• 129:14 through 129:19

Type: boolean

Valid values: true, false

Default value: false

tcp.ecn

Enables per-packet or per-stream normalization of Explicit Congestion Notification (ECN) flags.

• Specify packet to clear ECN flags on a per-packet basis regardless of negotiation.

• Specify stream to clear ECN flags on a per-stream basis if ECN use was not negotiated. If you specify
stream, you must enable tcp.require_3whs in the TCP stream inspector for normalization to take place.

• Specify off to disable the tcp.ecn parameter.

Type: enum

Valid values: off, packet, stream

Default value: off

tcp.ips

Enables normalization of the TCP Data field to ensure consistency in retransmitted data. Any segment that
cannot be properly reassembled is dropped.

Type: boolean

Valid values: true, false

Default value: true

tcp.opts

Specifies whether to normalize specific TCP options which you allow in traffic. Snort does not normalize
options that you explicitly allow. Snort normalizes options that you do not explicitly allow.

Snort always allows the following TCP options because they are commonly used for optimal TCP performance:

• Maximum Segment Size (MSS)

• Window Scale

• Time Stamp TCP

Snort does not automatically allow other less commonly used options.

When tcp.opts is enabled, TCP traffic normalizations include the following:

• Sets all option bytes to No Operation (TCP Option 1), except for MSS, Window Scale, Time Stamp, and
any explicitly allowed options.

• Sets the Time Stamp octets to No Operation if Time Stamp is present but invalid, or valid but not
negotiated.

Snort 3 Inspector Reference
130

Snort 3 Inspectors
Normalizer Inspector Parameters

• Blocks the packet if Time Stamp is negotiated but not present

• Clears the Time Stamp Echo Reply (TSecr) option field if the Acknowledgment (ACK) control bit is not
set.

• Sets the MSS and Window Scale options to No Operation (TCP Option 1) if the SYN control bit is not
set.

Type: boolean

Valid values: true, false

Default value: false

tcp.pad

Clears any option padding bytes.

Type: boolean

Valid values: true, false

Default value: false

tcp.req_pay

Clears the TCP header Urgent Pointer field and the urgent (URG) control bit if there is no payload.

Type: boolean

Valid values: true, false

Default value: false

tcp.req_urg

Clears the 16-bit TCP header Urgent Pointer field if the TCP header urgent (URG) control bit is not set.

Type: boolean

Valid values: true, false

Default value: false

tcp.req_urp

Clears the TCP header urgent (URG) control bit if the TCP header Urgent Pointer field is not set.

Type: boolean

Valid values: true, false

Default value: false

tcp.resv

Clears the Reserved bits in the TCP header.

Type: boolean

Valid values: true, false

Snort 3 Inspector Reference
131

Snort 3 Inspectors
Normalizer Inspector Parameters

Default value: false

tcp.trim_mss

Trims the TCP Data field to the Maximum Segment Size (MSS) if the payload is longer than MSS.

Type: boolean

Valid values: true, false

Default value: false

tcp.trim_rst

Clears data from the RST packet.

Type: boolean

Valid values: true, false

Default value: false

tcp.trim_syn

Removes data in TCP synchronization (SYN) packets.

Type: boolean

Valid values: true, false

Default value: false

tcp.trim_win

Trims the TCP Data field to the size specified in the Window field.

Type: boolean

Valid values: true, false

Default value: false

tcp.urp

Sets the two-byte TCP header Urgent Pointer field to the payload length if the pointer is greater than the
payload length.

Type: boolean

Valid values: true, false

Default value: false

Normalizer Inspector Rules
The normalizer inspector does not have any associated rules.

Snort 3 Inspector Reference
132

Snort 3 Inspectors
Normalizer Inspector Rules

Normalizer Inspector Intrusion Rule Options
The normalizer inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
133

Snort 3 Inspectors
Normalizer Inspector Intrusion Rule Options

Snort 3 Inspector Reference
134

Snort 3 Inspectors
Normalizer Inspector Intrusion Rule Options

C H A P T E R 17
POP Inspector

• POP Inspector Overview, on page 135
• POP Inspector Parameters, on page 136
• POP Inspector Rules, on page 138
• POP Inspector Intrusion Rule Options, on page 138

POP Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcpOther Inspectors Required

trueEnabled

Post Office Protocol version 3 (POP3) enables email clients to retrieve messages from a remote POP3 server.
A POP3 server uses TCP port 110 for insecure sessions or TCP port 995 for POP over SSL/TLS.

The pop inspector detects POP traffic and analyzes POP commands and responses.

The pop inspector can identify the command, header, and body sections of POP messages, and extract and
decode multi-purpose internet mail extensions (MIME) attachments. The pop inspector processes MIME
attachments, including multiple attachments and large attachments that span multiple packets.

The pop inspector identifies and adds POP messages to the Snort allow list. When enabled, intrusion rules
generate events on anomalous POP traffic.

Snort 3 Inspector Reference
135

POP Inspector Parameters

Decoding, or extraction when the MIME email attachment does not require decoding, can include multiple
attachments and large attachments that span multiple packets.

The highest value is used when the values for the b_64_decode_depth, bitenc_decode_depth,
qp_decode_depth, or uu_decode_depth parameters are different in:

• the default network analysis policy

• any other custom network analysis policy invoked by network analysis rules in the same access control
policy

Note

POP service configuration

The binder inspector defines the POP service configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

[
{

"when": {
"service": "pop",
"role": any

},
"use": {

"type": "pop"
}

}
]

b_64_decode_depth

Specifies the maximum number of bytes to extract and decode from each Base64 encoded MIME email
attachment. You can specify an integer less than 65535, or specify 0 to disable decoding. Specify -1 to place
no limit on the number of bytes to decode.

You can enable rule 142:4 to generate events for this parameter, and in an inline deployment, drop offending
packets when decoding fails.

Type: integer

Valid range: -1 to 65535

Default value: -1

bitenc_decode_depth

Specifies the maximum number of bytes to extract from each non-encoded MIME email attachment. You can
specify an integer less than 65535, or specify 0 to disable the extraction of the non-encodedMIME attachment.
Specify -1 to place no limit on the number of bytes to extract. These attachment types include 7-bit, 8-bit,
binary, and various multipart content types such as plain text, JPEG and PNG images, and MP4 files.

Snort 3 Inspector Reference
136

Snort 3 Inspectors
POP Inspector Parameters

Type: integer

Valid range: -1 to 65535

Default value: -1

decompress_pdf

Specifies whether to decompress application/pdf (PDF) files in MIME attachments.

You can enable rule 142:8 to generate events for this parameter, and in an inline deployment, drop offending
packets.

Type: boolean

Valid values: true, false

Default value: false

decompress_swf

Specifies whether to decompress application/vnd.adobe.flash-movie (SWF) files in MIME attachments.

You can enable rule 142:8 to generate events for this parameter, and in an inline deployment, drop offending
packets.

Type: boolean

Valid values: true, false

Default value: false

decompress_vba

Specifies whether to decompress Microsoft Office Visual Basic for Applications macro files in MIME
attachments.

Type: boolean

Valid values: true, false

Default value: false

decompress_zip

Specifies whether to decompress application/zip (ZIP) files in MIME attachments.

You can enable rule 142:8 to generate events for this parameter, and in an inline deployment, drop offending
packets.

Type: boolean

Valid values: true, false

Default value: false

qp_decode_depth

Specifies the maximum number of bytes to extract and decode from each quoted-printable (QP) encoded
MIME email attachment. You can specify an integer less than 65535, or specify 0 to disable decoding. Specify
-1 to place no limit on the number of bytes to decode.

Snort 3 Inspector Reference
137

Snort 3 Inspectors
POP Inspector Parameters

You can enable rule 142:5 to generate events for this parameter, and in an inline deployment, drop offending
packets when decoding fails (due to incorrect encoding or corrupted data).

Type: integer

Valid range: -1 to 65535

Default value: -1

uu_decode_depth

Specifies the maximum number of bytes to extract and decode from each Unix-to-Unix encoded (uuencoded)
MIME email attachment. You can specify an integer less than 65535, or specify 0 to disable decoding. Specify
-1 to place no limit on the number of bytes to decode.

You can enable rule 142:7 to generate events for this parameter, and in an inline deployment, drop offending
packets when decoding fails (due to incorrect encoding or corrupted data).

Type: integer

Valid range: -1 to 65535

Default value: -1

POP Inspector Rules
Enable the pop inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 19: POP Inspector Rules

Rule MessageGID:SID

unknown POP3 command142:1

unknown POP3 response142:2

base64 decoding failed142:4

quoted-printable decoding failed142:5

Unix-to-Unix decoding failed142:7

file decompression failed142:8

POP Inspector Intrusion Rule Options
vba_data

Sets the detection cursor to the Microsoft Office Visual Basic for Applications macros buffer.

Syntax: vba_data;

Examples: vba_data;

Snort 3 Inspector Reference
138

Snort 3 Inspectors
POP Inspector Rules

C H A P T E R 18
Port Scan Inspector

• Port Scan Inspector Overview, on page 139
• Best Practices for Configuring the Port Scan Inspector, on page 141
• Port Scan Inspector Parameters, on page 142
• Port Scan Inspector Rules, on page 153
• Port Scan Inspector Intrusion Rule Options, on page 154

Port Scan Inspector Overview
Inspector (probe)Type

GlobalUsage

GlobalInstance Type

NoneOther Inspectors Required

falseEnabled

A port scan is a form of network reconnaissance that is often used by attackers as a prelude to an attack. In a
port scan, an attacker sends packets designed to probe for network protocols and services on a targeted host.
By examining the packets sent in response by a host, the attacker can determine which ports are open on the
host and, either directly or by inference, which application protocols are running on these ports.

By itself, a port scan is not evidence of an attack. Legitimate users on your network may employ similar port
scanning techniques used by attackers.

The port_scan inspector detects four types of portscan and monitors connection attempts on TCP, UDP,
ICMP, and IP protocols. By detecting patterns of activity, the port_scan inspector helps you determine which
port scans might be malicious.

Table 20: Portscan Protocol Types

DescriptionProtocol

Detects TCP probes such as SYN scans, ACK scans, TCP connect() scans, and scans
with unusual flag combinations such (Xmas tree, FIN, and NULL).

TCP

Detects UDP probes such as zero-byte UDP packets.UDP

Snort 3 Inspector Reference
139

DescriptionProtocol

Detects ICMP echo requests (pings).ICMP

Detects IP protocol scans. Instead of looking for open ports, Snort searches for IP
protocols which are supported on a target host.

IP

Port scans are generally divided into four types based on the number of targeted hosts, the number of scanning
hosts, and the number of ports that are scanned.

Table 21: Portscan Types

DescriptionType

A one-to-one port scan in which an attacker uses one or a few hosts to scan multiple
ports on a single target host.

One-to-one port scans are characterized by:

• a low number of scanning hosts

• a single host that is scanned

• a high number of ports scanned

A portscan detects TCP, UDP, and IP port scans.

Portscan

A one-to-many port sweep in which an attacker uses one or a few hosts to scan a
single port on multiple target hosts.

Port sweeps are characterized by:

• a low number of scanning hosts

• a high number of scanned hosts

• a low number of unique ports scanned

A portsweep detects TCP, UDP, ICMP, and IP port sweeps.

Portsweep

A one-to-one port scan in which the attacker mixes spoofed source IP addresses with
the actual scanning IP address.

Decoy port scans are characterized by:

• a high number of scanning hosts

• a low number of ports that are scanned only once

• a single (or a low number of) scanned hosts

The decoy port scan detects TCP, UDP, and IP protocol port scans.

Decoy Portscan

Snort 3 Inspector Reference
140

Snort 3 Inspectors
Port Scan Inspector Overview

DescriptionType

A many-to-one port scan in which multiple hosts query a single host for open ports.

