
DHCP Extension Dictionary

This appendix describes the DHCP extension dictionary entries and the application program interface (API)
to the extension dictionary. It describes the data items available in the request and response dictionaries, and
the calls to use when accessing dictionaries from Tcl extensions and shared libraries.

The appendix contains the following sections:

• Extension Dictionary Entries, on page 1
• Extension Dictionary API, on page 37
• Handling Objects and Options, on page 53
• Examples of Option and Object Method Calls, on page 55

Extension Dictionary Entries
A dictionary is a data structure that contains key-value pairs. There are two types of dictionaries: the attribute
dictionaries that the request and response dictionaries use, and the environment dictionary. This section
describes the request and response dictionaries; the environment dictionary entries are described in Tcl
Environment Dictionary Methods, on page 40.

Decoded DHCP Packet Data Items
The decoded DHCPv4 packet data items represent the information in the DHCP packet, and are available in
both the request and response dictionaries. These dictionaries provide access to considerably more internal
server data structures than just the decoded request and decoded response.

All of the options followed by an asterisk (*) are multiple, which means that there can be more than one value
associated with each option. In the DHCP/BOOTP packet, all of these data items appear in the same option.
However, in the extension interface, these multiple data items are accessible through indexing.

You can access options that do not have names in Table 3: DHCPv4 and BOOTP Options , on page 2 as
option–n, where n is the option number. All fields are read/write. Table 1: DHCPv4 and BOOTP Fields , on
page 1 describes the field values for the DHCPv4 packets; Table 2: DHCPv6 Fields , on page 2 describes
the field values for the DHCPv6 messages.

Table 1: DHCPv4 and BOOTP Fields

ValueName

blob (sequence of bytes)chaddr

DHCP Extension Dictionary
1

ValueName

IP addressciaddr

stringfile

16-bit unsigned integerflags

IP addressgiaddr

8-bit unsigned integerhlen

8-bit unsigned integerhops

8-bit unsigned integerhtype

8-bit unsigned integerop

16-bit unsigned integersecs

IP addresssiaddr

stringsname

32-bit unsigned integerxid

IP addressyiaddr

Table 2: DHCPv6 Fields

ValueName

8-bit unsigned integerhop-count

IPv6 addresslink-address

8-bit unsigned integermsg-type

IPv6 addresspeer-address

32-bit unsigned integerxid

The table below lists the DHCP and BOOTP options for DHCPv4.

Table 3: DHCPv4 and BOOTP Options

ValueNumberName (*=multivalue)

binary2126rd

DNS name213access-domain

unsigned time35arp-cache-timeout

IP address142andsf-v4

DHCP Extension Dictionary
2

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

blob (sequence of bytes); 5 fields90authentication

8-bit unsigned integer116auto-configure

date152base-time

IP address89bcmcs-servers-a*

DNS name88bcmcs-servers-d*

string67boot-file

16-bit unsigned integer13boot-size

IP address28broadcast-address

binary125

suboptions:

cablelabs-125(v-i-vendor-info ID:
4491)

Option request, 8-bit unsigned integer (8-bit
unsigned integers)

1oro

IP addresses of TFTP servers2tftp-servers

Erouter container options (binary; TLV
encoded options)

3erouter-container

MIB environment indicator (8-bit
enumeration)

4packetcable-mib-env

Modem capabilities encoding (binary; TLV5
encoded data)

5modem-capabilities

ACS Server suboptions (binary)6acs-server

RADIUS Server suboptions (binary)7radius-server

DHCPv6 server suboptions (binary)123dhcpv6-servers

IPv4 or IPv6 preference (8-bit enumeration)124ip-pref

blob (sequence of bytes)122

suboptions:

cablelabs-client- configuration

IP address1primary-dhcp- server

IP address2secondary-dhcp- server

blob (the first byte must be the type byte,
with 0 for RFC 1035 encoding, and 1 for IP
address encoding, for which the addressmust
be in network order)

3provisioning- server

DHCP Extension Dictionary
3

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

12-byte blob (3 unsigned 4-byte integers,
which must be in network order); configures
the Kerberos AS-REQ/AS-REP timeout,
back-off, and retry mechanism

4as-backoff-retry- blob

12-byte blob (3 unsigned 4-byte integers,
which must be in network order); configures
the Kerberos AP-REQ/AP-REP timeout,
back-off, and retry mechanism

5ap-backoff-retry- blob

variable-length blob (an RFC 1035 style
name); a Kerberos realm name is required

6kerberos-realm

1-byte unsigned integer boolean; indicates
whether to use a Ticket Granting Ticket
(TGT) when obtaining a service ticket for
one of the application servers

7use-tgt

1-byte unsigned integer; defines the
maximum time allowed for the provisioning
process to finish

8provisioning-timer

2-byte unsigned integer, in host order9ticket-control- mask

variable-length (multiple of 4) IP address,
in network order

10kdc-addresses- blob

string160captive-portal

IP address138capwap-ac-v4*

bounded byte251cisco-autoconfigure

unsigned 32-bit integer163cisco-client-last-transaction- time

string162cisco-client-requested-host- name

IP address161cisco-leased-ip

blob (structured)221cisco-vpn-id

blob (structured)121classless-static-route

blob (sequence of bytes); 4 fields: flags,
rcode-1, rcode-2, and domain-name

81client-fqdn

IP address8cookie-servers*

8-bit unsigned integer157data-source

8-bit unsigned integer23default-ip-ttl

8-bit unsigned integer37default-tcp-ttl

DHCP Extension Dictionary
4

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

string60dhcp-class-identifier

blob (sequence of bytes)61dhcp-client-identifier

unsigned time51dhcp-lease-time

16-bit unsigned integer57dhcp-max-message-size

string56dhcp-message

8-bit unsigned integer53dhcp-message-type

8-bit unsigned integer52dhcp-option-overload

8-bit unsigned integer55dhcp-parameter-request-list*

blob (sequence of bytes)55dhcp-parameter-request- list-blob*

unsigned time59dhcp-rebinding-time

unsigned time58dhcp-renewal-time

IP address50dhcp-requested-address

IP address54dhcp-server-identifier

8-bit unsigned integer156dhcp-state

set of counted len byte arrays; 2 fields:
typcnt-size and user-data

77dhcp-user-class-id

string15domain-name

IP address6domain-name-servers*

blob (sequence of bytes)119domain-search

string18extensions-path

IP address73finger-servers*

IP address48font-servers*

8-bit unsigned integer145forcerenew-nonce-capable*

blob (sequence of bytes)123geo-conf

blob (sequence of bytes)99geoconf-civic

binary144geoloc

string12host-name

byte-valued boolean36ieee802.3-encapsulation

DHCP Extension Dictionary
5

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

IP address10impress-servers*

string114initial-url

16-bit unsigned integer26interface-mtu

byte-valued boolean19ip-forwarding

IP address74irc-servers*

blob (sequence of bytes); 7 fields83iSNS

string95ldap-url

IP address7log-servers*

DNS Name (see RFC 5223)137lost-server

IP address9lpr-servers*

IP address92lq-associated-ip*

unsigned time91lq-client-last-transaction- time

byte-valued boolean30mask-supplier

16-bit unsigned integer22max-dgram-reassembly

IP address128mcns-security-server

string14merit-dump

IP address68mobile-ip-home-agents*

binary; 3 suboptions139

suboptions:

mos-address

IP address1is

IP address2cs

IP address3es

binary; 3 suboptions140

suboptions:

mos-fqdn

DNS name1is

DNS name2cs

DNS name3es

IP address5name-servers*

DHCP Extension Dictionary
6

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

16-bit unsigned integer117name-service-search*

string87nds-context

IP address85nds-servers*

string86nds-tree

IP address45netbios-dd-servers*

IP address44netbios-name-servers*

8-bit unsigned integer46netbios-node-type

string47netbios-scope

IP address112netinfo-parent-server-addr

string113netinfo-parent-server-tag

string62netwareip-domain

blob (sequence of bytes)63netwareip-information

string64nis+-domain

IP address65nis+-servers*

string40nis-domain

IP address41nis-servers*

IP address71nntp-servers*

byte-valued boolean20non-local-source-routing

IP address42ntp-servers*

No length0pad

IP address(es) (see RFC 5192)136pana-agent

unsigned time24path-mtu-aging-timeout

16-bit unsigned integer25path-mtu-plateau-tables*

byte-valued boolean29perform-mask-discovery

IP address (there can be two policy filters,
each one having its own IP address)

21policy-filters*

IP address70pop3-servers*

string (see RFC 4833)100posix-timezone

DHCP Extension Dictionary
7

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

16-bit unsigned integer93pxe-client-arch

blob (sequence of bytes); 2 fields: type-flag
and uuid

97pxe-client-machine-id

blob (sequence of bytes); 2 fields: type-flag
and version

94pxe-client-network-id

string209pxelinux-config-file

string210pxelinux-path-prefix

unsigned time211pxelinux-reboot-time

date155query-end-time

date154query-start-time

null-length80rapid-commit

binary; 4 fields: reserved-prf,
primary-recursive-name-server,
secondary-recursive-name-server, and
domains-and-networks

146rdnss-selection

blob (sequence of bytes)82

suboptions:

relay-agent-info suboptions:

blob (sequence of bytes)1relay-agent-circuit-id- data

blob (sequence of bytes)2relay-agent-remote-id- data

4-byte unsigned integer4relay-agent-device- class-data

IP address5relay-agent-subnet- selection-data

string identifying the network client or
subscriber

6subscriber-id

supported attributes are user, class, and
framed-pool

7radius-attributes

binary8authentication

vendor options9v-i-vendor-opts

IP address150cisco-subnet-selection

binary151cisco-vpn-id

IP address152cisco-server-id-override

DHCP Extension Dictionary
8

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

The relay-agent-circuit-id, relay-agent-remote-id, and relay-agent-device-class suboptions, which
returned the two bytes (suboption code and data length) preceding the suboption data, are
deprecated, but still available.