Distributed port scans are characterized by:

• a high number of scanning hosts

• a high number of ports that are scanned only once

• a single (or a low number of) scanned hosts

The distributed portscan detects TCP, UDP, and IP protocol port scans.

Distributed Portscan

Port Scan Sensitivity Levels

The port_scan inspector provides three default scan sensitivity levels.

• default_low_port_scan

• default_med_port_scan

• default_high_port_scan

You can configure additional scan sensitivity levels with various filters:

• scans

• rejects

• nets

• ports

The port_scan inspector learns about a probe by gathering negative responses from the probed hosts. For
example, when a web client uses TCP to connect to a web server, the client can assume that the web server
listens on port 80. However, when an attacker probes a server, the attacker does not know in advance if the
server offers web services. When the port_scan inspector detects a negative response (ICMP unreachable or
TCP RST packet), it records the response as a potential portscan. The process is more difficult when the
targeted host is on the other side of a device such as a firewall or router that filters negative responses. In this
case, the port_scan inspector can generate filtered portscan events based on the sensitivity level that you
select.

Best Practices for Configuring the Port Scan Inspector
To optimize the detection of port scans, we recommend that you tune the port_scan inspector to match your
networks.

• Ensure that you carefully configure the watch_ip parameter. The watch_ip parameter helps the port_scan
inspector filter legitimate hosts that are very active on your network. Some of the most common examples
are NAT IPs, DNS cache servers, syslog servers, and nfs servers.

• Most of the false positives that the port_scan inspector may generate are of the filtered scan alert type.
The alert type may indicate that a host was overly active during a specific time period. If the host

Snort 3 Inspector Reference
141

Snort 3 Inspectors
Best Practices for Configuring the Port Scan Inspector

continually generates the filtered scan alert type, add the host to the ignore_scanners list or use a
lower scan sensitivity level.

• Make use of the Priority Count, Connection Count, IP Count, Port Count, IP range, and Port range to
determine false positives. The easiest way to determine false positives is through simple ratio estimations.
The following is a list of ratios to estimate and the associated values that indicate a legitimate scan as
opposed to a false positive.

• Connection Count / IP Count - This ratio indicates an estimated average of connections per IP. For
port scans, this ratio should be high. For port sweeps, this ratio should be low.

• Port Count / IP Count - This ratio indicates an estimated average of ports connected to per IP. For
port scans, this ratio should be high and indicates that the scanned host’s ports were connected to
by fewer IPs. For port sweeps, this ratio should be low, indicating that the scanning host connected
to few ports but on many hosts.

• Connection Count / Port Count - This ratio indicates an estimated average of connections per port.
For port scans, this ratio should be low. This indicates that each connection was to a different port.
For port sweeps, this ratio should be high. This indicates that there were many connections to the
same port.

The higher the priority count, the more likely it is a real port scan or port sweep (unless the host is
managed by a firewall).

• If you are unable to detect port scans, you can lower the scan sensitivity level. You get the best protection
with a higher scan sensitivity level. The low scan sensitivity level only generates alerts based on error
responses and does not catch filtered scans. The low scan sensitivity level error responses can indicate
a port scan, and the alerts generated by the low sensitivity level are highly accurate and require the least
tuning. Filtered or high sensitivity level scans are prone to false positives.

Port Scan Inspector Parameters
memcap

Specifies the maximum tracker memory in bytes.

Type: integer

Valid range: 1024 to 9,007,199,254,740,992 (maxSZ)

Default value: 10,485,760

protos

Specifies the protocols to monitor. Provide a string of protocol abbreviations. To specify multiple protocols,
separate each protocol abbreviation with a space.

Type: string

Valid values: tcp, udp, icmp, ip, all

Default value: all

Snort 3 Inspector Reference
142

Snort 3 Inspectors
Port Scan Inspector Parameters

scan_types

Specifies the types of port scan to examine. Provide a string of protocol abbreviations. To specify multiple
protocols, separate each protocol string with a space.

Type: string

Valid values: portscan, portsweep, decoy_portscan, distributed_portscan, all

Default value: all

watch_ip

Specifies a list of CIDR blocks and IPs with optional ports to watch.

If watch_ip is not defined, the port_scan inspector examines all network traffic.

Type: string

Valid values: CIDR or IP address, list of CIDR or IP addresses

Default value: None

alert_all

Specifies whether to alert on all events over the threshold within the established window. If alert_all is set
to false, the port_scan inspector only alerts on the first event over the threshold within the window.

Type: boolean

Valid values: true, false

Default value: false

include_midstream

Specifies whether to list CIDRs with optional ports.

Type: boolean

Valid values: true, false

Default value: false

tcp_decoy.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

tcp_decoy.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Snort 3 Inspector Reference
143

Snort 3 Inspectors
Port Scan Inspector Parameters

Default value: 25

tcp_decoy.scan

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

tcp_decoy.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

tcp_dist.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

tcp_dist.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

tcp_dist.scans

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

tcp_dist.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

Snort 3 Inspector Reference
144

Snort 3 Inspectors
Port Scan Inspector Parameters

tcp_ports.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

tcp_ports.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

tcp_ports.scans

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

tcp_ports.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

tcp_sweep.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

tcp_sweep.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

Snort 3 Inspector Reference
145

Snort 3 Inspectors
Port Scan Inspector Parameters

tcp_sweep.scans

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

tcp_sweep.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

udp_decoy.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

udp_decoy.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

udp_decoy.scans

Specifies the of number scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

udp_decoy.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

Snort 3 Inspector Reference
146

Snort 3 Inspectors
Port Scan Inspector Parameters

udp_dist.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

udp_dist.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

udp_dist.scans

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

udp_dist.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

udp_ports.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

udp_ports.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

Snort 3 Inspector Reference
147

Snort 3 Inspectors
Port Scan Inspector Parameters

udp_ports.scans

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

udp_ports.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

udp_sweep.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

udp_sweep.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

udp_sweep.scans

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

udp_sweep.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

Snort 3 Inspector Reference
148

Snort 3 Inspectors
Port Scan Inspector Parameters

ip_decoy.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

ip_decoy.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

ip_decoy.scans

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

ip_decoy.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

ip_dist.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

ip_dist.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

Snort 3 Inspector Reference
149

Snort 3 Inspectors
Port Scan Inspector Parameters

ip_dist.scans

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

ip_dist.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

ip_sweep.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

ip_sweep.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

ip_sweep.scans

Specifies the of number scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

ip_sweep.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

Snort 3 Inspector Reference
150

Snort 3 Inspectors
Port Scan Inspector Parameters

ip_proto.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

ip_proto.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

ip_proto.scans

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

ip_proto.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

icmp_sweep.rejects

Specifies the number of scan attempts with negative responses.

Type: integer

Valid range: 0 to 65535

Default value: 15

icmp_sweep.ports

Specifies the number of times the port (or protocol) changed from a prior attempt.

Type: integer

Valid range: 0 to 65535

Default value: 25

Snort 3 Inspector Reference
151

Snort 3 Inspectors
Port Scan Inspector Parameters

icmp_sweep.scans

Specifies the number of scan attempts.

Type: integer

Valid range: 0 to 65535

Default value: 100

icmp_sweep.nets

Specifies the number of times the address changed from prior attempts.

Type: integer

Valid range: 0 to 65535

Default value: 25

tcp_window

Specifies the detection interval for transmission control protocol (TCP) scans.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 0

udp_window

Specifies the detection interval for user datagram protocol (UDP) scans.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 0

ip_window

Specifies the detection interval for internet protocol (IP) scans.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 0

icmp_window

Specifies the detection interval for internet control message protocol (ICMP) scans.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 0

Snort 3 Inspector Reference
152

Snort 3 Inspectors
Port Scan Inspector Parameters

Port Scan Inspector Rules
Enable the port_scan inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 22: Port Scan Inspector Rules

Rule MessageGID:SID

TCP portscan122:1

TCP decoy portscan122:2

TCP portsweep122:3

TCP distributed portscan122:4

TCP filtered portscan122:5

TCP filtered decoy portscan122:6

TCP filtered portsweep122:7

TCP filtered distributed portscan122:8

IP protocol scan122:9

IP decoy protocol scan122:10

IP protocol sweep122:11

IP distributed protocol scan122:12

IP filtered protocol scan122:13

IP filtered decoy protocol scan122:14

IP filtered protocol sweep122:15

IP filtered distributed protocol scan122:16

UDP portscan122:17

UDP decoy portscan122:18

UDP portsweep122:19

UDP distributed portscan122:20

UDP filtered portscan122:21

UDP filtered decoy portscan122:22

UDP filtered portsweep122:23

UDP filtered distributed portscan122:24

Snort 3 Inspector Reference
153

Snort 3 Inspectors
Port Scan Inspector Rules

Rule MessageGID:SID

ICMP sweep122:25

ICMP filtered sweep122:26

open port122:27

Port Scan Inspector Intrusion Rule Options
The port_scan inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
154

Snort 3 Inspectors
Port Scan Inspector Intrusion Rule Options

C H A P T E R 19
Rate Filter

• Rate Filter Overview, on page 155
• Rate Filter Parameters, on page 156
• Rate Filter Rules, on page 158
• Rate Filter Intrusion Rule Options, on page 158

Rate Filter Overview
Module (basic)Type

ContextUsage

SingletonInstance Type

falseEnabled

Rate-based attacks attempt to overwhelm a network or host by sending excessive traffic to a network or host,
causing it to slow down or deny legitimate requests. You can use rate-based prevention to change the action
of an intrusion rule in response to excessive matches on that rule.

The rate_filter detects when too many matches for a rule occur within a given interval. You can use this
feature on managed devices deployed inline to block rate-based attacks for a specified time, then revert to a
rule state where rule matches only generate events and do not drop traffic.

You can configure the rate_filter to respond to any intrusion rule, but the rule you specify must be enabled
for rate_filter to detect an attack and respond. For example, to establish a defense against a DDOS/SYN
flood attack, enable rule 135:1 (TCP SYN received), and configure the rate_filter to alert on excessive
triggers of rule 135:1.

Rate-based attack prevention identifies abnormal traffic patterns and attempts to minimize the impact of that
traffic on legitimate requests. You can identify excessive rule matches in traffic going to a particular destination
IP address or addresses or coming from a particular source IP address or addresses. You can also respond to
excessive matches for a particular rule across all detected traffic.

The following diagram shows an example where an attacker is attempting to access a host. Repeated attempts
to find a password trigger a rule which has rate-based attack prevention configured. The rate-based settings
change the rule attribute to Drop and Generate Events after rule matches occur five times in a 10-second span.
The new rule attribute times out after 15 seconds.

Snort 3 Inspector Reference
155

After the timeout, note that packets are still dropped in the rate-based sampling period that follows. If the
sampled rate is above the threshold in the current or previous sampling period, the new action continues. The
new action reverts to Generate Events only after a sampling period completes where the sampled rate was
below the threshold rate.

You can define multiple rate-based filters on the same rule as well as on different rules. In an intrusion policy
with multiple rate-based filters defined, the first filter listed in the policy has the highest priority. When two
rate-based filter actions conflict, the action of the first rate-based filter is carried out.

The configuration parameters you set for the rate_filter apply to all traffic throughout your deployment.
However, the system maintains a separate counter for the number of matches within the sampling period for
each unique connection your systemmonitors. The system also applies changes to an action on a per-connection
basis.

Rate-based actions cannot enable disabled rules or drop traffic that matches disabled rules.Note

Rate Filter Parameters
rate_filter[]

Specifies an array of rate_filter information. Each rate_filter includes a set of fields that can alter a rule
action if the traffic contains a rate-based attack.

Type: array (object)

Example:

{
"rate_filter": {

"data": [
{

"apply_to": "[10.1.2.100, 10.1.2.101]",
"count": 5,
"gid": 135,
"new_action": "alert",
"seconds": 1,

Snort 3 Inspector Reference
156

Snort 3 Inspectors
Rate Filter Parameters

"sid": 1,
"timeout": 5,
"track": "by_src"

}
],
"enabled": true,
"type": "singleton"

}
}

rate_filter[].gid

Specifies a generator ID (GID) which identifies the rule to match.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 1

rate_filter[].sid

Specifies a signature ID (SID) which identifies the rule to match.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 1

rate_filter[].track

Specifies a filter to match source or destination addresses.

Type: enum

Valid values:

• by_src: Filter only traffic that matches the rule specified by rate_filter[].gid and rate_filter[].sid,
and where source address matches rate_filter[].apply_to.

• by_dst: Filter only traffic that matches the rule specified by gid and sid, and where destination address
matches rate_filter[].apply_to.

• by_rule: Filter all traffic that matches the rule specified by rate_filter[].gid and rate_filter[].sid.

Default value: by_src

rate_filter[].count

Specifies the number of rule matches to allow in the sampling period (rate_filter[].seconds) before
applying the alternative action (rate_filter[].new_action).

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 1

Snort 3 Inspector Reference
157

Snort 3 Inspectors
Rate Filter Parameters

rate_filter[].seconds

Specifies the number of seconds in the sampling period to match traffic. rate_filter[].seconds represents
the amount of time to elapse before resetting the internal counter of matches to zero.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 1

rate_filter[].new_action

Specifies the action to take in response to matches in traffic that exceed the limitation specified by
rate_filter[].seconds and rate_filter[].count.

Type: string

Valid values: One of the following strings: alert, block, drop, log, pass, react, reject, rewrite.

Default value: alert

rate_filter[].timeout

Specifies the number of seconds to perform the action specified by rate_filter[].new_action in response
to matching traffic.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 0

rate_filter[].apply_to

Specifies the list of network addresses to match against traffic source or destination address depending on the
value of rate_filter[].track.

Type: string

Valid values: A valid IPv4 address, or an IPv4 address block in CIDR format.

Default value: None

Rate Filter Rules
The rate_filter does not have any associated rules.

You can confgure the rate_filter to respond to any intrusion rules. Enable the rate_filter for a rule to
detect an attack and respond.

Rate Filter Intrusion Rule Options
The rate_filter does not have any intrusion rule options.

Snort 3 Inspector Reference
158

Snort 3 Inspectors
Rate Filter Rules

C H A P T E R 20
S7CommPlus Inspector

• S7CommPlus Inspector Overview, on page 159
• Best Practices for Configuring the S7CommPlus Inspector, on page 159
• S7CommPlus Inspector Parameters, on page 160
• S7CommPlus Inspector Rules, on page 160
• S7CommPlus Inspector Intrusion Rule Options, on page 161

S7CommPlus Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcpOther Inspectors Required

falseEnabled

S7CommPlus is a proprietary protocol developed by Siemens. S7CommPlus enables communication between
programmable logic controllers of the Siemens S7 family of products.

The s7commplus inspector detects and analyzes S7CommPlus traffic. You can set intrusion rule options to
alert on the specified S7CommPlus function and operation code header fields, and detect attacks in S7CommPlus
traffic.

Best Practices for Configuring the S7CommPlus Inspector
If your network does not contain an enabled S7CommPlus device, you should not enable the s7commplus
inspector in a network analysis policy that you apply to traffic.

Snort 3 Inspector Reference
159

S7CommPlus Inspector Parameters
S7CommPlus TCP port configuration

The binder inspector defines the S7CommPlus TCP port configuration. For more information, see the Binder
Inspector Overview, on page 13.

Example:

[
{

"when": {
"role": "server",
"proto": "tcp",
"ports": "102"

},
"use": {

"type": "s7commplus"
}

},
{

"when": {
"role": "any",
"service": "s7commplus"

},
"use": {

"type": "s7commplus"
}

}
]

The s7commplus inspector does not provide any parameters.Note

S7CommPlus Inspector Rules
Enable the s7commplus inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 23: S7CommPlus Inspector Rules

Rule MessageGID:SID

length in S7commplus MBAP header does not match the length needed for the given
S7commplus function

149:1

S7commplus protocol ID is non-zero149:2

reserved S7commplus function code in use149:3

Snort 3 Inspector Reference
160

Snort 3 Inspectors
S7CommPlus Inspector Parameters

S7CommPlus Inspector Intrusion Rule Options
You can use the s7commplus keywords alone or in combination to create custom intrusion rules that identify
attacks against traffic detected by the s7commplus inspector. For configurable keywords, specify a single
known value or a single integer within the allowed range.

Note the following:

• Multiple s7commplus keywords in the same rule are AND-ed.

• Using multiple s7commplus_func or s7commplus_opcode keywords in the same rule negates the rule.
The negated rule cannot match traffic. To search for multiple values with these keywords, create multiple
rules.

s7commplus_content

Use the s7commplus_content keyword to position the detection cursor to the beginning of the S7CommPlus
packet payload. We recommend that you set this keyword before you use a content or protected_content
keyword in an S7CommPlus intrusion rule.

Syntax: s7commplus_content;

Examples: s7commplus_content;

s7commplus_func

Use the s7commplus_func keyword to match against one of the specified S7CommPlus header parameters.
You can specify the S7CommPlus parameter name or the corresponding hexadecimal code.

Type: string

Syntax: s7commplus_func: <header_parameter>;

Valid values:

CodeName

0x04BBexplore

0x04CAcreateobject

0x04D4deleteobject

0x04F2setvariable

0x0524getlink

0x0542setmultivar

0x054Cgetmultivar

0x0556beginsequence

0x0560endsequence

0x056Binvoke

Snort 3 Inspector Reference
161

Snort 3 Inspectors
S7CommPlus Inspector Intrusion Rule Options

CodeName

0x0586getvarsubstr

Note that numeric
expressions allow for
additional values.

0x0 through 0xFF

Examples: s7commplus_func: createobject;

s7commplus_opcode

Use the s7commplus_opcode keyword to match against one of the specified S7CommPlus header parameters.
You can specify the S7CommPlus parameter name or the corresponding hexadecimal code.

Type: string

Syntax: s7commplus_opcode: <header_parameter>

Valid values:

CodeName

0x31request

0x32response

0x33notification

0x02response2

Note that numeric
expressions allow for
additional values.

0x0 through 0xFF

Examples: s7commplus_opcode: 0x31;

Snort 3 Inspector Reference
162

Snort 3 Inspectors
S7CommPlus Inspector Intrusion Rule Options

C H A P T E R 21
SIP Inspector

• SIP Inspector Overview, on page 163
• SIP Inspector Parameters, on page 164
• SIP Inspector Rules, on page 167
• SIP Inspector Intrusion Rule Options, on page 168

SIP Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_udpOther Inspectors Required

trueEnabled

The Session Initiation Protocol (SIP) manages the creation, modification, and teardown of real-time call
sessions that include one or more participants. The applications that SIP can control include: internet telephony,
multimedia conferencing, instant messaging, online gaming, and file transfer. The SIP protocol is a text-based,
request and response protocol.

A SIP request includes a method field that identifies the purpose of the request, and a Request-URI which
specifies where to send the request. A status code in each SIP response indicates the outcome of the requested
action. The SIP protocol uses TCP (port 5060) or UDP (port 5061).

After SIP creates a call session, SIP can transmit audio and video streams over the real-time transport protocol
(RTP). The SIP message body embeds the data-channel parameter negotiation, session announcement, and
session invitation in the Session Description Protocol (SDP) format.

The sip inspector detects and analyzes SIP messages in network traffic. The sip inspector extracts the SIP
header and message body and passes any data in the SIP message body to the detection engine.

The sip inspector detects anomalies and known vulnerabilities in SIP traffic, including disordered and invalid
call sequences.

Snort 3 Inspector Reference
163

• The sip inspector does not decode RTP messages. The sip inspector identifies the RTP channel based
on the port defined in the SDP data.

• UDP typically carries media sessions supported by SIP. The sip inspector obtains session tracking
information from the decoded UDP stream.

• SIP rule options allow you to position the detection cursor to the SIP packet header or message body and
to limit detection to packets for specific SIP methods or status codes.

Note

SIP Inspector Parameters
SIP service configuration

The binder inspector defines the SIP service configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

[
{

"when": {
"role": "any",
"service": "sip"

},
"use": {

"type": "sip"
}

}
]

ignore_call_channel

Specifies whether to inspect audio/video data channel traffic. When enabled, the sip inspector decodes all
non-data SIP channel traffic and ignores audio/video SIP data channel traffic.

Type: boolean

Valid values: true, false

Default value: false

max_call_id_len

Specifies the maximum number of bytes to allow in the Call-ID header field. The Call-ID field uniquely
identifies the SIP session in requests and responses. The sip inspector does not generate an alert when the
max_call_id_len is 0.

You can enable rule 140:5 to generate events, and in an inline deployment, drop offending packets. The sip
inspector generates an event when the Call-ID header length is greater than the value of max_call_id_len.

Type: integer

Valid range: 0 to 65535

Snort 3 Inspector Reference
164

Snort 3 Inspectors
SIP Inspector Parameters

Default value: 256

max_contact_len

Specifies the maximum number of bytes to allow in the Contact header field. The Contact field provides a
URI that specifies the location to contact with subsequent messages. The sip inspector does not generate an
alert when the value is 0.

You can enable rule 140:15 to generate events, and in an inline deployment, drop offending packets. The sip
inspector generates an event when the Contact header field length is greater than the value of max_contact_len.

Type: integer

Valid range: 0 to 65535

Default value: 256

max_content_len

Specifies the maximum number of bytes to allow in the content of the message body. The sip inspector does
not generate an alert when the value is 0.

You can enable rule 140:16 to generate events, and in an inline deployment, drop offending packets. The sip
inspector generates an event when the content length is greater than the value of max_content_len.

Type: integer

Valid range: 0 to 65535

Default value: 1024

max_dialogs

Specifies the maximum number of dialogs allowed within a stream session. If the number of dialogs is more
than the set limit, the sip inspector drops the oldest dialogs until the number of dialogs does not exceed the
maximum number specified.

You can enable rule 140:27 to generate events, and in an inline deployment, drop offending packets.

Type: integer

Valid range: 1 to 4,294,967,295 (max32)

Default value: 4

max_from_len

Specifies the maximum number of bytes to allow in the From header field. The From field identifies the sender
of the message. The sip inspector does not generate an alert when the value is 0.

You can enable rule 140:9 to generate events, and in an inline deployment, drop offending packets. The sip
inspector generates an event when the From field length is greater than the value of max_from_len.

Type: integer

Valid range: 0 to 65535

Default value: 256

Snort 3 Inspector Reference
165

Snort 3 Inspectors
SIP Inspector Parameters

max_request_name_len

Specifies the maximum number of bytes to allow in the request name. The SIP request name refers to the
name of the method specified in the SIP CSeq transaction identifier. The sip inspector does not generate an
alert when the value is 0.

You can enable rule 140:7 to generate events, and in an inline deployment, drop offending packets. The sip
inspector generates an event when the request name length is greater than the value of max_request_name_len.

Type: integer

Valid range: 0 to 65535

Default value: 20

max_requestName_len

The max_requestName_len parameter is deprecated. Use the max_request_name_len parameter instead.

max_to_len

Specifies the maximum number of bytes to allow in the To header field. The To field identifies the recipient
of the message. The sip inspector does not generate an alert when the value is 0.

You can enable rule 140:11 to generate events, and in an inline deployment, drop offending packets. The sip
inspector generates an event when the To field length is greater than the value of max_to_len.