Note

IP address11resource-location-servers*

string17root-path

byte-valued boolean31router-discovery

IP address32router-solicitation-address

IP address3routers*

blob (sequence of bytes); 2 fields: flag and
sip-server-list

120sip-servers

DNS name141sip-ua-cs-domains

blob (sequence of bytes); 2 fields: mandatory
and agent-ip-list

78slp-directory-agent*

blob (sequence of bytes); 2 fields: mandatory
and slp-scope-list

79slp-service-scope*

IP address69smtp-servers*

unsigned time153start-time-of-state

IP address33static-routes*

binary; 2 fields: status-code and
status-message

151status-code

IP address76streettalk-directory-
assistance-servers*

IP address75streettalk-servers*

blob (sequence of bytes); 5 fields: flags,
subnet-request, subnet-info, subnet-name,
and subnet-suggested-lease-time

220subnet-alloc

IP address1subnet-mask

IP address118subnet-selection

IP address16swap-server

byte-valued boolean39tcp-keepalive-garbage

unsigned time38tcp-keepalive-internal

string66tftp-server

DHCP Extension Dictionary
9

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

IP address150tftp-server-address*

signed time2time-offset

IP address4time-servers*

byte-valued boolean34trailer-encapsulation

string (see RFC 4833)101tzdb-timezone

string98user-auth

binary158v4-pcp-server*

binary; 3 fields: offset, psid-len, and psid159v4-portparams

blob (sequence of bytes)124v-i-vendor-class

blob (sequence of bytes)125v-i-vendor-info

blob (sequence of bytes)43vendor-encapsulated-options

blob (structured); 2 fields: flag and vpn-id185vpn-id

IP address72www-servers*

IP address49x-display-managers*

The table below lists the DHCPv6 options.

Access to these options is available using the putOption, getOption, and removeOptionmethods only.Note

Table 4: DHCPv6 Options

ValueNumberName (*=multivalue)

container (of options)974rd

binary; 6 fields: prefix4-len, prefix6-len, ea-len, flags,
rule-ipv4-prefix, and rule-ipv6-prefix

984rd-map-rule

binary; 3 fields: flags, traffic-class, and domain-pmtu994rd-non-map-rule

DNS name57access-domain

binary; 1 field: reserved-AP84addrsel

binary; 3 fields: label, precedence, and prefix85addrsel-table

DNS name64aftr-name

DHCP Extension Dictionary
10

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

blob (sequence of bytes)108ani-ap-bssid

string107ani-ap-name

binary; 2 fields: reserved and att105ani-att

string106ani-network-name

blob (sequence of bytes)109ani-operator-id

string110ani-operator-realm

binary; 5 fields: protocol, algorithm,
replay-detection-method, replay-detection, and auth-info

11auth

IPv6 address34bcmcs-server-a*

DNS name33bcmcs-server-d*

counted-type; 2 fields: typecnt-size and parameter60bootfile-param

string59bootfile-url

vendor-opts; 27 suboptions17

suboptions:

cablelabs-17 (vendor-opts ID: 4491)

16-bit unsigned integer1oro

string2device-type

string3embedded-components-list

string4device-serial-number

string5hardware-version-number

string6software-version-number

string7boot-rom-version

string8vendor-oui

string9model-number

string10vendor-name

string15ecm-cfg-encaps

IPv6 address32tftp-servers

string33config-file-name

IPv6 address34syslog-servers

DHCP Extension Dictionary
11

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

binary35modem-capabilities

binary36device-id

IPv6 address37rfc868-servers

signed time38time-offset

8-bit unsigned integer39ip-pref

binary; 2 suboptions40

suboptions:

acs-server

8-bit unsigned integer0flag

0server

binary; 2 suboptions41

suboptions:

radius-server

8-bit unsigned integer0flag

0server

IPv6 address42cer-id

IPv6 address61ccap-cores

binary1025cmts-capabilities

binary1026cm-mac-address

binary1027erouter-container

binary; 2 suboptions (various data types)2170

suboptions:

cablelabs-client-configuration

IP address1primary-dhcp-server

IP address2secondary-dhcp-server

binary; 9 suboptions (various data types)2171

suboptions:

cablelabs-client-configuration-v6

binary1primary-dhcpv6-server- selector-id

binary2secondary-dhcpv6-server- selector-id

binary3provisioning-server

binary4as-backoff-retry

DHCP Extension Dictionary
12

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

binary5ap-backoff-retry

DNS name6kerberos-realm

unsigned 8-bit7use-tgt

unsigned 8-bit8provisioning-timer

unsigned 16-bit9ticket-control-mask

unsigned 32-bit2172cablelabs-correlation-id

string103captive-portal

IPv6 address52capwap-ac-v6*

unsigned 16-bit61client-arch-type*

container (of options)45client-data

binary; 2 fields: flags and domain-name39client-fqdn

blob (sequence of bytes)1client-identifier

binary; 2 fields: link-layer-type and link-layer-address79client-linklayer-address

unsigned time (see RFC 5007)46clt-time

IPv6 address88dhcp4-o-dhcp6-server

blob (sequence of bytes)87dhcpv4-msg

IPv6 address23dns-servers*

DNS name24domain-list

unsigned 16-bit8elapsed-time

unsigned 16-bit (see RFC 4994)43ero

DNS name65erp-local-domain-name

binary36geoconf-civic

blob (sequence of bytes)63geoloc

binary; 3 fields: iaid, t1, and t23ia-na

binary; 3 fields: iaid, t1, and t225ia-pd

binary; 1 field: iaid4ia-ta

binary; 3 fields: address, preferred-lifetime, and
valid-lifetime

5iaaddr

DHCP Extension Dictionary
13

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

binary; 4 fields: preferred-lifetime, valid-lifetime,
prefix-length, and prefix

26iaprefix

unsigned time83inf-max-rt

unsigned time32info-refresh-time

blob (sequence of bytes)18interface-id

IPv6 address143ipv6-adddress-andsf*

string77krb-default-realm-name

binary; 5 fields: priority, weight, transport-type,
kdc-ipv6-address, and realm-name

78krb-kdc

binary; 2 fields: name-type and name-string75krb-principal-name

string76krb-realm-name

IPv6 address80link-address

DNS Name (see RFC 5223)51lost-server

unsigned 32-bit100lq-base-time

IPv6 address(es) (see RFC 5007)48lq-client-links*

unsigned 32-bit102lq-end-time

binary structured (see RFC 5007)44lq-query

binary (DHCPv6 message) (see RFC 5007)47lq-relay-data

unsigned 32-bit101lq-start-time

IPv6 address72mip6-haa

DNS name73mip6-haf

DNS name49mip6-hnidf

binary; 2 fields: prefix-length and prefix71mip6-hnp

container (of options)69mip6-idinf

container (of options)70mip6-udinf

container (of options)50mip6-vdinf

binary; 3 suboptions54

suboptions:

mos-address

IPv6 address1is

DHCP Extension Dictionary
14

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

IPv6 address2cs

IPv6 address3es

binary; 3 suboptions55

suboptions:

mos-fqdn

DNS name1is

DNS name2cs

DNS name3es

blob (sequence of bytes)104mpl-parameters

string (RFC 4833)41new-posix-timezone

string (RFC 4833)42new-tzdb-timezone

binary; 3 fields: type, major, and minor62nii

DNS name29nis-domain-name*

IP address27nis-servers*

DNS name30nisp-domain-name*

IP address28nisp-servers*

binary; 3 suboptions (various data types)56ntp-server

unsigned 16-bit6oro

IPv6 address(es) (see RFC 5192)40pana-agent*

binary; 2 fields: prefix-length and subnet-id67pd-exclude

unsigned 8-bit7preference

binary; 3 fields: ASM-mPrefix64, SSM-mPrefix64, and
uPrefix64

113prefix64

blob (sequence of bytes)81radius

zero size14rapid-commit

binary; 3 fields: recursive-name-server, reserved-and-prf,
and domains-and-networks

74rdnss-selection

zero size20reconfigure-accept

unsigned 8-bit19reconfigure-message

binary38relay-agent-subscriber-id

DHCP Extension Dictionary
15

DHCP Extension Dictionary
DHCP Extension Dictionary

ValueNumberName (*=multivalue)

blob (sequence of bytes)53relay-id

binary9relay-message

unsigned 16-bit135relay-port

binary; 2 fields: enterprise-id and remote-id37remote-id

container (of options)66rsoo

IPv6 address90s46-br

container (of options)96s46-cont-lw

container (of options)94s46-cont-mape

container (of options)95s46-cont-mapt

IPv6 variable-length prefix91s46-dmr

binary; 3 fields: offset, psid-len, and psid93s46-portparams

unsigned 16-bit111s46-priority*

binary; 5 fields: flags, ea-len, prefix4-len, ipv4-prefix,
and prefix6

89s46-rule

binary; 2 fields: ipv4-address and bind-ipv6-prefix92s46-v4v6bind

blob (sequence of bytes)2server-identifier

IPv6 address12server-unicast

IPv6 address22sip-servers-address

DNS name21sip-servers-name

DNS name58sip-ua-cs-domains

IPv6 address31sntp-servers*

unsigned time82sol-max-rt

binary; 2 fields: status-code and status-message13status-code

counted-type; 2 fields: typecnt-size and user-data15user-class

IPv6 address86v6-pcp-server*

vendor-class16vendor-class

vendor-opts (see also cablelabs-17)17vendor-opts

binary; 2 fields: flags and vpn-id68vpn-id

DHCP Extension Dictionary
16

DHCP Extension Dictionary
DHCP Extension Dictionary

There are also multiple instance options (that is, you may configure more than one instance of the option
- not just multiple values in a single option). The options that can have multiple instances are:

• ia-na

• ia-pd

• ia-ta

• iaaddr

• iaprefix

• rdnss-selection

• s46-br

• s46-cont-mape

• v6-pcp-server

Note

Request Dictionary
The table below lists the data items that you can set in the request dictionary at any time. The DHCP server
reads them at various times. Unless indicated otherwise, all operations are read/write.

Table 5: Request Dictionary Specific Data Items

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

int (v4,v6)active-leasequery-control

Controls the sending of a lease (such as only on specific state changes). Values are: 0—unspecified (the
server determines whether to send the notification), 1—send (the server will send the notification), and
2—do not send (the server will not send the notification). The active-leasequery-control is initialized as 0,
that is, unspecified.

int (v4)allow-bootp

If set to 1, allows BOOTP for any scope for this request. Read during scope selection and while checking
for lease acceptability.

int (v4)allow-dhcp

If set to a 1, allows DHCP for any scope for this request. Read during scope selection and while checking
for lease acceptability.

int (v4)allow-dynamic-bootp

If set to a 1, allows dynamic BOOTP for any scope for this request. Read during scope selection and while
checking for lease acceptability.

blob (v4)bootp-reply-options

DHCP Extension Dictionary
17

DHCP Extension Dictionary
Request Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

Overrides any v4-bootp-reply-options in any policy; read when gathering data for the output packet. (There
are no IPv6 bootp-reply-options.)

string (v4, v6)client-class-name

Name of the client-class used to complete the client information (if any). Read-only.

string (v4, v6)client-class-policy

Name of the policy that is associated with the client-class. If set, it must be with the name of a policy that
was already configured in the server.

string (v4, v6)client-domain-name

Domain name that the client wants to use. If it does not exist, in which case the DHCP server uses the domain
name specified in the scope. Read when queuing the request for DNS update just prior to the update of stable
storage. For DHCPv6, overrides the client-fqdn value and used for DNS updates.

string (v4, v6)client-host-name

Hostname for the client in DNS; read when queuing in the request for a DNS update just before updating
stable storage. Places the actual name in DNS when that operation finishes. For DHCPv6, overrides the
client-fqdn value and used for DNS updates.

blob (v4, v6)client-id

Client identification that the server uses to track the client. Can be the client-id sent with a request or internally
generated from theMAC address. See client-id-created-from-mac-address. For DHCPv6, the Client Identifier
Option value (the client's DUID).

int (v4)client-id-created-from-mac-address

If set to 1, the client-id must be created for internal use from the client-supplied MAC address and should
not be used in reporting.

IP address (v4)client-ipaddress

IP address from which the client sent its packet. Note that it could be zero if the client does not yet have an
IP address.

blob (v4, v6)client-limitation-id

Limitation ID for the client.

blob (v4, v6)client-lookup-id

Client lookup ID calculated by the client-lookup-id expression of the client-class.

blob (v4)client-mac-address

MAC address stored in the client object associated with the request dictionary. Has the same format (and
was created from) the mac-address.

DHCP Extension Dictionary
18

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

int (v4)client-os-type

Change the client entry of the request packet by setting this at the pre-client-lookup or post-client-lookup
extension points. Can also be read at check-lease-acceptable, but cannot be set there. To set the value, you
must first set the os-type in the post-packet-decode request dictionary.

blob (v4, v6, read-only)client-packet

The client portion of the received packet. For DHCPv4, this is the complete packet. For DHCPv6, this is
the client message. (See packet to obtain the full packet.)

string (v4, v6)client-policy

Name of the policy that is associated with the client entry. If set, must be the name of a preconfigured policy
in the DHCP server.

int (v4, v6)client-port

Port from which the client sent its request.

string (v4)client-requested-host-name

Hostname that the client requested be used for the DNS update. The DHCP server saves this information so
that a change can be detected.

boolean (v6, read-only)client-unicast

True if the received packet was unicast by the client to the server.

int (v4)client-wants-nulls-in-strings

Determines whether the DHCP server returns strings to the client terminated with a null. If set to 1, the
server terminates strings with a null. If set to 0, it does not terminate strings with a null. Set before
post-packet-decode and read when encoding the response packet after pre-packet-encode.

int (v4, v6, read-only)derived-vpn-id

VPN identifier. See vpn-name for details.

IP address (v6, read-only)destination-ipaddress

Destination IPv6 address of the packet.

blob (v4, v6)dhcp-reply-options

Overrides any v4-reply-options or v6-reply-options specified in a policy; read when gathering data for the
output packet.

int (v4, v6, write-only)dump-packet

When set to 1, Cisco Prime Network Registrar dumps the current decoded DHCP/BOOTP packet to the log
file. An extension can put the value 1 into this data item at multiple points in its execution. This might be
useful when debugging extensions.

DHCP Extension Dictionary
19

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

int (v4, v6, read only)failover-role

Determines the failover server role. The failover server role can be one of three values:

• • None—Failover is not configured.
• Main/Backup—Failover is configured and the role of the failover server.

int (v4, v6, read only)failover-state

Determines failover server state. The failover state can be normal, partner-down, communications-interrupted,
recover, potential-conflict, recover-done, startup, shutdown, or paused. If failover is not configured the value
is none.

int (v4)import-packet

Determines whether the server treats the packet as if it came from an import client. If set to 1, the server
treats the client as an import client and performs all DNS operations on it before sending an ACK. Read
when checking the server import mode (right after post-packet-decode), getting ready for DNS processing,
and when setting the reply address.

int (v4)limitation-count

Number of simultaneous users allowed with the same limitation-id.

blob (v4)limitation-id

Calculated by the limitation-id expression (if any) for the client-class in which this request falls.

int (v4, v6)limitation-id-null

Set to 1(TRUE) if the limitation-id is null, 0 (FALSE) if another value.

int (v4, v6)log-client-criteria-processing

If set to a 1, logs the criteria processing for the client for this request. Read when trying to acquire a new
lease for a client that does not have one, and when checking for lease acceptability.

int (v4, v6)log-client-detail

If set to a 1, logs the client-class processing for this request. Read at the end of client-class processing, after
post-client-lookup.

int (v4, v6)log-dns-update-detail

If set to a 1, logs DNS update details for this request.

int (v4)log-dropped-bootp-packets

If set to a 1, logs dropped BOOTP packets for this request.

int (v4, v6)log-dropped-dhcp-packets

If set to a 1, logs dropped DHCP packets for this request.

DHCP Extension Dictionary
20

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

int (v4, v6)log-dropped-waiting-packets

If set to a 1, logs dropped waiting packets for this request.

int (v4)log-failover-detail

If set to a 1, logs a more detailed level of failover activity, such as all failover state changes.

int (v4, v6)log-incoming-packet-detail

If set to a 1, checks whether detailed incoming packet tracing occurred for this request, so that you do not
need to put a separate trace on it. Read before packet decoding and the first extension point.

int (v4, v6)log-incoming-packets

If set to a 1, logs the incoming packets for this request. Read after post-decode-packet.

int (v4)log-ldap-create-detail

If set to a 1, logs messages whenever the DHCP server initiates a lease state entry creation to, receives a
response from, or retrieves a result or error message from an LDAP server.

int (v4, v6)log-ldap-query-detail

If set to a 1, logs messages whenever the DHCP server initiates a query to, receives a response from, or
retrieves a query result or an error message from an LDAP server.

int (v4)log-ldap-update-detail

If set to a 1, logs messages whenever the DHCP server initiates an update lease state to, receives a response
from, or a retrieves a result or error message from an LDAP server.

int (v4, v6)log-leasequery

If set to a 1, logs messages when leasequery packets are processed without internal errors and result in an
ACK or a NAK.

int (v4, v6)log-missing-options

If set to a 1, logs missing options (those a client requests but the DHCP server cannot return). Read while
gathering data for the response.

int (v4, v6)log-outgoing-packet-detail

If set to a 1, logs a detailed dump of the outgoing packet for this request. Read after pre-packet-encode and
just before sending the packet to the DHCP client.

int (v4, v6)log-success-messages

If set to a 1, logs the success messages.

int (v4, v6)log-unknown-criteria

DHCP Extension Dictionary
21

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

If set to a 1, logs any unknown criteria specified in the client inclusion or exclusion criteria for this request.
Read when acquiring a new client lease or checking lease acceptability for an existing client.

int (v6)log-v6-lease-detail

If set to 1, logs individual messages about DHCPv6 leasing activity.

blob (v4)mac-address

MAC address that came in the client packet. The first byte is the hardware type, the second is the hardware
length, and the remaining (up to 16) is the information from the chaddr read just after post-packet-decode.
This is a useful aggregation of the htype, hlen, and chaddr fields of the DHCP packet. When read it is
constructed from these fields; when written it is placed into these fields.

integer (v4, v6)max-client-lookups

Maximum number of client database lookups allowed. Usually a small integer such as 2; the preset value is
1.

blob (v4, v6)override-client-id

Blob used for the current client-id value. Replaces any client-id from the incoming packet (although both
values are kept in the lease state database).

string (v4, v6, read-only)override-client-id-data-type

Returns the data type of the override-client-id, either “nstr” for string or “blob” for blob.

string (v4, v6)override-client-id-string

Current client-id value in string format that replaces any client-id from the incoming packet (although both
values are kept in the lease state database). For a get, if the override-client-id is not a string, the binary data
is formatted as blob data, which is then returned as the “string.”

blob (v4, v6)packet

The received packet. For DHCPv4, this is the same as client-packet. For DHCPv6, this is the full packet if
relayed or the same as client-packet if not relayed. It should only be written from the pre-packet-decode
extension point; the server then decodes this new packet instead of the packet received from the client.

int (v4)ping-clients

If set to a 1, performs a ping before offering a lease for this request. Read just before determining if a lease
is acceptable for a client.

blob (v4, v6)relay-agent-circuit-id

Contents of the circuit-id suboption of option 82.

blob (v4, v6)relay-agent-circuit-id-data

Contents of just the data part of the circuit-id suboption of option 82.

DHCP Extension Dictionary
22

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

blob (v4, v6)relay-agent-device-class-data

Contents of the device-class suboption of option 82.

blob (v4)relay-agent-radius-attributes

Contents of the radius suboption of option 82.

string (v4)relay-agent-radius-class

Encapsulated class attribute of the radius suboption of option 82.

string (v4)relay-agent-radius-pool-name

Encapsulated framed-pool attribute of the radius suboption of option 82.

string (v4)relay-agent-radius-user

Encapsulated user attribute of the radius suboption of option 82.

blob (v4, v6)relay-agent-remote-id

Contents of the remote-id suboption of option 82.

blob (v4, v6)relay-agent-remote-id

Contents of just the data part of the remote-id suboption of option 82.