Type: integer

Valid range: 0 to 65535

Default value: 256

max_uri_len

Specifies the maximum number of bytes to allow in the SIP Request-URI. The Request-URI indicates the
destination path to the requested resource. The sip inspector does not generate an alert when the value is 0.

You can enable rule 140:3 to generate events, and in an inline deployment, drop offending packets. The sip
inspector generates an event when the Request-URI field length is greater than the value of max_uri_len.

Type: integer

Valid range: 0 to 65535

Default value: 256

max_via_len

Specifies the maximum number of bytes to allow in the Via header field. The Via field identifies the transport
to use in the request and the location of the recipient. The sip inspector does not generate an alert when the
value is 0.

You can enable rule 140:13 to generate events, and in an inline deployment, drop offending packets. The sip
inspector generates an event when the Via field length is greater than the value of max_via_len.

Type: integer

Valid range: 0 to 65535

Default value: 1024

Snort 3 Inspector Reference
166

Snort 3 Inspectors
SIP Inspector Parameters

methods

Specifies a list of SIPmethods to detect. Method names are case-insensitive. Use a comma or space to separate
method names in the list. Amethod name can only include alphabetic characters, numbers, and the underscore
character.

Type: string

Valid values: ack, benotify, bye, cancel, do, info, invite, join, message, notify, options, prack, publish,
quath, refer, register, service, sprack, subscribe, unsubscribe, update

Default value: invite cancel ack bye register options

SIP Inspector Rules
Enable the sip inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 24: SIP Inspector Rules

Rule MessageGID:SID

empty request URI140:2

URI is too long140:3

empty call-Id140:4

Call-Id is too long140:5

CSeq number is too large or negative140:6

request name in CSeq is too long140:7

empty From header140:8

From header is too long140:9

empty To header140:10

To header is too long140:11

empty Via header140:12

Via header is too long140:13

empty Contact140:14

contact is too long140:15

content length is too large or negative140:16

multiple SIP messages in a packet140:17

content length mismatch140:18

request name is invalid140:19

Snort 3 Inspector Reference
167

Snort 3 Inspectors
SIP Inspector Rules

Rule MessageGID:SID

Invite replay attack140:20

illegal session information modification140:21

response status code is not a 3 digit number140:22

empty Content-type header140:23

SIP version is invalid140:24

mismatch in METHOD of request and the CSEQ header140:25

method is unknown140:26

maximum dialogs within a session reached140:27

SIP Inspector Intrusion Rule Options
sip_method

A SIP request method identifies the purpose of the request. Use the sip_method keyword to match the method
in a SIP request. Method names are case-insensitive. Separate multiple method names with a comma.

Type: string

Syntax: sip_method: <methods>;

Valid values: ack, benotify, bye, cancel, do, info, invite, join, message, notify, options, prack, publish,
quath, refer, register, service, sprack, subscribe, unsubscribe, update

Examples: sip_method: "ack,service,info,bye";

sip_stat_code

A SIP response includes a three-digit status code. The SIP status code indicates the outcome of the requested
action. Use the sip_stat_code keyword to match a SIP response with the specified status codes.

You can specify a one-digit number that represents the first digit of a three-digit status code, a three-digit
number, or a comma-separated list of numbers using either number combination. A list matches if any single
number in the list matches the code in the SIP response.

Type: integer

Syntax: sip_stat_code: <codes>;

Valid ranges:

• 1 to 9

• 100 to 999

Examples: sip_stat_code: "1";

Snort 3 Inspector Reference
168

Snort 3 Inspectors
SIP Inspector Intrusion Rule Options

Table 25: SIP Parameter Values and Status Codes

DescriptionDetected Status CodesParameter Value

Set a specific status code.189189

Set a single digit.100 - 1991

Set a comma-separated list of three-digit
or single digit numbers.

222; 300 - 399222, 3

sip_header

Use the sip_header keyword to position the detection cursor to the beginning of the extracted SIP header
buffer. Restricts inspection to the header fields.

Syntax: sip_header;

Examples: sip_header;

sip_body

Use the sip_body keyword to position the detection cursor to the beginning of the extracted SIP message
body. Restricts inspection to the message body.

Syntax: sip_body;

Examples: sip_body;

The sip inspector extracts the entire message body andmakes it available to the rules engine. The rules engine
is not limited to searching for session description protocol (SDP) content.

Note

Snort 3 Inspector Reference
169

Snort 3 Inspectors
SIP Inspector Intrusion Rule Options

Snort 3 Inspector Reference
170

Snort 3 Inspectors
SIP Inspector Intrusion Rule Options

C H A P T E R 22
SMTP Inspector

• SMTP Inspector Overview, on page 171
• Best Practices for Configuring the SMTP Inspector, on page 172
• SMTP Inspector Parameters, on page 172
• SMTP Inspector Rules, on page 180
• SMTP Inspector Intrusion Rule Options, on page 181

SMTP Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcpOther Inspectors Required

trueEnabled

Simple Mail Transfer Protcocol (SMTP) enables a mail client to send messages to a mail server. SMTP issues
commands to deliver a message to a recipient. An SMTP server uses TCP port 25 for insecure sessions or
TCP port 587 for SMTP over SSL/TLS.

The smtp inspector detects SMTP traffic and analyzes SMTP commands and responses.

The smtp inspector identifies the command, header, and body sections of SMTP messages, and extracts and
decodes multi-purpose internet mail extensions (MIME) attachments.MIME attachments may includemultiple
attachments and large attachments that span multiple packets.

The smtp inspector identifies and adds SMTP messages to the Snort allow list. When enabled, intrusion rules
generate events on anomalous SMTP traffic.

You can configure the smtp inspector to:

• Log sender email ID, recipient email ID, email headers, and attachment filenames along with all generated
events for the session.

• Normalize SMTP command lines by removing extraneous space characters. The smtp inspector normalizes
the space (ASCII 0x20) or tab (ASCII 0x09) characters.

Snort 3 Inspector Reference
171

• Ignore TLS-encrypted traffic to improve performance.

• Ignore plain-text mail data to improve performance.

Best Practices for Configuring the SMTP Inspector
We recommend that you follow the guidelines from RFC 2821 to configure the smtp inspector's core
configuration parameters:

• max_command_line_len: 512 characters

• max_header_line_len: 1024 characters

• max_response_line_len: 512 characters

SMTP Inspector Parameters
SMTP service configuration

The binder inspector defines the SMTP service configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

[
{

"when": {
"service": "smtp",
"role": any

},
"use": {

"type": "smtp"
}

}
]

alt_max_command_line_len[]

Specifies an array of SMTP command and an alternate maximum line length for the command. The alternate
maximum line length overrides the value of the max_command_line_len for the SMTP command. You can
enable rule 124:4 to generate events for this parameter.

Type: array

Example:

{
"alt_max_command_line_len": [

{
"command": "AUTH",
"length": 240

}
]

}

Snort 3 Inspector Reference
172

Snort 3 Inspectors
Best Practices for Configuring the SMTP Inspector

alt_max_command_line_len[].command

Specifies a command string.

Type: string

Valid values: SMTP command

Default value: See Table 26: SMTP Commands and Default Alternate Command Lengths.

alt_max_command_line_len[].length

Specifies an alternate maximum command line length. Specify 0 to disable the detection of the command line
length for a command.

Type: integer

Valid range:0 to 4,294,967,295 (max32)

Default value: See Table 26: SMTP Commands and Default Alternate Command Lengths.

Table 26: SMTP Commands and Default Alternate Command Lengths

LengthCommand

255ATRN

246AUTH

255BDAT

246DATA

255DEBUG

500EHLO

255EMAL

255ESAM

255ESND

255ESOM

500ETRN

255EVFY

255EXPN

500HELO

500HELP

255IDENT

260MAIL

Snort 3 Inspector Reference
173

Snort 3 Inspectors
SMTP Inspector Parameters

LengthCommand

255NOOP

246ONEX

246QUEU

246QUIT

300RCPT

255RSET

246SAML

246SEND

255SIZE

246SOML

246STARTTLS

246TICK

246TIME

246TURN

246TURNME

246VERB

255VRFY

246XADR

246XAUTH

246XCIR

246XEXCH50

246X-EXPS

246XGEN

246XLICENSE

246X-LINK2STATE

246XQUE

246XSTA

246XTRN

Snort 3 Inspector Reference
174

Snort 3 Inspectors
SMTP Inspector Parameters

LengthCommand

246XUSR

auth_cmds

Specifies a list of SMTP commands that initiate the authentication exchange. Separate multiple SMTP
commands with a space.

Type: string

Valid values: SMTP authentication exchange initiation commands

Default value: AUTH XAUTH X-EXPS

b64_decode_depth

Specifies the maximum number of bytes to extract and decode from each Base64 encoded MIME email
attachment. You can specify an integer less than 65535, or specify 0 to disable decoding. Specify -1 to place
no limit on the number of bytes to decode.

You can enable rule 124:10 to generate events for this parameter, and in an inline deployment, drop offending
packets when decoding fails.

Type: integer

Valid range: -1 to 65535

Default value: -1

binary_data_cmds

Specifies a list of SMTP commands that initiate sending data and use a length value (in octets) after the
command to indicate the amount of data to be sent. Separate multiple SMTP commands with a space.

Type: string

Valid values: Valid SMTP data send initiation commands that use a data length argument

Default value: BDATA XEXCH50

bitenc_decode_depth

Specifies the maximum number of bytes to extract from each non-encoded MIME email attachment. You can
specify an integer less than 65535, or specify 0 to disable the extraction of the non-encodedMIME attachment.
Specify -1 to place no limit on the number of bytes to extract. These attachment types include 7-bit, 8-bit,
binary, and various multipart content types such as plain text, JPEG and PNG images, and MP4 files.

Type: integer

Valid range: -1 to 65535

Default value: -1

data_cmds

Specifies a list of SMTP commands that initiate sending data and use an end of data delimiter
(<CRLF>.<CRLF>).

Snort 3 Inspector Reference
175

Snort 3 Inspectors
SMTP Inspector Parameters

Type: string

Valid values: SMTP data send initiation command that uses an end of data delimiter.

Default value: DATA

decompress_pdf

Specifies whether to decompress application/pdf (PDF) files in MIME attachments.

Type: boolean

Valid values: true, false

Default value: false

decompress_swf

Specifies whether to decompress application/vnd.adobe.flash-movie (SWF) files in MIME attachments.

Type: boolean

Valid values: true, false

Default value: false

decompress_vba

Specifies whether to decompress Microsoft Office Visual Basic for Applications macro files in MIME
attachments.

Type: boolean

Valid values: true, false

Default value: false

decompress_zip

Specifies whether to decompress application/zip (ZIP) files in MIME attachments.

Type: boolean

Valid values: true, false

Default value: false

email_hdrs_log_depth

Specifies the number of bytes of the email header to extract from the SMTP data. Specify 0 to disable extraction
of the email header.

Type: integer

Valid range: 0 to 20480

Default value: 1464

ignore_data

Specifies whether to decode the email data section (except for MIME mail headers).

Snort 3 Inspector Reference
176

Snort 3 Inspectors
SMTP Inspector Parameters

Type: boolean

Valid values: true, false

Default value: false

ignore_tls_data

Specifies whether to decode TLS-encrypted data.

Type: boolean

Valid values: true, false

Default value: false

log_email_hdrs

Specifies whether to decode and log the SMTP email header and all generated events for the session.

Type: boolean

Valid values: true, false

Default value: false

log_filename

Specifies whether to decode and log theMIME attachment filenames extracted from the Content-Disposition
header within the MIME body, and all generated events for the session. If the message contains multiple
MIME attachments, the SMTP inspector logs the filenames separated by a comma. The SMTP inspector logs
no more than 1024 bytes.