IPv6 address (v4, v6)relay-agent-server-id-override-data

Contents of the server-id suboption of option 82. If the IANA suboption 182 is in the packet, that value
appears; otherwise, the Cisco suboption 152 value appears.

string (v4)relay-agent-subscriber-id

Contents of the subscriber-id suboption of option 82.

int (v6, read-only)relay-count

Number of DHCPv6 relay hops.

blobreply-options

Overrides any DHCPv4 reply options specified in any policy. Read when gathering data for the output
packet.

int (v4, v6)reply-to-client-address

For v4, if set to 1, the server sends the response packet to the client-ipaddress and the client-port. For v6, if
set to 1, the server sends the response packet back to the address and port of the sender (client or relay agent).
If 0, the server sends the response using the RFC mandated algorithm.

IP address (v4, read/write)reserved-addresses

DHCP Extension Dictionary
23

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

List of addresses reserved for the client. The first available address to match a usable Scope (which must
have restrict-to-reservations enabled) will be assigned to the client.

IP address (v6, read/write)reserved-ip6addresses

List of addresses reserved for the client. All available addresses to match a usable Prefix (which must have
restrict-to-reservations enabled) will be assigned to the client.

IP address (v6, read/write)reserved-prefixes

List of prefixes reserved for the client. All available prefixes to match a usable Prefix (which must have
restrict-to-reservations enabled) will be assigned to the client.

string (v4, v6)selection-criteria

Comma-separated string that contains the scope selection criteria.

string (v4, v6)selection-criteria-excluded

Comma-separated string that contains the scope exclusion criteria.

int (v4, v6)send-ack-first

If set to a 1, updates DNS after the ACK for DHCP requests. Read just before initiating the DNS operation.

IPv6 address (v6, read-only)source-ipaddress

IPv6 source address of the packet.

string (v4, v6, read-only)trace-id

ID used by the system to trace the packet.

int (v4, v6)transaction-time

Time, in seconds since 1970, that the input packet was decoded.

string (v4, v6)update-dns

Requests partial, full, or no dynamic DNS updates on a per-request packet basis. Input and output values
are: 1=update-all, 2=update-fwd-only, 3=update-rev-only, and 0=update-none.

int (v4)update-dns-for-bootp

If set to a 1, updates DNS for BOOTP requests for this request. Read just before initializing the DNS operation
for BOOTP.

int (v4, v6)verbose-logging

If set to a 1, logs verbose messages for this request. Read at various times during processing.

string (v4, v6, read-only)vpn-description

Description for the VPN. See vpn-name for details.

DHCP Extension Dictionary
24

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

string (v4, v6, read-only)vpn-name

Name of the VPN. The request dictionary does not have valid values for these items at post-packet-decode,
but does at all other extension points, because the VPN has not yet been determined. This is so that a script
can change the derived-vpn-id option or suboption at post-packet-decode and thereby affect the VPN used
for a lease.

blob, typically 7 bytes (v4, v6, read-only)vpn-vpn-id

Virtual private network identifier. See vpn-name for details.

string (v4, v6, read-only)vpn-vrf-name

Virtual routing and forwarding table identifier for the VPN. See vpn-name for details.

Response Dictionary
The table below lists the data items you can set in the response dictionary at any time. The DHCP server reads
them at various times. Unless indicated otherwise, the operation is read/write.

Table 6: Response Dictionary Specific Data Items

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

int (v4,v6)active-leasequery-control

Controls the sending of a lease (such as only on specific state changes). Values are: 0—unspecified (the
server determines whether to send the notification), 1—send (the server will send the notification), and
2—do not send (the server will not send the notification). The active-leasequery-control is initialized as 0,
that is, unspecified.

int (v6, read-only)client-active-lease-count

Number of active leases on the DHCPv6 client.

int (v4, v6, read-only)client-creation-time

Creation time of the client.

string (v4, read-only)client-domain-name

From the client information in the lease, the domain name that the client wants to use. It might not exist, in
which case the DHCP server uses the domain name specified in the scope. Read when queuing the request
for DNS update just prior to the update of stable storage.

int (v4, v6, read-only)client-expiration-time

The highest lease expiration time given to the client by this server (in seconds, since 1970).

string (v4, read-only)client-host-name

DHCP Extension Dictionary
25

DHCP Extension Dictionary
Response Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

From the client information in the lease, the hostname that the DHCP server puts into DNS. Read when
queueing the request for a DNS update just before updating stable storage.

blob (v4, v6, read-only)client-id

From the client information in the lease, the client identification that the server used to keep track of the
client. This might be the client-id sent with a request or internally generated from the MAC address. For
DHCPv6, the Client Identifier Option value (the client's DUID).

int (v4, read-only)client-id-created-from-mac-address

From the client information in the lease. If set to 1, the client-id must be created from the MAC address and
should not be used in reporting.

int (v4, v6, read-only)client-last-transaction-time

Time, in seconds, since 1970, that the DHCP server last heard from this client.

blob (v4, read-only)client-limitation-id

Limitation identifier of the client associated with the current lease.

blob (v4, read-only)client-mac-address

From the client information in the lease, the MAC address stored in the client object associated with the
request dictionary. Has the same format as (and was created from) the mac-address.

int (v4)client-os-type

Change the client entry of the request packet by setting this at the pre-client-lookup or post-client-lookup
extension points. Can also be read at check-lease-acceptable, but cannot be set there. To set the value, you
must first set the os-type in the post-packet-decode request dictionary.

blob (v4, v6, read-only)client-override-client-id

Blob used for the current client-id value. Replaces any client-id from the incoming packet (although both
values are kept in the lease state database).

string (v4, v6, read-only)client-override-client-id-data-type

Returns the data type of the client-override-client-id, either nstr for string or blob for blob.

string (v4, v6, read-only)client-override-client-id-string

Current client-id value in string format that replaces any client-id from the incoming packet (although both
values are kept in the lease state database). For a get, if the client-override-client-id is not a string, the binary
data is formatted as blob data, which is then returned as the “string.”

blob (v4, v6, read-only)client-packet

The client portion of the response packet. For DHCPv4, this is the complete packet. For DHCPv6, this is
the client message. (See packet to obtain the full packet.) Only available from the post-packet-encode
extension point.

DHCP Extension Dictionary
26

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

string (v6)client-reconfigure-key

Returns the client-reconfigure-key attribute value of the DHCPv6 lease.

string (v6)client-reconfigure-key- generation-time

Returns the client-reconfigure-key-generation-time attribute value of the DHCPv6 lease.

IPv6 address (v6, read-only)client-relay-address

Source IPv6 address for the (last) relay.

string (v6, read-only)client-relay-message

Last relayed DHCPv6 message, excluding the client message.

string (v4)client-requested-host-name

From the client information in the lease, the hostname that the client requested for the DNS update.

string (v4, v6, read-only)client-user-defined-data

Returns the value previously or currently associated with the client, as derived from the user-defined-data
environment dictionary data item. It returns the previously associated value if requested in a
check-lease-acceptable or lease-state-change extension point. It returns the current value if requested in
a pre-packet-encode or post-send-packet extension point.

string (v4, v6)client-vendor-class

Returns the client-vendor-class attribute value of the DHCPv4 or DHCPv6 lease.

string (v4, v6)client-vendor-info

Returns the client-vendor-info attribute value of the DHCPv4 or DHCPv6 lease.

int (v6, read-only)client-write-sequence

Write sequence of the client IPv6 request.

int (v6, read-only)client-write-time

Time of the client IPv6 write request.

int (v4, v6, read-only)derived-vpn-id

VPN identifier.

int (v4)domain-name-changed

If set to 1, the domain name in the current packet differs from the domain name used in the DNS update.
Read after check-lease-acceptable and before pre-packet-encode.

int (v4, v6, write-only)dump-packet

DHCP Extension Dictionary
27

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

When set to 1, Cisco Prime Network Registrar dumps the current decoded DHCP/BOOTP packet to the log
file. An extension can put the value 1 into this data item at multiple points in its execution. This might be
useful when debugging extensions.

int (v4, v6, read only)failover-role

Determines the failover server role. The failover server role can be one of three values:

• • None—Failover is not configured.

• Main/Backup—Failover is configured and the role of the failover server

int (v4, v6, read only)failover-state

Determines failover server state. The failover state can be normal, partner-down, communications-interrupted,
recover, potential-conflict, recover-done, startup, shutdown, or paused. If failover is not configured the value
is none.

int (v4)host-name-changed

If set to 1, the hostname in the current packet differs from that used in the DNS update. Read after
check-lease-acceptable and before pre-packet-encode.

int (v4, v6)host-name-in-dns

If set to 1, the hostname is in DNS. Read after check-lease-acceptable and before pre-packet-encode.
Written after the hostname goes into DNS.

int (v6, read-only)lease-binding-iaid

IPv6 lease binding IAID.

int (v6, read-only)lease-binding-rebinding-time

IPv6 lease binding rebinding time.

int (v6, read-only)lease-binding-renewal-time

IPv6 lease binding renewal time.

string (v6, read-only)lease-binding-type

IPv6 lease binding type: "IA_NA", "IA_TA", or "IA_PD".

int (v4, v6, read-only)lease-client-reserved

Returns 1 if the lease is client reserved and 0 if not.

string (v6, read-only)lease-creation-time

IPv6 lease creation time.

int (v4, v6, read-only)lease-deactivated

DHCP Extension Dictionary
28

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

If set to 1, reports that the lease is deactivated.

IP address (v4, v6, read-only)lease-dns-forward-backup-server-address

Address of the backup DNS server that receives DNS updates for the DHCPv4 and DHCPv6 lease, if the
server specified in lease-dns-forward-server-address is down.

IP address (v4, v6, read-only)lease-dns-forward-server-address

Address of the DNS server that receives dynamic DNS updates for the DHCPv4 and DHCPv6 lease.

string (v4, v6, read-only)lease-dns-forward-update

Name of the update configuration that determines the forward zones to be included in DNS updates for the
DHCPv4 and DHCPv6 lease. Returns TRUE if update-all or update-fwd-only is set.

string (v4, v6, read-only)lease-dns-forward-zone-name

Name of an optional forward zone for DNS updates.

IP address (v4, v6, read-only)lease-dns-reverse-backup-server-address

Address of the backup DNS server that receives DNS updates for a DHCPv4 and DHCPv6 lease, if the
server specified in lease-dns-reverse-server-address is down.

int (v4, read-only)lease-dns-reverse-host-bytes

The number of bytes in a lease IP address to use for a reverse zone.

int (v6, read-only)lease-dns-reverse-prefix-length

Prefix length of the reverse zone for ip6.arpa updates.

IP address (v4, v6, read-only)lease-dns-reverse-server-address

Address of the DNS server address that receives dynamic DNS updates for the DHCPv4 and DHCPv6 lease.

string (v4, v6, read-only)lease-dns-reverse-update

Name of the update configuration that determines which reverse zones to include in a DNS update for the
DHCPv4 and DHCPv6 lease. Returns TRUE if update-all or update-fwd-only is set.

string (v4, v6, read-only)lease-dns-reverse-zone-name

DNS reverse (in-addr.arpa and ip6.arpa) zone that is updated with PTR records.

string (v6, read-only)lease-fqdn

Fully qualified domain name assigned to the DHCPv6 lease by the server (and possibly successfully entered
into DNS).

The lease-fqdn may be the name that is expected to be added to DNS for the lease or the actual name added.
If host-name-in-dns is equal to true, the actual lease-fqdn is in DNS.

DHCP Extension Dictionary
29

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

IP address (v4, read-only)lease-giaddr

Lease giaddr.

IPv4 or IPv6 address or prefix (v4, v6, read-only)lease-ipaddress

For DHCPv4, the address of the lease associated with the client. For DHCPv6, the IPv6 address or IPv6
prefix (address and prefix-length) of the lease for the current context (See setObject method).

int (v6, read-only)lease-preferred-lifetime

Preferred lifetime of the IPv6 lease.

string (v6, read-only)lease-prefix-name

Prefix name of the IPv6 lease.

blob (v4)lease-relay-agent-info

Entire contents of option 82.

blob (v4)lease-relay-agent-circuit-id

Accesses and manipulates the relay agent circuit ID as stored with the lease of a response. Requires the
suboption number 1 as the first byte. Deprecated in favor of the lease-relay-agent-circuit-id-data item.

blob (v4, use instead of deprecated
lease-relay-agent-circuit-id)

lease-relay-agent-circuit-id-data

Accesses and manipulates the relay-agent-circuit-id-data as stored with the lease of a response.

blob (v4)lease-relay-agent-device-class-data

Contents of the device-class suboption of option 82.

blob (v4)lease-relay-agent-radius-attributes

Contents of the radius suboption of option 82.

string (v4)lease-relay-agent-radius-class

Encapsulated class attribute of the radius suboption of option 82.

string (v4)lease-relay-agent-radius-pool-name

Encapsulated framed-pool attribute of the radius suboption of option 82.

string (v4)lease-relay-agent-radius-user

Encapsulated user attribute of the radius suboption of option 82.

blob (v4)lease-relay-agent-remote-id

DHCP Extension Dictionary
30

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

Accesses and manipulates the relay-agent-remote-id data as stored with the lease of a response. Requires
suboption number 2 as the first byte. Deprecated in favor of the lease-relay-agent-remote-id-data item.

blob (v4, use instead of lease-relay-agent-remote-id
item)

lease-relay-agent-remote-id-data

Accesses and manipulates the relay-agent-remote-id-data as stored with the lease of a response.

IP address (v4)lease-relay-agent-server-id- override-data

Accesses and manipulates the relay-agent-server-id-override-data as stored with the lease of a response.

IP address (v4)lease-relay-agent-subnet- selection-data

Accesses and manipulates the relay-agent-subnet-selection-data as stored with the lease of a response.

string (v4)lease-relay-agent-subscriber-id

Contents of the subscriber-id suboption of option 82.

blob (v4)lease-relay-agent-vpn-id-data

Accesses and manipulates the relay-agent-vpn-id data as stored with the lease of a response.

string (v6, read-only)lease-requested-fqdn

Partial or fully qualified domain name most recently requested by the client for the DHCPv6 lease.

int (v6, read-only)lease-requested-prefix-length

The recorded client's requested prefix length, if provided, for a IA_PD binding. This may be 0 if the client
did not send in a request for a specific prefix length.

int (v4, v6, read-only)lease-reserved

Returns 1 if the lease is lease reserved and 0 if not.

int (v4, v6, read-only)lease-start-time-of-state

Time, in seconds since 1970, that this lease was first placed into its current state.

string (v4, v6, read-only)lease-state

State of the lease, which can be available, offered, leased, expired, unavailable, released, other-available
(DHCPv4 only), pending-available (DHCPv4 only), or revoked (DHCPv6 only).

int (v4, v6, read-only)lease-state-expiration-time

Expiration time of the lease state.

string (v4, v6, read-only)lease-status

DHCP Extension Dictionary
31

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

Returns “nonexistent,” “owned-by-client,” or “exists.” Used to determine if a lease exists and if the current
client owns it. If “exists” is returned, the lease exists but the current owner does not own it (limited information
on the lease is available).

int (v6, read-only)lease-valid-lifetime

Valid lifetime of the IPv6 lease.

string (v4, v6, read-only)lease-vpn-description

Description for the VPN stored with the lease of a response.

int (v4, v6, read-only)lease-vpn-id

Identifier for the VPN stored with the lease of a response.

string (v4, v6, read-only)lease-vpn-name

Name of the VPN stored with the lease of a response.

blob, typically 7 bytes (v4, v6, read-only)lease-vpn-vpn-id

Virtual private network (VPN) identifier stored with the lease of a response.

string (v4, v6, read-only)lease-vpn-vrf-name

Virtual routing and forwarding table identifier for the VPN stored with the lease of a response.

blob (v4)mac-address

MAC address that came in the client packet. The first byte is the hardware type, the second is the hardware
length, and the remaining (up to 16) is the information from the chaddr. This is a useful aggregation of the
htype, hlen, and chaddr fields of the DHCP packet. When read it is constructed from these fields; when
written it is placed into these fields.

blob (v4, v6, read-only)override-client-id

Blob used for the current client-id value. Replaces any client-id from the incoming packet (although both
values are kept in the lease state database).

string (v4, v6, read-only)override-client-id-data-type

Returns the data type of the override-client-id, either “nstr” for string or “blob” for blob.

string (v4, v6, read-only)override-client-id-string

Current client-ID value in string format that replaces any client-id from the incoming packet (although both
values are kept in the lease state database).

For a get, if the override-client-id is not a string, the binary data is formatted as blob data, which is then
returned as the “string.”

blob (v4, v6, use only at post-packet-decode)packet

DHCP Extension Dictionary
32

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

The response packet. For DHCPv4, this is the same as client-packet. For DHCPv6, this is the full packet if
relayed or the same as client-packet if not relayed. It should only be read or written from the
post-packet-encode extension point; if written, the server will then send the new packet to the client.

int (v4)ping-clients

If set to 1, performs a ping before offering a lease for this request. Read just before determining a client
lease acceptability.

IPv6 prefix (v6, read-only)prefix-address

Prefix address (17 bytes—IPv6 address and prefix length).

int (v6, read-only)prefix-allocate-random

Prefix randomly allocated.

int (v6, read-only)prefix-allocate-via-best-fit

Prefix allocated via the best fit.

int (v6, read-only)prefix-allocate-via-client-request

Prefix allocated via client request.

int (v6, read-only)prefix-allocate-via-extension

Prefix allocated via an extension.

int (v6, read-only)prefix-allocate-via-interface- identifier

Prefix allocated via an interface identifier.

int (v6, read-only)prefix-allocate-via-reservation

Prefix allocated via a reservation.

string (v6, read-only)prefix-allocation-group

Allocation group name for the prefix.

int (v6, read-only)prefix-allocation-group-priority

Allocation group priority for the prefix.

int (v6, read-only)prefix-deactivated

Indicates if the prefix is deactivated.

string (v6, read-only)prefix-dhcp-type

Prefix DHCP type.

string (v6, read-only)prefix-expiration-time

DHCP Extension Dictionary
33

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

Expiration time of the prefix.

string (v6, read-only)prefix-link-group-name

Link group name for the link.

string (v6, read-only)prefix-link-name

Link of the prefix.

string (v6, read-only)prefix-link-type

Link type (topological, location-independent, or universal).

string (v6, read-only)prefix-name

Name of the prefix.

IPv6 address (v6, read-only)prefix-range

IPv6 address range of the prefix.

IPv6 address (v6, read-only)prefix-range-end

Prefix's range-end (if either range-start or range-end is configured).

IPv6 address (v6, read-only)prefix-range-start

Prefix's range-start (if either range-start or range-end is configured).

int (v6, read-only)prefix-restrict-to-reservations

If set to 1, the prefix has restrict-to-reservations enabled.

string (v6, read-only)prefix-selection-tags

Selection tags of the prefix.

int (v6, read-only)relay-count

Number of DHCPv6 relay hops.

IPv4 or IPv6 address (v4, v6)reply-ipaddress

IP address to use when replying to the DHCP client. Read just after pre-packet-encode. If you change its
value in a pre-packet-encode, the IP address you place in it should be for a system that can respond to ARP
queries (unless it is a broadcast address). Even if unicast is enabled and the broadcast flag is not set in the
DHCP request, the local ARP cache is not set with a mapping from a new reply-ipaddress in the
pre-packet-encode to the MAC address in the DHCP request.

int (v4, v6)reply-port

Port to use when replying to the DHCP client. Read just after pre-packet encode.

DHCP Extension Dictionary
34

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

string (v4, v6, read-only)response-source

The source of the response (the major activity that invoked the extension). Output values are: client (Received
client packet), failover (Received binding update from the failover partner), timeout (Lease expiration or
grace period end), operator (Request from a user interface), one-lease-per-client (One lease per client
removing a client from an old lease because of a new one), unknown (None of the above).