Type: boolean

Valid values: true, false

Default value: false

log_mailfrom

Specifies whether to decode and log the sender’s email address extracted from the SMTP MAIL FROM command,
and all generated events for the session. If the message contains multiple senders, the SMTP inspector logs
the senders separated by a comma. The SMTP inspector logs no more than 1024 bytes.

Type: boolean

Valid values: true, false

Default value: false

log_rcptto

Specifies whether to decode and log the recipient email addresses from the SMTP RCPT TO command, and
all generated events for the session. If the message contains multiple recipients, the SMTP inspector logs the
recipients separated by a comma. The SMTP inspector logs no more than 1024 bytes.

Type: boolean

Valid values: true, false

Snort 3 Inspector Reference
177

Snort 3 Inspectors
SMTP Inspector Parameters

Default value: false

max_auth_command_line_len

Specifies the maximum number of bytes accepted for the SMTP authentication command line.

You can enable rule 124:15 to generate events, and in an inline deployment, drop offending packets. Specify
0 to disable alerts on SMTP AUTH commands, or omit max_auth_command_line_len parameter from your
Snort configuration.

Type: integer

Valid range: 0 to 65535

Default value: 1000

max_command_line_len

Specifies the maximum number of bytes accepted for the SMTP command line.

RFC 2821, the Network Working Group specification on SMTP, recommends a maximum command line
length of 512 bytes. Specify 0 to disable alerts on SMTP command line length, or omit the
max_command_line_len parameter from your Snort configuration.

You can enable rule 124:1 to generate events, and in an inline deployment, drop offending packets.

Type: integer

Valid range: 0 to 65535

Default value: 512

max_header_line_len

Specifies the maximum number of bytes accepted for the SMTP data header line.

RFC 2821, the Network Working Group specification on SMTP, recommends a maximum data header line
length of 1024 bytes. Specify 0 to disable alerts on SMTP data header line length, or omit the
max_header_line_len parameter from your Snort configuration.

You can enable rules 124:2 and 124:7 to generate events, and in an inline deployment, drop offending packets.

Type: integer

Valid range: 0 to 65535

Default value: 1000

max_response_line_len

Specifies the maximum number of bytes accepted for the SMTP response line.

RFC 2821, the Network Working Group specification on SMTP, recommends a maximum response line
length of 512 bytes. Specify 0 to disable alerts on SMTP response line length, or omit the
max_response_line_len parameter from your Snort configuration.

You can enable rules 124:3 to generate events, and in an inline deployment, drop offending packets.

Type: integer

Valid range: 0 to 65535

Snort 3 Inspector Reference
178

Snort 3 Inspectors
SMTP Inspector Parameters

Default value: 512

normalize

Specifies whether to normalize all commands, no commands, or a list of commands. You can specify the list
of commands in the normalize_cmds parameter. The inspector checks for more than one space (ASCII 0x20)
or tab (ASCII 0x09) character after a command.

Type: enum

Valid values:

• none

• cmds

• all

Default value: none

normalize_cmds

Specifies a list of SMTP commands to normalize. Separate multiple SMTP commands with a space.

Type: string

Valid values: SMTP commands

Default value: None

qp_decode_depth

Specifies the maximum number of bytes to extract and decode from each quoted-printable (QP) encoded
MIME email attachment. You can specify an integer less than 65535, or specify 0 to disable decoding. Specify
-1 to place no limit on the number of bytes to decode.

You can enable rule 124:11 to generate events, and in an inline deployment, drop offending packets.

Type: integer

Valid range: -1 to 65535

Default value: -1

uu_decode_depth

Specifies the maximum number of bytes to extract and decode from each Unix-to-Unix encoded (uuencoded)
MIME email attachment. You can specify an integer less than 65535, or specify 0 to disable decoding. Specify
-1 to place no limit on the number of bytes to decode.

You can enable rule 124:13 to generate events for this parameter, and in an inline deployment, drop offending
packets when decoding fails (due to incorrect encoding or corrupted data, for instance).

Type: integer

Valid range: -1 to 65535

Default value: -1

Snort 3 Inspector Reference
179

Snort 3 Inspectors
SMTP Inspector Parameters

valid_cmds

Specifies an additional list of SMTP commands which the SMTP inspector considers valid.

The SMTP inspector defines a list of default, valid SMTP commands: ATRN AUTH BDAT DATA DEBUG EHLO

EMAL ESAM ESND ESOM ETRN EVFY EXPN HELO HELP IDENT MAIL NOOP ONEX QUEU QUIT RCPT RSET SAML

SEND SIZE STARTTLS SOML TICK TIME TURN TURNME VERB VRFY X-EXPS X-LINK2STATE XADR XAUTH XCIR

XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR.

You can enable rule 124:5 to generate events, and in an inline deployment, drop offending packets.

Type: string

Valid values: SMTP commands

Default value: None

xlink2state

Specifies how the SMTP inspector handles packets that are part of X-Link2State Microsoft Exchange buffer
data overflow attacks (See CVE-2005-0560 for a description of the vulnerability). You can disable detection
(disable), enable detection and generate alerts (alert), or enable detection and drop the offending packets
(drop).

You can enable rule 124:8 to generate events for this parameter, and in an inline deployment, drop offending
packets.

Type: enum

Valid values:

• disable

• alert

• drop

Default value: alert

SMTP Inspector Rules
Enable the smtp inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 27: SMTP Inspector Rules

Rule MessageGID:SID

attempted command buffer overflow124:1

attempted data header buffer overflow124:2

attempted response buffer overflow124:3

attempted specific command buffer overflow124:4

unknown command124:5

Snort 3 Inspector Reference
180

Snort 3 Inspectors
SMTP Inspector Rules

Rule MessageGID:SID

illegal command124:6

attempted header name buffer overflow124:7

attempted X-Link2State command buffer overflow124:8

base64 decoding failed124:10

quoted-printable decoding failed124:11

Unix-to-Unix decoding failed124:13

Cyrus SASL authentication attack124:14

attempted authentication command buffer overflow124:15

file decompression failed124:16

SMTP Inspector Intrusion Rule Options
vba_data

Sets the detection cursor to the Microsoft Office Visual Basic for Applications macros buffer.

Syntax: vba_data;

Examples: vba_data;

Snort 3 Inspector Reference
181

Snort 3 Inspectors
SMTP Inspector Intrusion Rule Options

Snort 3 Inspector Reference
182

Snort 3 Inspectors
SMTP Inspector Intrusion Rule Options

C H A P T E R 23
SnortML

Inspector (passive)Type

InspectUsage

SingletonInstance Type

snort_ml_engine, http_inspectOther Inspectors Required

Max DetectEnabled

Every day new vulnerabilities are discovered in software critical to the function of the modern world. Security
analysts take apart these new vulnerabilities, isolate what is necessary to trigger them, and write signatures
to detect exploits targeting them. Most signatures can only really be written for specific vulnerabilities.

SnortML is a neural network-based exploit detection for the Snort intrusion prevention system. It is designed
to not only learn to detect known attacks from training data, but also learn to detect attacks it has never seen
before.

The snort_ml inspector searches primarily for SQL injection attacks over HTTP. As this inspector may affect
performance, it is only enabled by default when in Max Detect mode.

• SnortML Rules, on page 183
• SnortML Parameters, on page 184

SnortML Rules
Enable the snort_ml inspector rule to generate events and, in an inline deployment, drop offending packets.
The snort_ml inspector rule is only enabled by default under the Maximum Detection NAP policy.

Table 28: Snort ML Inspector Rules

Rule MessageGID:SID

(snort_ml) potential threat found in HTTP parameters via Neural Network Based
Exploit Detection.

411:1

Snort 3 Inspector Reference
183

SnortML Parameters
uri_depth

Specifies the number of bytes to scan from the HTTP URI. The value -1 means unlimited.

Type: integer

Valid range: -1 to 2147483648

Default value: -1

client_body_depth

Specifies the number of bytes to scan from the HTTP client body. The value -1 means unlimited.

Type: integer

Valid range: -1 to 2147483648

Default value: 0

Snort 3 Inspector Reference
184

Snort 3 Inspectors
SnortML Parameters

C H A P T E R 24
SSH Inspector

• SSH Inspector Overview, on page 185
• Best Practices for Configuring the SSH Inspector, on page 186
• SSH Inspector Parameters, on page 186
• SSH Inspector Rules, on page 187
• SSH Inspector Intrusion Rule Options, on page 188

SSH Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

NoneOther Inspectors Required

trueEnabled

Secure Shell Protocol (SSH) is network protocol that enables secure communication between a client and
server over an unsecured network. SSH supports tunneling and authenticates a remote host using public-key
cryptography.

You can use SSH to securely transfer files, or login into a remote host and interact with the command line.
The SSH protocol uses port 22 over TCP, UDP, or SCTP.

The ssh inspector decodes stream packets and detects the following SSH exploits:

• Challenge-Response Buffer Overflow exploit

• CRC-32 exploit

• SecureCRT SSH Client Buffer Overflow exploit

• Incorrect SSH message direction

Challenge-Response Buffer Overflow and CRC-32 attacks occur after authentication when the network
connection between hosts is encrypted. Both types of attack send a large payload of more than 20 KB to the
server immediately after the authentication challenge.

Snort 3 Inspector Reference
185

The ssh inspector detects the Challenge-Response Buffer Overflow and CRC-32 attacks by counting the
number of bytes transmitted to the server. If the bytes exceed the defined limit within a predefined number
of packets, the ssh inspector generates an alert. CRC-32 attacks apply only to SSH Version 1 and
Challenge-Response Buffer Overflow exploits apply only to SSH Version 2. The ssh inspector reads the SSH
version string at the beginning of the session to identify the type of attack.

The SecureCRT SSH Client Buffer Overflow and protocol mismatch attacks occur before the key exchange
when hosts are attempting to secure a connection. The SecureCRT SSH Client Buffer Overflow attack sends
an overly long protocol identifier string to the client, causing a buffer overflow. A protocol mismatch attack
occurs when either a non-SSH client application attempts to connect to a secure SSH server, or the server and
client version numbers do not match.

The ssh inspector does not handle brute force attacks.Note

Best Practices for Configuring the SSH Inspector
We recommend that you use the default ssh inspector configuration settings. If you exceed the maximum
number of encrypted packets for a session, defined in the max_encrypted_packets parameter, the ssh inspector
stops processing traffic for that session to improve performance. The ssh inspector only detects SSH
vulnerabilities that appear at the beginning of the SSH session.

If the ssh inspector generates a false positive on Challenge-Response Overflow or CRC 32, you can increase
the number of required client bytes with the max_client_bytes parameter.

Note

SSH Inspector Parameters
SSH service configuration

The binder inspector defines the SSH service configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

[
{

"when": {
"service": "ssh",
"role": any

},
"use": {

"type": "ssh"
}

}
]

Snort 3 Inspector Reference
186

Snort 3 Inspectors
Best Practices for Configuring the SSH Inspector

max_encrypted_packets

Specifies the maximum number of encrypted packets to examine before the ssh inspector ignores an SSH
session. If you exceed the maximum number of encrypted packets for a session, the ssh inspector stops
processing traffic for that session to improve performance.

Type: integer

Valid range: -1 to 65535

Default value: 25

max_client_bytes

Specifies the maximum number of unanswered bytes to transmit to the server before the ssh inspector alerts
on Challenge-Response Overflow or CRC 32. If you exceed the max_client_bytes limit before
max_encrypted_packets are sent, the inspector assumes an attack has occurred and ignores the traffic.

You can enable rule 128:1 to generate an alert when the inspector detects a Challenge-Response Overflow or
rule 128:2 to generate an alert when the inspector detects a CRC 32 exploit.

For each valid response the client receives from the server, the ssh inspector resets the packet count for
max_client bytes.

We do not recommend that you set max_client_bytes to 0 or 1. If you set the max_client_bytes to 0 or 1,
the ssh inspector always alerts.

Note

Type: integer

Valid range: 0 to 65535

Default value: 19600

max_server_version_len

Specifies the maximum length of the SSH server version string. If the length of the SSH server version string
exceeds the max_server_version_len, the ssh inspector generates an alert. You can enable rule 128:3 to
alert on the Secure CRT server version string overflow.

Type: integer

Valid range: 0 to 255

Default value: 80

The ssh inspector default configuration does not enable any alerts.Note

SSH Inspector Rules
Enable the ssh inspector rules to generate events and, in an inline deployment, drop offending packets.

Snort 3 Inspector Reference
187

Snort 3 Inspectors
SSH Inspector Rules

Table 29: SSH Inspector Rules

Rule MessageGID:SID

challenge-response overflow exploit128:1

SSH1 CRC32 exploit128:2

server version string overflow128:3

bad message direction128:5

payload size incorrect for the given payload128:6

failed to detect SSH version string128:7

SSH Inspector Intrusion Rule Options
The ssh inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
188

Snort 3 Inspectors
SSH Inspector Intrusion Rule Options

C H A P T E R 25
Stream ICMP Inspector

• Stream ICMP Inspector Overview, on page 189
• Best Practices for Configuring the Stream ICMP Inspector, on page 189
• Stream ICMP Inspector Parameters, on page 190
• Stream ICMP Inspector Rules, on page 190
• Stream ICMP Inspector Intrusion Rule Options, on page 190

Stream ICMP Inspector Overview
Inspector (stream)Type

InspectUsage

MultitonInstance type

NoneOther Inspectors Required

trueEnabled

Internet Control Message Protocol (ICMP) is a network-layer protocol used by network utility applications
and network devices. ICMP sends diagnostic and error information to identify communication success or
failure between IP hosts. An ICMP message includes header and data sections.

ICMP conveys information about other flows. It does not carry data that needs reassembly, nor does it require
target-based binding.

The stream_icmp inspector defines ICMP flow tracking. For pings, the inspector provides basic flow tracking
through the source and destination IP address fields and the port fields in the ICMP header. For unreachable
destinations, the inspector analyzes the original IP addresses and transport ports, then it updates the session's
state. The port_scan inspector can use the unreachable host and port, if available.

Best Practices for Configuring the Stream ICMP Inspector
Consider the following best practices when you configure the stream_icmp inspector:

Snort 3 Inspector Reference
189

• Create a stream_icmp inspector for each session timeout that you want to apply to a host or network.
The stream_icmp inspector associates the session_timeout with the ICMP hosts or networks defined
in the binder inspector.

You can have multiple versions of the stream_icmp inspector in the same network analysis policy (NAP).

Stream ICMP Inspector Parameters
session_timeout

Specifies the number of seconds that the stream_icmp inspector keeps an inactive ICMP stream in the state
table. The next time Snort detects an ICMP datagram with the same flow key, it checks if the session timeout
on the earlier flow has expired. If the timeout has expired, Snort closes the flow and starts a new flow. Snort
checks for stale flows associated with the base stream configuration.

Type: integer

Valid range: 0 to 2,147,483,647 (max31)

Default value: 60

Stream ICMP Inspector Rules
The stream_icmp inspector does not have any associated rules.

Stream ICMP Inspector Intrusion Rule Options
The stream_icmp inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
190

Snort 3 Inspectors
Stream ICMP Inspector Parameters

C H A P T E R 26
Stream IP Inspector

• Stream IP Inspector Overview, on page 191
• Best Practices for Configuring the Stream IP Inspector, on page 191
• Stream IP Inspector Parameters, on page 192
• Stream IP Inspector Rules, on page 194
• Stream IP Inspector Intrusion Rule Options, on page 194

Stream IP Inspector Overview
Inspector (stream)Type

InspectUsage

MultitonInstance Type

NoneOther Inspectors Required

trueEnabled

Internet Protocol (IP) is a connectionless, network-layer protocol that forms the basis of the internet. IP uses
host addresses to route messages from a source host to a destination host across IP networks. IP can route
both TCP and UDP data packets in addition to other transport protocols.

An IP message contains header and data sections. The IP header includes IP addresses used to route a messsage
to its destination. The IP data section encapsulates the message payload. IP handles reassembly and
fragmentation of messages.

The stream_ip inspector detects an IP network flow and examines the packets in the flow. The stream_ip
inspector defines IP session and flow tracking, operating system policy, and datagram overlaps configuration
parameters. Depending on the mode, either the stream_ip inspector or the Snort data plane handles
defragmentation.

Best Practices for Configuring the Stream IP Inspector
Consider the following best practices when you configure the stream_ip inspector:

Snort 3 Inspector Reference
191

• Create a stream_ip inspector for each IP configuration that you want to apply to a host, endpoint, or
network. The stream IP inspector associates the IP configuration with the IP hosts, endpoints, or networks
defined in the binder inspector.

You can have multiple versions of the stream_ip inspector in the same network analysis policy.

Stream IP Inspector Parameters
max_overlaps

Specifies the maximum allowed overlaps for each datagram. Specify 0 to permit an unlimited number of
overlaps.

You can enable rule 123:12 to trigger an alert for excessive fragment overlaps.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 0

min_frag_length

Specifies the minimun number of bytes expected in the IP fragment. Specify 0 to permit an unlimited number
of bytes in the IP fragment.

You can enable rule 123:13 to trigger an alert for fragments shorter than min_frag_length.

Type: integer

Valid range: 0 to 65535

Default value: 0

min_ttl

Specifies a minimum number of hops or time to live (TTL). Discard fragments below the specified minimum
TTL.

You can enable rule 123:11 to trigger an alert for fragments with a TTL below this value.

Type: integer

Valid range: 1 to 255

Default value: 1

policy

Specifies the operating system of the target host or hosts. The operating system determines the appropriate
IP fragment reassembly policy and operating system characteristics. You can define only one policy parameter
for each stream IP inspector.

Snort 3 Inspector Reference
192

Snort 3 Inspectors
Stream IP Inspector Parameters

If you set the policy parameter to first, Snort may provide some protection, but miss attacks. You should
edit the policy parameter of the IP stream inspector to specify the correct operating system.

Note

Type: enum

Valid values: Set a type of operating system for the policy parameter.

Table 30: Valid Values for Policy

Operating SystemsPolicy

Unknown OSfirst

Linuxlinux

AIX

FreeBSD

OpenBSD

bsd

HP JetDirect (printer)bsd_right

Cisco IOSlast

Windows 98

Windows NT

Windows 2000

Windows XP

windows

Solaris OS

SunOS

solaris

Default value: linux

session_timeout

Specifies the number of seconds that the stream_ip inspector keeps an inactive IP stream in the state table.
The next time Snort detects an IP datagram with the same flow key, it checks if the session timeout on the
earlier flow has expired. If the timeout has expired, Snort closes the flow and starts a new flow. Snort checks
for stale flows associated with the base stream configuration.

Type: integer

Valid range: 0 to 2,147,483,647 (max31)

Default value: 60

Snort 3 Inspector Reference
193

Snort 3 Inspectors
Stream IP Inspector Parameters

Stream IP Inspector Rules
Enable the stream_ip inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 31: Stream IP Inspector Rules

Rule MessageGID:SID

inconsistent IP options on fragmented packets123:1

teardrop attack123:2

short fragment, possible DOS attempt123:3

fragment packet ends after defragmented packet123:4

zero-byte fragment packet123:5

bad fragment size, packet size is negative123:6

bad fragment size, packet size is greater than 65536123:7

fragmentation overlap123:8

TTL value less than configured minimum, not using for reassembly123:11

excessive fragment overlap123:12

tiny fragment123:13

Stream IP Inspector Intrusion Rule Options
The stream_ip inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
194

Snort 3 Inspectors
Stream IP Inspector Rules

C H A P T E R 27
Stream TCP Inspector

• Stream TCP Inspector Overview, on page 195
• Best Practices for Configuring the Stream TCP Inspector, on page 196
• Best Practices for TCP Stream Reassembly, on page 196
• Stream TCP Inspector Parameters, on page 197
• Stream TCP Inspector Rules, on page 202
• Stream TCP Inspector Intrusion Rule Options, on page 203

Stream TCP Inspector Overview
Inspector (stream)Type

InspectUsage

MultitonInstance type

NoneOther Inspectors Required

trueEnabled

Transmission Control Protocol (TCP) is a connection-oriented, stateful transport layer protocol. TCP can
reliably transmit an ordered stream of bytes between a client and a server over an IP network. TCP permits
only one connection with the same connection parameter values to exist at a time. A host operating system
manages the states of a TCP connection.

The stream_tcp inspector provides TCP flow tracking, stream normalization, and stream reassembly. Each
stream TCP inspector can handle the TCP traffic for one or more hosts in your network. In addition, if you
have enough information about the hosts that are sending the TCP traffic to your network, you can configure
a stream_tcp inspector for those hosts.

In a network analysis policy (NAP), Snort applies each configured stream_tcp inspector to the TCP services
defined in the binder inspector configuration.

You can configure multiple stream TCP inspectors to handle various operating systems and TCP traffic.

The stream_tcp inspector configuration includes:

• Operating system on the TCP host

• Operating system options: how overlaps are handled during reassembly

Snort 3 Inspector Reference
195

• Traffic handling options: the maximum number of bytes or segments in a session or direction

• TCP stream reassembly options: the maximum reassembled PDU size

In inline IPS mode, the stream_tcp inspector normalizes the payload stream so that overlaps always resolve
to the first copy seen. Each stream TCP inspector handles repeated SYNs, RST validation, and timestamp
checks.

Note

Best Practices for Configuring the Stream TCP Inspector
Consider the following best practices when configuring a stream_tcp inspector:

• Do not deploy the sensing interfaces on a device so that Snort can only inspect one side of a flow. You
can enable the reassemble_async parameter in the stream_tcp inspector to process asymmetric traffic.
However, the streamTCP inspector cannot process asymmetric traffic in all cases. For example, a response
to an HTTP HEAD request can cause the HTTP inspector to get out of sync. In IDS mode, the lack of
TCP acknowledgements makes evasions much easier.

For IPS mode, we recommend that you deploy a device only if Snort can inspect both sides of a flow.

• Create a stream_tcp inspector for each TCP host operating system that you expect to send or receive
TCP traffic. You can have multiple versions of the stream_tcp inspector in the same network analysis
policy. The TCP policies defined in each stream_tcp inspector are applied to the TCP hosts specified
in the binder inspector.

• To enable IPS mode, set the normalizer.tcp.ips parameter in the normalizer inspector to true.

• In the advanced settings in your network analysis policy (NAP), confirm that the networks which you
want to identify in a custom, target-based stream_tcp inspector match or are a subset of the networks,
zones, and VLANs handled by its parent NAP.

• The system builds a separate network map for each leaf domain. In a multidomain deployment, using
literal IP addresses to constrain this configuration can have unexpected results. Using override-enabled
objects allows descendant domain administrators to tailor Global configurations to their local environments.

• To generate events and, in an inline deployment, drop offending packets, enable the stream_tcp inspector
rules (GID 129).

Best Practices for TCP Stream Reassembly
The stream_tcp inspector collects and reassembles all packets that are part of a TCP session’s server-to-client
communication stream, client-to-server communication stream, or both. TCP stream reassembly allows Snort
to inspect the stream as a single, reassembled entity, a protocol data unit (PDU), rather than inspecting only
the individual packets that are part of a given stream. If the PDU is large, the rules engine splits it into several
parts.