This data item helps an extension to determine what processing it should do whether a request dictionary is
present or not. (The isValid method can also be used to determine whether a dictionary is valid.)

int (v4, v6)reverse-name-in-dns

If equal to 1, the reverse name is in DNS. Read before initializing a DNS operation.

int (v4, read-only)scope-allow-bootp

If set to 1, the scope allows BOOTP. Written after a DNS operation finishes.

int (v4, read-only)scope-allow-dhcp

If set to 1, the scope allows DHCP.

int (v4, read-only)scope-allow-dynamic-bootp

If set to 1, the scope allows dynamic BOOTP.

int (v4, read-only)scope-available-leases

Number of available leases on the current scope.

int (v4, read-only)scope-deactivated

If set to 1, the scope is deactivated.

IP address (v4, read-only)scope-dns-forward-server-address

DNS server to use for the DNS forward address.

string (v4, read-only)scope-dns-forward-zone-name

Forward zone name configured in the scope.

int (v4, read-only)scope-dns-number-of-host-bytes

Number of host bytes used by the DHCP server code that handles DNS updates.

IP address (v4, read-only)scope-dns-reverse-server-address

DNS server to use for the DNS reverse address.

string (v4, read-only)scope-dns-reverse-zone-name

Reverse zone name configured in the scope.

string (v4, read-only)scope-name

DHCP Extension Dictionary
35

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

Name of the scope that contains the lease the DHCP server is processing.

IP address (v4, read-only)scope-network-number

Network number of the scope that contains the lease the DHCP server is processing.

int (v4, read-only)scope-ping-clients

If set to 1, the scope associated with the current lease was configured to support a ping operation prior to
offering a lease.

IP address (v4, read-only)scope-primary-network-number

Network number of this primary scope.

IP address (v4, read-only)scope-primary-subnet-mask

Subnet mask of this primary scope.

int (v4, read-only)scope-renew-only

If set to 1, the scope is renew-only.

int (v4, read-only)scope-renew-only-expire-time

Absolute time, in seconds since January 1, 1970, at which a renew-only scope should cease to be renew-only.

int (v4, read-only)scope-restrict-to-reservations

If set to 1, the scope has restrict-to-reservations enabled.

string (v4, read-only)scope-selection-tags

Comma-separated string that contains the scope selection criteria. Use this data item for decisions based on
scopes.

int (v4, read-only)scope-send-ack-first

If set to 1, the scope sends an ACK before performing the rest of the processing.

IP address (v4, read-only)scope-subnet-mask

Subnet mask of the scope that contains the lease the DHCP server is processing.

string (v4, read-only)scope-update-dns

DNS updates for forward or reverse zones. Output values are: 1=update-all, 2=update-fwd-only,
3=update-rev-only, and 0=update-none.

boolean (v4, read-only)scope-update-dns-enabled

If set to 1, the scope has update DNS enabled for forward and reverse zones. Deprecated in favor of
scope-update-dns.

DHCP Extension Dictionary
36

DHCP Extension Dictionary
DHCP Extension Dictionary

Value (Protocol: v4=DHCPv4, v6=DHCPv6)Data Item

int (v4, read-only)scope-update-dns-for-bootp

If set to 1, the scope has update DNS enabled for BOOTP.

string (v4, v6, read-only)trace-id

ID used by the system to trace the packet.

int (v4, v6, read-only)transaction-time

Time, in seconds since 1970, that the request was decoded.

string (v4, v6, read-only)vpn-description

Description for the VPN.

string (v4, v6, read-only)vpn-name

Name of the VPN.

blob, typically 7 bytes (v4, v6, read-only)vpn-vpn-id

Virtual private network (VPN) identifier.

string (v4, v6, read-only)vpn-vrf-name

Virtual routing and forwarding table (VRF) identifier for the VPN.

Extension Dictionary API
This section contains the dictionary method calls to use when accessing dictionaries from Tcl extensions and
shared libraries.

Tcl Attribute Dictionary API
In an attribute dictionary, the keys are constrained to be the names of attributes as defined in the Cisco Prime
Network Registrar DHCP server configuration. The values are the string representation of the legal values
for that particular attribute. For example, IP addresses are specified by the dotted-decimal string representation
of the address, and enumerated values are specified by the name of the enumeration. This means that numbers
are specified by the string representation of the number.

Attribute dictionaries are unusual in that they can contain more than one instance of a key. These instances
are ordered, with the first instance at index zero. Some of the attribute dictionary methods allow an index to
indicate a particular instance or position in the list of instances to be referenced.

Tcl Request and Response Dictionary Methods
Attribute dictionaries use commands with which you can change and access the values in the dictionaries.
The table below lists the commands to use with the request and response dictionaries. In this case, you can
define the dict variable as request or response.

DHCP Extension Dictionary
37

DHCP Extension Dictionary
Extension Dictionary API

See the install-path/examples/dhcp/tcl/tclextension.tcl file for examples.

Table 7: Tcl Request and Response Dictionary Methods

SyntaxMethod

$dict get attribute [index [bMore]]get

Returns the value of the attribute from the dictionary, represented as a string. If the dictionary does not
contain the attribute, the empty string is returned instead. If you include the index value, this returns the
index th instance of the attribute. Some attributes can appear more than once in the request or response
packet. The index selects which instance to return.

If you include the bMore, the get method sets bMore to TRUE if there are more attributes after the one
returned, otherwise to FALSE. Use this to determine whether to make another call to get to retrieve other
instances of the attribute.

$dict getOption arg-type [arg-data]getOption

Gets the data for an option as a string. See Table 8: Tcl arg-type and obj-type Values , on page 39 for the
arg-type values. If the next argument is a numeric value, it is assumed to be a number, otherwise a name.
Note that this function always returns a pointer to a string, which can be zero length if the option does not
exist or has length zero. For sample usage, see the Handling Vendor Class Option Data, on page 55.

$dict isValid $dict isV4 $dict isV6isValid isV4 isV6

The isValid method returns TRUE if there is a request or response (depending on the dictionary passed in);
FALSE otherwise. Extensions such as lease-state-change can use this method to determine whether a
dictionary is available.

The isV4 method returns TRUE if this extension is being called for a DHCPv4 packet; FALSE otherwise.
Calling this method from an init-entry routine returns FALSE.

The isV6 method returns TRUE if this extension is being called for a DHCPv6 packet; FALSE otherwise.
Calling this method from an init-entry routine returns FALSE.

$dict log level message ...log

Puts a message into the DHCP server logging system. The level should be LOG_ERROR, LOG_WARNING,
or LOG_INFO. The remaining arguments are concatenated and sent to the logging system at the specified
level.

Use the LOG_ERROR and LOG_WARNING levels sparingly, because the server flushes its log
file with messages logged at these levels. Using these levels for messages that are likely to occur
frequently (such as client requests) can have severe impact on disk I/O performance.

Note

$dict moveToOption arg-type [arg-data] ...moveToOption

Sets the context for subsequent get, put, and remove option operations. See Table 8: Tcl arg-type and
obj-type Values , on page 39 for the arg-type values. Note that the context can become invalid if the option
is removed (such as by removeOption).

$dict put attribute value [index]put

DHCP Extension Dictionary
38

DHCP Extension Dictionary
DHCP Extension Dictionary

SyntaxMethod

Associates a value with the attribute in the dictionary. If you omit the index or set it to the special value
REPLACE, this replaces any existing instances of the attribute with the single value. If you include the index
value as the special value APPEND, this appends a new instance of the attribute to the end of the list of
instances of the attribute. If you include the index value as a number, this inserts a new instance of the
attribute at the position indicated. If you set the index value to the special value AUGMENT, this puts the
attribute only if there is not one already.

$dict putOption data arg-type [arg-data] ...putOption

Adds an option and its data or modifies the data for an option. See Table 8: Tcl arg-type and obj-type Values
, on page 39 for the arg-type values. For sample usage, see the Handling Vendor Class Option Data, on
page 55.

$dict remove attribute [index]remove

Removes the attribute from the dictionary. If you omit the index or set it to the special value REMOVE_ALL,
this removes any existing instances of the attribute. If you include the index as a number, this removes the
instance of the attribute at the position indicated. This method always returns 1, even if the dictionary does
not contain that attribute at that index.

$dict removeOption arg-type [arg-data] ...removeOption

Removes an option. See Table 8: Tcl arg-type and obj-type Values , on page 39 for the arg-type values. For
sample usage, see the Handling Vendor Class Option Data, on page 55.

$dict setObject obj-type [data]setObject

(DHCPv6 only.) Sets the object for get, put, and remove methods, and alters the message on which the new
option methods operate. See Table 8: Tcl arg-type and obj-type Values , on page 39 for the obj-type values.
DHCPv6 extensions primarily use this method to access the leases and prefixes available for the client and
link, or to get message header fields or options from relay packets. Unlike in DHCPv4, where one lease and
scope are associated with a response, a DHCPv6 response can involve several leases and prefixes. Returns
TRUE if the object exists; FALSE otherwise. For sample usage, see the Handling Object Data, on page 56.

For leases not associated with the current client, only minimal information is available.Note

$dict trace level message ...trace

Returns a message in the DHCP server packet tracing system. At level 0, no tracing occurs. At level 1, it
traces only that the server received the packet and sent a reply. At level 4, it traces everything. The remaining
arguments are concatenated and sent to the tracing system at the specified level. The default tracing is set
using the DHCP server extension-trace-level attribute.