Stream reassembly allows Snort to identify stream-based attacks, which it may not detect when inspecting
individual packets. You can specify which communication streams to reassemble based on your network

Snort 3 Inspector Reference
196

Snort 3 Inspectors
Best Practices for Configuring the Stream TCP Inspector

needs. For example, when monitoring traffic on your web servers, you may only want to inspect client traffic
because you are less likely to receive malicious traffic from your own web server.

For each stream_tcp inspector, you can specify a list of TCP ports in the binder configuration. The TCP
stream inspector automatically and transparently includes the configured ports to identify and reassemble
traffic. If adaptive profiles updates are enabled, you can list services that identify traffic to reassemble, either
as an alternative to ports or in combination with ports.

Specify TCP ports in the binder configuration for the following Snort inspectors:

• dnp3

• ftp_server

• gtp_inspect (ports provided by default)

• http_inspect

• imap

• iec104 (ports provided by default)

• mms (ports provided by default)

• modbus (ports provided by default)

• pop

• sip

• smtp

• ssh

• ssl

• telnet

When you reassemble multiple traffic types (client, server, both), Snort resource demands may increase.Note

Stream TCP Inspector Parameters
Stream TCP reassembly configuration

The binder inspector defines the TCP stream reassembly configuration for the network analysis policy (NAP).
You specify the host IP addresses to which you want to apply the TCP stream reassembly policy. The stream
TCP inspector is automatically associated with the ports configured in the binder for the NAP. For more
information, see the Binder Inspector Overview, on page 13.

Snort 3 Inspector Reference
197

Snort 3 Inspectors
Stream TCP Inspector Parameters

The system builds a separate network map for each leaf domain. In a multidomain deployment, using literal
IP addresses to constrain this configuration can have unexpected results. Using override-enabled objects
allows descendant domain administrators to tailor Global configurations to their local environments.

Note

The default setting in the default policy specifies all IP addresses on your monitored network segment that
are not covered by another target-based policy. Therefore, you cannot and do not need to specify an IP address
or CIDR block/prefix length for the default policy, and you cannot leave this setting blank in another policy
or use address notation to represent any (for example, 0.0.0.0/0 or ::/0).

policy

Specifies the operating system of the target host or hosts. The operating system determines the appropriate
TCP reassembly policy and operating system characteristics. You can define only one policy parameter for
each stream TCP inspector.

If you set the policy parameter to first, Snort may provide some protection, but miss attacks. You should
edit the policy parameter of the TCP stream inspector to specify the appropriate operating system.

Note

Type: enum

Valid values: Set a type of operating system for the policy parameter.

Table 32: TCP Operating System Policies

Operating SystemsPolicy

unknown OSfirst

Cisco IOSlast

AIX

FreeBSD

OpenBSD

bsd

HP-UX 10.2 and earlierhpux_10

HP-UX 11.0 and laterhpux_11

SGI Irixirix

Linux 2.4 kernel

Linux 2.6 kernel

linux

Mac OS 10 (Mac OS X)macos

Linux 2.2 and earlier kernelold_linux

Snort 3 Inspector Reference
198

Snort 3 Inspectors
Stream TCP Inspector Parameters

Operating SystemsPolicy

Solaris OS

SunOS

solaris

Windows Vistavista

Windows 98

Windows NT

Windows 2000

Windows XP

windows

Windows 2003win_2003

Default value: bsd

max_window

Specifies the maximum TCP window size permitted by a receiving host. You can specify an integer less than
65535, or specify 0 to disable inspection of the TCP window size.

The upper limit of max_window is the maximum window size permitted by RFC 1323. You can set the upper
limit to prevent an attacker from evading detection, however, a significantly large maximum TCP window
size may create a self-imposed denial of service.

Caution

Type: integer

Valid range: 0 to 1,073,725,440

Default value: 0

overlap_limit

Specifies the maximum number of overlapping segments allowed in each TCP session. Specify 0 to permit
an unlimited number of overlapping segments. If you set a number between 0 and 255, segment reassembly
stops for the session.

Enable rule 129:7 to generate events and, in an inline deployment, drop offending packets.

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 0

max_pdu

Specifies the maximum reassembled protocol data unit (PDU) size.

Type: integer

Valid range: 1460 to 32768

Snort 3 Inspector Reference
199

Snort 3 Inspectors
Stream TCP Inspector Parameters

Default value: 16384

reassemble_async

Ensures that data is queued for reassembly before traffic is seen in both directions. When the monitored
network is an asynchronous network, you must enable the reassemble_async parameter. An asynchronous
network only permits traffic in a single direction and one flow at a time. If the reassemble_async parameter
is enabled, Snort does not reassemble TCP streams to increase performance.

The stream TCP inspector cannot correctly process asymmetric traffic in all cases. For example, a response
to an HTTP HEAD request can cause the HTTP inspector to get out of sync. In IDS mode, the lack of TCP
acknowledgements makes evasions much easier. For IPS mode, we recommend that you deploy a device only
if the rules engine can inspect both sides of a flow.

Note

The reassemble_async parameter is ignored for the Secure Firewall Threat Defense routed and transparent
interfaces.

Type: boolean

Valid values: true, false

Default value: true

require_3whs

Specifies the number of seconds from start up after which the stream TCP inspector stops tracking midstream
sessions. Specify -1 to track all midstream TCP sessions, no matter when they occur.

Snort does not synchronize most protocol streams. Snort always picks up on SYN if it needs any of the
handshake options (timestamps, window scale, or MSS). Typically, IPS efficacy is not improved by allowing
midstream pickups.

Type: integer

Valid range: -1 to 2,147,483,647 (max31)

Default value: -1

queue_limit.max_bytes

Specifies the maximum number of bytes to queue for a session on one side of a TCP connection. Specify 0

to allow an unlimited number of bytes.

We recommend that you contact Cisco TAC before changing the default setting of the queue_limit.max_bytes
parameter.

Caution

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 4,194,304

Snort 3 Inspector Reference
200

Snort 3 Inspectors
Stream TCP Inspector Parameters

queue_limit.max_segments

Specifies the maximum number of data segments to queue for a session on one side of a TCP connection.
Specify 0 to allow an unlimited number of data segments.

We recommend that you contact Cisco TAC before changing the default setting of the
queue_limit.max_segments parameter.

Caution

Type: integer

Valid range: 0 to 4,294,967,295 (max32)

Default value: 3072

small_segments.count

Specifies a number that is above the expected amount of consecutive small TCP segments. Specify 0 to ignore
the count of consecutive small TCP segments.

You must set the small_segments.count and small_segments.maximum_size parameters with the same type
of value. Specify 0 for both parameters or set each parameter to a non-zero value.

Snort considers 2000 consecutive segments, even if each segment is 1 byte in length, above the normal amount
of consecutive TCP segments.

Note

Snort ignores the small_segments.count parameter for threat defense routed and transparent interfaces.

You can enable rule 129:12 to generate events and, in an inline deployment, drop offending packets.

Type: integer

Valid range: 0 to 2048

Default value: 0

small_segments.maximum_size

Specifies the number of bytes which identify a TCP segment as larger than a small TCP segment. A small
TCP segment size is in the range of 1 to 2048 bytes. Specify 0 to ignore the maximum size of a small segment.

Snort ignores the small_segments.maximum_size parameter for threat defense routed and transparent interfaces.

You must set the small_segments.maximum_size and small_segments.count parameters with the same type
of value. Specify 0 for both parameters or set each parameter to a non-zero value.

A 2048 byte TCP segment is larger than a normal 1500 byte Ethernet frame.Note

You can enable rule 129:12 to generate events and, in an inline deployment, drop offending packets.

Type: integer

Valid range: 0 to 2048

Snort 3 Inspector Reference
201

Snort 3 Inspectors
Stream TCP Inspector Parameters

Default value: 0

session_timeout

Specifies the number of seconds that Snort keeps an inactive TCP stream in its state table. If the stream is not
reassembled in the specified time, Snort deletes it from the state table. If the session is still alive and more
packets appear, Snort handles the stream as a midstream flow.

We recommend that you set the session_timeout parameter to greater than or equal to the host TCP session
timeout.

Type: integer

Valid range: 0 to 2,147,483,647 (max31)

Default value: 180

Stream TCP Inspector Rules
Enable the stream_tcp inspector rules to generate events and, in an inline deployment, drop offending packets.

Table 33: Stream TCP Inspector Rules

Rule MessageGID:SID

SYN on established session129:1

data on SYN packet129:2

data sent on stream not accepting data129:3

TCP timestamp is outside of PAWS window129:4

bad segment, adjusted size <= 0 (deprecated)129:5

window size (after scaling) larger than policy allows129:6

limit on number of overlapping TCP packets reached129:7

data sent on stream after TCP reset sent129:8

TCP client possibly hijacked, different ethernet address129:9

TCP server possibly hijacked, different ethernet address129:10

TCP data with no TCP flags set129:11

consecutive TCP small segments exceeding threshold129:12

4-way handshake detected129:13

TCP timestamp is missing129:14

reset outside window129:15

FIN number is greater than prior FIN129:16

Snort 3 Inspector Reference
202

Snort 3 Inspectors
Stream TCP Inspector Rules

Rule MessageGID:SID

ACK number is greater than prior FIN129:17

data sent on stream after TCP reset received129:18

TCP window closed before receiving data129:19

TCP session without 3-way handshake129:20

Stream TCP Inspector Intrusion Rule Options
stream_reassemble

Specify whether to enable TCP stream reassembly on matching traffic. The stream_reassemble rule option
includes four parameters: stream_reassemble.action, stream_reassemble.direction,
stream_reassemble.noalert, and stream_reassemble.fastpath.

Syntax: stream_reassemble: <enable|disable>, <server|client|both>, noalert, fastpath;

Examples: stream_reassemble: disable,client,noalert;

stream_reassemble.action

Stop or start stream reassembly.

Type: enum

Syntax: stream_reassemble: <action>;

Valid values: disable or enable

Examples: stream_reassemble: enable;

stream_reassemble.direction

Action applies to the given directions.

Type: enum

Syntax: stream_reassemble: <direction>

Valid values: client, server, both

Examples: stream_reassemble: both;

stream_reassemble.noalert

Don't alert when rule matches. The stream_reassemble.noalert parameter is optional.

Syntax: stream_reassemble: noalert;

Examples: stream_reassemble: noalert;

stream_reassemble.fastpath

Optionally trust the remainder of the session. The stream_reassemble.fastpath parameter is optional.

Snort 3 Inspector Reference
203

Snort 3 Inspectors
Stream TCP Inspector Intrusion Rule Options

Syntax: stream_reassemble: fastpath;

Examples: stream_reassemble: fastpath;

stream_size

Detection option for stream size checking. Allows a rule to match traffic according to the number of bytes
observed, as determined by the TCP sequence numbers. The stream_size rule option includes two parameters:
stream_size.direction and stream_size.range.

Syntax: stream_size: <server|client|both|either>, <operator><number>;

Examples: stream_size: client, <6;

stream_size.direction

Comparison applies to the direction of the flow.

Type: enum

Syntax: stream_size: <direction>;

Valid values:

• either

• to_server

• to_client

• both

Examples: stream_size: to_client;

stream_size.range

Check if the stream size is within the specified range. Specify a range operator and one or more positive
integers.

Type: interval

Syntax: stream_size: <range_operator><positive integer>; or stream_size: <positive

integer><range_operator><positive integer>;

Valid values: A set of one or more postive integers, and one range_operator as specified in Table 34: Range
Formats.