Table 8: Tcl arg-type and obj-type Values

Descriptionarg-type or obj-type

Enterprise-id number or name for the option definition set for the option or
suboption.

enterprise number/name

Requests that the context is reset to the “top” of the current client or relay
message.

home

DHCP Extension Dictionary
39

DHCP Extension Dictionary
DHCP Extension Dictionary

Descriptionarg-type or obj-type

Number or keyword (replace, append, augment, raw, or remove_all) for the
array index on which to operate.

index number/keyword

Returns the number of array index entries in the option.index-count

Instance number of the option (primarily used for DHCPv6).instance number

Returns the number of times the option appears (if 0, the option is not present).instance-count

Name of a Tcl variable that is set to TRUE or FALSE, depending on whether
more array index entries exist in the option data.

more tcl-variable-name

Requests that the context be set to the option.move-to

Option number or name to operate on.option number/name

Requests that the context is moved up one option.parent

Suboption number or name to operate on.suboption number/name

Vendor name for the option definition set for the option or suboption.vendor name

Used with setObject, sets the context for the lease, binding, and prefix data
items in the response dictionary to the indicated lease. The initial keyword
requests that the original context for when the extension was called is restored.
The index requests that the numbered lease (starting at 0) is set and can be
used to iterate through all of the leases for the client. The address or prefix
requests that the lease with that address or prefix is set (if it exists).

lease initial | index | address
| prefix

Used with setObject, sets the context for the message data items and options
in the request or response dictionary to the indicated message. The initial
keyword sets the context to the client message. The number sets the context
to the relay message, with 0 specifying the relay closest to the client.

message initial | number

Used with setObject, sets the context for the prefix data items in the response
dictionary to the indicated prefix. The initial keyword requests that the
original context for when the extension was called is restored. The index
requests the numbered prefix (starting at 0) is set and can be used to iterate
through all of the prefixes for the client on the link. The address or prefix
requests that the prefix for the address or prefix is set (if found). The name
requests that the named prefix is found. Note that only prefixes on the current
link can be used.

prefix initial | index | address
| prefix | name

Tcl Environment Dictionary Methods
The table below describes the commands to use with the environment dictionary. In this case, you can define
the dict variable as environ, as in the following procedure example:

proc tclhelloworld2 { request response environ } {
$environ put trace-level 4
$environ log LOG_INFO "Environment hello world"
}

DHCP Extension Dictionary
40

DHCP Extension Dictionary
Tcl Environment Dictionary Methods

Table 9: Tcl Environment Dictionary Methods

SyntaxMethod

$dict clearclear

Removes all entries from the dictionary.

$dict containsKey keycontainsKey

Returns 1 if the dictionary contains the key, otherwise 0.

$dict firstKeyfirstKey

Returns the name of the first key in the dictionary. Note that the keys are not stored sorted by name. If a key
does not exist, returns the empty string.

$dict get keyget

Returns the value of the key from the dictionary. If a key does not exist, returns the empty string.

$dict isEmptyisEmpty

Returns 1 if the dictionary has no entries, otherwise 0.

$dict log level message ...log

Returns a message in the DHCP server logging system. The level should be one of LOG_ERROR,
LOG_WARNING, or LOG_INFO. The remaining arguments are concatenated and sent to the logging system
at the specified level.

Use the LOG_ERROR and LOG_WARNING levels sparingly, because the server flushes its log
file with messages logged at these levels. Using these levels for messages that are likely to occur
frequently (such as client requests) can have severe impact on disk I/O performance.

Note

$dict nextKeynextKey

Returns the name of the next key in the dictionary that follows the key returned in the last call to firstKey
or nextKey. If a key does not exist, returns the empty string.

$dict put key valueput

Associates a value with the key, replacing an existing instance of the key with the new value.

$dict remove keyremove

Removes the key from the dictionary. Always returns 1, even if the dictionary did not contain the key.

$dict sizesize

Returns the number of entries in the dictionary.

$dict trace level message ...trace

DHCP Extension Dictionary
41

DHCP Extension Dictionary
DHCP Extension Dictionary

SyntaxMethod

Returns a message in the DHCP server packet tracing system. At level 0, no tracing occurs. At level 1, it
traces only that the server received the packet and sent a reply. At level 4, it traces everything. The remaining
arguments are concatenated and sent to the tracing system at the specified level. The default tracing is set
using the DHCP server extension-trace-level attribute.

DEX Attribute Dictionary API
When writing DEX extensions for C/C++, you can specify keys as the attribute name string representation or
by type (a byte sequence defining the attribute). This mean that some of these access methods have four
different variations that are the combinations of string or type for the key or value.

A basic DEX extension example might be:

int DEXAPI dexhelloworld(int iExtensionPoint,
dex_AttributeDictionary_t *pRequest,
dex_AttributeDictionary_t *pResponse,
dex_EnvironmentDictionary_t *pEnviron)
{
pEnviron->log(pEnviron, DEX_LOG_INFO, "hello world");
return DEX_OK;
}

See the install-path/examples/dhcp/dex/dexextension.c file or other files in that directory for examples.

DEX Request and Response Dictionary Methods
DEX attribute dictionaries use active commands, called methods, with which you can change and access
values. The table below lists the methods to use with the request and response dictionaries. In this case, you
can define the pDict variable as pRequest or pResponse, as in:
pRequest->get(pRequest, "host-name", 0, 0);

The pszAttribute is the const char * pointer to the attribute name that the application wants to access. The
pszValue is the pointer to the const char * string that represents the data (returned for a getmethod, and stored
in a put method). See the corresponding iObjectType, iObjArgType, and iArgType tables, respectively.

See also the Differences in get, put, Option, Bytes, and OptionBytes Methods, on page 48 and the
Differences in get, put, remove, and ByType Methods, on page 48.

Tip

Table 10: DEX Request and Response Dictionary Methods

SyntaxMethod

void *pDict->allocateMemory(
dex_AttributeDictionary_t *pDict, unsigned int
iSize)

allocateMemory

Allocates memory in extensions that persists only for the lifetime of this request.

DHCP Extension Dictionary
42

DHCP Extension Dictionary
DEX Attribute Dictionary API

SyntaxMethod

const char *pDict->get(dex_AttributeDictionary_t
*pDict, const char *pszAttribute, int iIndex, abool_t
*pbMore)

get

Returns the value of the iIndex ed instance of the attribute from the dictionary, represented as a string. If the
dictionary does not contain the attribute (or that many instances of it), the empty string is returned instead.
If pbMore is nonzero, the get method sets pbMore to TRUE if there are more instances of the attribute after
the one returned, otherwise to FALSE. Use this to determine whether to make another call to get to retrieve
other instances of the attribute.

const abytes_t *pDict->getBytes(
dex_AttributeDictionary_t *pDict, const char
*pszAttribute, int iIndex, abool_t *pbMore)

getBytes

Returns the value of the iIndex ed instance of the attribute from the dictionary as a sequence of bytes. If the
dictionary does not contain the attribute (or that many instances of it), returns 0 instead. If pbMore is nonzero,
the getBytes method sets it to TRUE if there are more instances of the attribute after the one returned,
otherwise to FALSE. Use this to determine whether to make another call to getBytes to retrieve other
instances of the attribute.

const abytes_t *pDict-> getBytesByType(
dex_AttributeDictionary_t *pDict,const abytes_t
*pszAttribute, int iIndex, abool_t *pbMore)

getBytesByType

Returns the value of the iIndex ed instance of the attribute from the dictionary as a sequence of bytes. If the
dictionary does not contain the attribute (or that many instances of it), 0 is returned instead. If pbMore is
nonzero, sets the variable pointed to TRUE if there are more instances of the attribute after the one returned,
otherwise to FALSE. Use this to determine whether to make another call to get to retrieve other instances
of the attribute.

const char *pDict->getByType(
dex_AttributeDictionary_t *pDict, const abytes_t
*pszAttribute, int iIndex, abool_t *pbMore)

getByType

Returns the value of the iIndex ed instance of the attribute from the dictionary, represented as a string. If the
dictionary does not contain the attribute (or that many instances of it), returns the empty string instead. If
pbMore is nonzero, the getByType method sets pbMore to TRUE if there are more instances of the attribute
after the one returned, otherwise to FALSE. Use this to determine whether to make another call to getByType
to retrieve other instances.

const char * getOption(dex_AttributeDictionary_t
*pDict, int iArgType, ...)

getOption

Gets the data for an option as a string. Note that this function always returns a pointer to a string, which can
be zero length if the option does not exist or has length zero. To find out if the option exists, use
getOptionBytes or specify DEX_INSTANCE_COUNT.

const abytes_t * getOptionBytes(
dex_AttributeDictionary_t *pDict, int iArgType, ...
)

getOptionBytes

DHCP Extension Dictionary
43

DHCP Extension Dictionary
DHCP Extension Dictionary

SyntaxMethod

Gets the data for an option as a sequence of bytes. Note that this function returns a null pointer if the option
does not exist, and an abytes_t with a zero-length buffer if the option exists but is zero bytes long.

const abytes_t * pDict->getType(
dex_AttributeDictionary_t* pDict, const char*
pszAttribute)

getType

Returns a pointer to the byte sequence defining the attribute, if the attribute name matches a configured
attribute, otherwise 0.

abool_t isValid(dex_AttributeDictionary_t *pDict
)abool_t isV4(dex_AttributeDictionary_t *pDict
)abool_t isV6(dex_AttributeDictionary_t *pDict)

isValidisV4isV6

The isValid method returns TRUE if there is a request or response (depending on the dictionary passed in);
FALSE otherwise. Extensions such as lease-state-change can use this method to determine whether a
dictionary is available.

The isV4 method returns TRUE if this extension is being called for a DHCPv4 packet; FALSE otherwise.
Calling this method from an init-entry routine returns FALSE.

The isV6 method returns TRUE if this extension is being called for a DHCPv6 packet; FALSE otherwise.
Calling this method from an init-entry routine returns FALSE.

abool_t pDict->log(dex_AttributeDictionary_t
*pDict, int eLevel, const char *pszFormat, ...)

log

Returns a message in the DHCP server logging system. The eLevel should be one of DEX_LOG_ERROR,
DEX_LOG_WARNING, or DEX_LOG_INFO. The pszFormat is treated as a printf style format string, and
it, along with the remaining arguments, are formatted and sent to the logging system at the specified level.

Use the DEX_LOG_ERROR and DEX_LOG_WARNING levels sparingly, because the server
flushes its log file with messages logged at these levels. Using these levels for messages that are
likely to occur frequently (such as client requests) can have severe impact on disk I/O performance.

Note

abool_t moveToOption(dex_AttributeDictionary_t
*pDict, int iArgType, ...)

moveToOption

Sets the context for subsequent get, put, and remove option operations. Note that the context can become
invalid if the option is removed (such as with removeOption).

abool_t pDict->put(dex_AttributeDictionary_t
*pDict, const char *pszAttribute, const char
*pszValue, int iIndex)

put

Converts pszValue to a sequence of bytes, according to the definition of pszAttribute in the server
configuration. Associates that sequence of bytes with the attribute in the dictionary. If iIndex is the special
value DEX_REPLACE, replaces any existing instances of the attribute with a single value. If the special
value DEX_APPEND, it appends a new instance of the attribute to its list. If the special value
DEX_AUGMENT, puts the attribute only if there is not one already. Otherwise, inserts a new instance at
the position indicated. Returns TRUE unless the attribute name does not match any configured attributes or
the value could not be converted to a legal value.