Examples: stream_size: >6;

Table 34: Range Formats

DescriptionOperatorRange Format

operator i

Less than<

Greater than>

Equal=

Snort 3 Inspector Reference
204

Snort 3 Inspectors
Stream TCP Inspector Intrusion Rule Options

DescriptionOperatorRange Format

Not equal≠

Less than or equal≤

Greater than or equal≥

j operator k

Greater than j and less than k<>

Greater than or equal to j and less than or equal to k<=>

Snort 3 Inspector Reference
205

Snort 3 Inspectors
Stream TCP Inspector Intrusion Rule Options

Snort 3 Inspector Reference
206

Snort 3 Inspectors
Stream TCP Inspector Intrusion Rule Options

C H A P T E R 28
Stream UDP Inspector

• Stream UDP Inspector Overview, on page 207
• Best Practices for Configuring the Stream UDP Inspector, on page 207
• Stream UDP Inspector Parameters, on page 208
• Stream UDP Inspector Rules, on page 208
• Stream UDP Inspector Intrusion Rule Options, on page 208

Stream UDP Inspector Overview
Inspector (stream)Type

InspectUsage

MultitonInstance type

NoneOther Inspectors Required

trueEnabled

User Datagram Protocol (UDP) is a connectionless, low-latency transport layer protocol. UDP enables stateless
communication between two network endpoints before an agreement is provided by the receiving party. To
evaluate the integrity of the message header and data, UDP uses checksums.

The stream_udp inspector checks the source and destination IP address fields in the IP datagram header, and
the port fields in the UDP header to determine the direction of flow and identify a session. A session ends
when a configurable timer is exceeded, or when either endpoint receives an ICMP message that the other
endpoint is unreachable.

The UDP stream inspector does not generate events. You can enable packet decoder rules (GID 116) to detect
UDP header anomalies.

Best Practices for Configuring the Stream UDP Inspector
Consider the following best practices when you configure the stream_udp inspector:

• Create a stream_udp inspector for each session timeout that you want to apply to a host or endpoint. The
streamUDP inspector associates the session_timeoutwith the UDP hosts defined in the binder inspector.

Snort 3 Inspector Reference
207

You can have multiple versions of the stream_udp inspector in the same network analysis policy.

• Enable packet decoder rules (GID 116) to detect UDP header anomalies.

Stream UDP Inspector Parameters
session_timeout

Specifies the number of seconds that the UDP inspector keeps an inactive UDP stream in the state table. The
next time Snort detects a UDP datagram with the same flow key, it checks if the session timeout on the earlier
flow has expired. If the timeout has expired, Snort closes the flow and starts a new flow. Snort checks for
stale flows associated with the base stream configuration.

Type: integer

Valid range: 0 to 2,147,483,647 (max31)

Default value: 30

Stream UDP Inspector Rules
The stream_udp inspector does not have any associated rules.

Stream UDP Inspector Intrusion Rule Options
The stream_udp inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
208

Snort 3 Inspectors
Stream UDP Inspector Parameters

C H A P T E R 29
Telnet Inspector

• Telnet Inspector Overview, on page 209
• Telnet Inspector Parameters, on page 209
• Telnet Inspector Rules, on page 210
• Telnet Inspector Intrusion Rule Options, on page 211

Telnet Inspector Overview
Inspector (service)Type

InspectUsage

MultitonInstance Type

stream_tcpOther Inspectors Required

falseEnabled

Telnet is an application layer protocol that creates an 8-bit byte communication channel over TCP. Telnet
uses a network virtual terminal to communicate between a client and a remote host. A Telnet server uses TCP
port 23.

The telnet inspector normalizes the Telnet data buffer by detecting the Telnet command sequences and
option negotiation. The telnet inspector eliminates the Telnet command sequences (RFC 854) from the
packet. The telnet inspector can detect encrypted Telnet connections by examining the Telnet encryption
option (RFC 2946).

Telnet Inspector Parameters
Telnt service configuration

The binder inspector defines the telnet service configuration. For more information, see the Binder Inspector
Overview, on page 13.

Example:

Snort 3 Inspector Reference
209

[
{

"when": {
"service": "telnet",
"role": any

},
"use": {

"type": "telnet"
}

}
]

ayt_attack_thresh

Specifies the maximum number of consecutive Are You There (AYT) telnet commands. The telnet inspector
detects and alerts on the number of consecutive AYT commands that exceed the ayt_attack_thresh value.
The ayt_attack_thresh parameter addresses specific vulnerabilities related to BSD implementations of
telnet. Specify -1 to disable the ayt_attack_thresh parameter. You can enable rule 126:1 to generate events
and, in an inline deployment, drop offending packets for this parameter.

Type: integer

Valid range: -1 to 2,147,483,647 (max31)

Default value: -1

encrypted_traffic

Specifies whether to detect encrypted telnet traffic. You can enable rule 126:2 to generate events and, in an
inline deployment, drop offending packets for this parameter.

Type: boolean

Valid values: true, false

Default value: false

normalize

Specifies whether to normalize telnet traffic. The telnet inspector normalizes telnet traffic by eliminating
telnet escape sequences. If an enabled intrusion rule specifies a raw content parameter, the rule ignores the
normalized telnet buffer created by the telnet inspector.

Type: boolean

Valid values: true, false

Default value: false

Telnet Inspector Rules
Enable the telnet inspector to generate events and, in an inline deployment, drop offending packets.

Table 35: Telnet Inspector Rules

Rule MessageGID:SID

consecutive Telnet AYT commands beyond threshold126:1

Snort 3 Inspector Reference
210

Snort 3 Inspectors
Telnet Inspector Rules

Rule MessageGID:SID

Telnet traffic encrypted126:2

Telnet subnegotiation begin command without subnegotiation end126:3

Telnet Inspector Intrusion Rule Options
The telnet inspector does not have any intrusion rule options.

Snort 3 Inspector Reference
211

Snort 3 Inspectors
Telnet Inspector Intrusion Rule Options

Snort 3 Inspector Reference
212

Snort 3 Inspectors
Telnet Inspector Intrusion Rule Options

	Snort 3 Inspector Reference
	Contents
	Introduction
	About Snort 3 Inspection
	Introduction to Snort 3 Inspectors
	Protocol and Service Identification in Snort 3

	Snort 3 Inspectors
	ARP Spoof Inspector
	ARP Spoof Inspector Overview
	ARP Spoof Inspector Parameters
	ARP Spoof Inspector Rules
	ARP Spoof Inspector Intrusion Rule Options

	Binder Inspector
	Binder Inspector Overview
	Autodetection of Services for Portless Configuration
	Best Practices for Configuring the Binder Inspector
	Binder Inspector Parameters
	Binder Inspector Rules
	Binder Inspector Intrusion Rule Options

	CIP Inspector
	CIP Inspector Overview
	Best Practices for Configuring the CIP Inspector
	CIP Inspector Parameters
	CIP Inspector Rules
	CIP Inspector Intrusion Rule Options

	DCE SMB Inspector
	DCE SMB Inspector Overview
	DCE SMB Inspector Parameters
	DCE SMB Inspector Rules
	DCE Inspectors Intrusion Rule Options

	DCE TCP Inspector
	DCE TCP Inspector Overview
	DCE TCP Inspector Parameters
	DCE TCP Inspector Rules
	DCE Inspectors Intrusion Rule Options

	DNP3 Inspector
	DNP3 Inspector Overview
	DNP3 Inspector Parameters
	DNP3 Inspector Rules
	DNP3 Inspector Intrusion Rule Options

	FTP Client Inspector
	FTP Client Inspector Overview
	FTP Client Inspector Parameters
	FTP Client Inspector Rules
	FTP Client Inspector Intrusion Rule Options

	FTP Server Inspector
	FTP Server Inspector Overview
	FTP Server Inspector Parameters
	FTP Server Inspector Rules
	FTP Server Inspector Intrusion Rule Options

	GTP Inspect Inspector
	GTP Inspect Inspector Overview
	GTP Inspect Inspector Parameters
	GTP Inspect Inspector Rules
	GTP Inspect Inspector Intrusion Rule Options

	HTTP Inspect Inspector
	HTTP Inspect Inspector Overview
	Best Practices for Configuring the HTTP Inspect Inspector
	HTTP Inspect Inspector Parameters
	HTTP Inspect Inspector Rules
	HTTP Inspect Inspector Intrusion Rule Options

	IEC104 Inspector
	IEC104 Inspector Overview
	IEC104 Inspector Parameters
	IEC104 Inspector Rules
	IEC104 Inspector Intrusion Rule Options

	IMAP Inspector
	IMAP Inspector Overview
	IMAP Inspector Parameters
	IMAP Inspector Rules
	IMAP Inspector Intrusion Rule Options

	MMS Inspector
	MMS Inspector Overview
	MMS Inspector Parameters
	MMS Inspector Rules
	MMS Inspector Intrusion Rule Options

	Modbus Inspector
	Modbus Inspector Overview
	Best Practices for Configuring the Modbus Inspector
	Modbus Inspector Parameters
	Modbus Inspector Rules
	Modbus Inspector Intrusion Rule Options

	Normalizer Inspector
	Normalizer Inspector Overview
	Normalizer Inspector Parameters
	Normalizer Inspector Rules
	Normalizer Inspector Intrusion Rule Options

	POP Inspector
	POP Inspector Overview
	POP Inspector Parameters
	POP Inspector Rules
	POP Inspector Intrusion Rule Options

	Port Scan Inspector
	Port Scan Inspector Overview
	Best Practices for Configuring the Port Scan Inspector
	Port Scan Inspector Parameters
	Port Scan Inspector Rules
	Port Scan Inspector Intrusion Rule Options

	Rate Filter
	Rate Filter Overview
	Rate Filter Parameters
	Rate Filter Rules
	Rate Filter Intrusion Rule Options

	S7CommPlus Inspector
	S7CommPlus Inspector Overview
	Best Practices for Configuring the S7CommPlus Inspector
	S7CommPlus Inspector Parameters
	S7CommPlus Inspector Rules
	S7CommPlus Inspector Intrusion Rule Options

	SIP Inspector
	SIP Inspector Overview
	SIP Inspector Parameters
	SIP Inspector Rules
	SIP Inspector Intrusion Rule Options

	SMTP Inspector
	SMTP Inspector Overview
	Best Practices for Configuring the SMTP Inspector
	SMTP Inspector Parameters
	SMTP Inspector Rules
	SMTP Inspector Intrusion Rule Options

	SnortML
	SnortML Rules
	SnortML Parameters

	SSH Inspector
	SSH Inspector Overview
	Best Practices for Configuring the SSH Inspector
	SSH Inspector Parameters
	SSH Inspector Rules
	SSH Inspector Intrusion Rule Options

	Stream ICMP Inspector
	Stream ICMP Inspector Overview
	Best Practices for Configuring the Stream ICMP Inspector
	Stream ICMP Inspector Parameters
	Stream ICMP Inspector Rules
	Stream ICMP Inspector Intrusion Rule Options

	Stream IP Inspector
	Stream IP Inspector Overview
	Best Practices for Configuring the Stream IP Inspector
	Stream IP Inspector Parameters
	Stream IP Inspector Rules
	Stream IP Inspector Intrusion Rule Options

	Stream TCP Inspector
	Stream TCP Inspector Overview
	Best Practices for Configuring the Stream TCP Inspector
	Best Practices for TCP Stream Reassembly
	Stream TCP Inspector Parameters
	Stream TCP Inspector Rules
	Stream TCP Inspector Intrusion Rule Options

	Stream UDP Inspector
	Stream UDP Inspector Overview
	Best Practices for Configuring the Stream UDP Inspector
	Stream UDP Inspector Parameters
	Stream UDP Inspector Rules
	Stream UDP Inspector Intrusion Rule Options

	Telnet Inspector
	Telnet Inspector Overview
	Telnet Inspector Parameters
	Telnet Inspector Rules
	Telnet Inspector Intrusion Rule Options