DHCP Extension Dictionary
44

DHCP Extension Dictionary
DHCP Extension Dictionary

SyntaxMethod

abool_t pDict->putBytes(
dex_AttributeDictionary_t *pDict, const char
*pszAttribute, const abytes_t *pszValue, int iIndex
)

putBytes

Associates pszValue with the pszAttribute in the dictionary. If iIndex is the special value DEX_REPLACE,
replaces any existing instances of the attribute with a single new value. If the special value DEX_APPEND,
appends a new instance of the attribute to its list. If the special value DEX_AUGMENT, puts the attribute
only if there is not one already. Otherwise, inserts a new instance at the position indicated. Returns TRUE
unless the attribute name does not match a configured one.

abool_t pDict->putBytesByType(
dex_AttributeDictionary_t *pDict, const abytes_t
*pszAttribute, const abytes_t *pszValue, int iIndex
)

putBytesByType

Associates pszValue with the pszAttribute in the dictionary. If iIndex is the special value DEX_REPLACE,
replaces any existing instances of the attribute with the new value. If the special value DEX_APPEND,
appends a new instance of the attribute to its list. If the special value DEX_AUGMENT, puts the attribute
only if there is not one already. Otherwise, inserts a new instance of the attribute at the position indicated.

abool_t pDict->putByType(
dex_AttributeDictionary_t *pDict, const abytes_t
*pszAttribute, const char *pszValue, int iIndex)

putByType

Converts pszValue to a sequence of bytes, according to the definition of pszAttribute in the server
configuration. Associates that sequence of bytes with the attribute in the dictionary. If iIndex is the special
value DEX_REPLACE, replaces any existing instances of the attribute with a single new value. If the special
valueDEX_APPEND, appends a new instance of the attribute to its list. If the special valueDEX_AUGMENT,
puts the attribute only if there is not one already. Otherwise, inserts a new instance at the position indicated.

abool_t putOption(dex_AttributeDictionary_t
*pDict, const char *pszValue, int iArgType, ...)

putOption

Adds an option and its data or modifies the data for an option.

abool_t putOptionBytes(
dex_AttributeDictionary_t *pDict, const abytes_t
*pValue, int iArgType, ...)

putOptionBytes

Adds an option and its data or modifies the data for an option.

abool_t pDict->remove(dex_AttributeDictionary_t
*pDict, const char *pszAttribute, int iIndex)

remove

Removes the attribute from the dictionary. If iIndex is the special value DEX_REMOVE_ALL, removes
any existing instances of the attribute. Otherwise, removes the instance at the position indicated. Returns
TRUE, even if the dictionary did not contain that attribute at that index, unless the attribute name does not
match any configured one.

DHCP Extension Dictionary
45

DHCP Extension Dictionary
DHCP Extension Dictionary

SyntaxMethod

abool_t pDict->removeByType(
dex_AttributeDictionary_t *pDict, const abytes_t
*pszAttribute, int iIndex)

removeByType

Removes the attribute from the dictionary. If iIndex is the value DEX_REMOVE_ALL, removes any existing
instances of the attribute. Otherwise, removes the instance at the position indicated. Always returns TRUE,
even if the dictionary does not contain that attribute at that index.

abool_t removeOption(dex_AttributeDictionary
*pDict, int iArgType, ...)

removeOption

Removes an option. Note that if you omit DEX_INDEX, a DEX_INDEX of DEX_REMOVE_ALL is
assumed (this removes the entire option).

abool_t setObject(dex_AttributeDictionary_t
*pDict, int iObjectType, int iObjArgType, ...)

setObject

Sets the object for get, put, and remove methods, and alters the message on which the new option methods
operate. DHCPv6 extensions primarily use this method to access the leases and prefixes available for the
client and link, or to get message header fields or options from relay packets. Unlike in DHCPv4, where
one lease and scope are associated with a response, a DHCPv6 response can involve several leases and
prefixes. Returns TRUE if the object exists; FALSE otherwise. For sample usage, see the Handling Object
Data, on page 56.

For leases not associated with the current client, only minimal information is available.Note

abool_t pDict->trace(dex_AttributeDictionary_t
*pDict, int iLevel, const char *pszFormat, ...)

trace

Returns a message in the DHCP server packet tracing system. At level 0, no tracing occurs. At level 1, it
traces only that the server received the packet and sent a reply. At level 4, it traces everything. The remaining
arguments are concatenated and sent to the tracing system at the specified level. The default tracing is set
using the DHCP server extension-trace-level attribute.

DEX Environment Dictionary Methods
The environment dictionary uses active commands, called methods, with which you can change and access
the dictionary values. The table below lists the methods to use with the environment dictionary. In this case,
you can define the pDict variable as pEnviron, as in:

pEnviron->log(pEnviron, DEX_LOG_INFO, "Environment hello world");

Table 11: DEX Environment Dictionary Methods

SyntaxMethod

void *pDict->allocateMemory(
dex_EnvironmentDictionary_t *pDict, unsigned
int iSize)

allocateMemory

Allocates memory for extensions that persists only for the lifetime of this request.

DHCP Extension Dictionary
46

DHCP Extension Dictionary
DEX Environment Dictionary Methods

SyntaxMethod

void pDict->clear(dex_EnvironmentDictionary_t
*pDict)

clear

Removes all entries from the dictionary.

abool_t pDict->containsKey(
dex_EnvironmentDictionary_t *pDict, const char
*pszKey)

containsKey

Returns TRUE if the dictionary contains the key, otherwise FALSE.

const char *pDict->firstKey(
dex_EnvironmentDictionary_t *pDict)

firstKey

Returns the name of the first key in the dictionary. Note that the keys are not stored sorted by name. If a key
does not exist, returns zero.

const char *pDict->get(
dex_EnvironmentDictionary_t *pDict, const char
*pszKey)

get

Returns the value of the key from the dictionary. If a key does not exist, returns the empty string.

abool_t pDict->isEmpty(
dex_EnvironmentDictionary_t *pDict)

isEmpty

Returns TRUE if the dictionary has 0 entries, otherwise FALSE.

abool_t pDict->log(dex_EnvironmentDictionary_t
*pDict, int eLevel, const char *pszFormat, ...)

log

Returns a message in the DHCP server logging system. The eLevel should be one of DEX_LOG_ERROR,
DEX_LOG_WARNING, or DEX_LOG_INFO. The pszFormat is treated as a printf style format string, and
it, along with the remaining arguments, are formatted and sent to the logging system at the specified level.

Use the DEX_LOG_ERROR and DEX_LOG_WARNING levels sparingly, because the server
flushes its log file with messages logged at these levels. Using these levels for messages that are
likely to occur frequently (such as client requests) can have severe impact on disk I/O performance.

Note

const char *pDict->nextKey(
dex_EnvironmentDictionary_t *pDict)

nextKey

Returns the name of the next key in the dictionary that follows the key returned in the last call to firstKey
or nextKey. If a key does not exist, returns zero.

abool_t pDict->put(dex_EnvironmentDictionary_t
*pDict, const char *pszKey, const char* pszValue)

put

Associates a value with the key, replacing an existing instance of the key with the new value.

abool_t pDict->remove(
dex_EnvironmentDictionary_t *pDict, const char
*pszKey)

remove

DHCP Extension Dictionary
47

DHCP Extension Dictionary
DHCP Extension Dictionary

SyntaxMethod

Removes the key and the associated value from the dictionary. Always returns TRUE, even if the dictionary
did not contain the key.

int pDict->size(dex_EnvironmentDictionary_t
*pDict)

size

Returns the number of entries in the dictionary.

abool_t pDict->trace(
dex_EnvironmentDictionary_t *pDict, int iLevel,
const char *pszFormat, ...)

trace

Returns a message in the DHCP server packet tracing system. At level 0, no tracing occurs. At level 1, it
traces only that the server received the packet and sent a reply. At level 4, it traces everything. The remaining
arguments are concatenated and sent to the tracing system at the specified level. The default tracing is set
using the DHCP server extension-trace-level attribute.

Differences in get, put, Option, Bytes, and OptionBytes Methods

There are differences among the following DEX extension methods:

• get and put
• getOption and putOption
• getBytes and putBytes
• getOptionBytes and putOptionBytes

The get and getOption methods return the requested information formatted as a string. The server converts
the data to the string depending on the expected data type for the dictionary item. If the data type is unknown,
the server returns the data in blob string format.

The getBytes and getOptionBytes methods return the requested information as the raw bytes (a pointer to a
buffer and the size of that buffer). The server should have to read this buffer only, and it contains only the
data from the option (no null terminator has been added, for example).

The put and putOption methods expect the data to be written as a formatted string. The server converts the
data from the string depending on the expected data type for the dictionary item. If the data type is unknown,
it is expected to be in blob string format.

The server passes raw bytes to the putBytes and putOptionBytes methods (a pointer to a buffer and the size
of that buffer). The server only reads these bytes.

Differences in get, put, remove, and ByType Methods

There are differences among the following DEX extension methods:

• get, put, and remove
• getByType, putByType, and removeByType

The server passes the get, put, and removemethods the name of the desired data item as a string. This requires
that the server map the string to its internal data tables.

The server passes the getByType, putByType, and removeByType methods an internal data table reference,
which the server must have previously obtained (such as in the extension init-entry) by calling the getType

DHCP Extension Dictionary
48

DHCP Extension Dictionary
Differences in get, put, Option, Bytes, and OptionBytes Methods

method on the string. This speeds processing for extensions, which can be important in applications requiring
high performance.

The internal data table that the getTypemethod references is the same whether requested for the Request
or Response dictionary. There is no need for separate getType calls on each dictionary for the same
data item name.

Note

Table 12: DEX iObjectType Values

DescriptioniObjectType

General definition: Object for which the context is to be changed.

Changes the lease (and prefix) context. Response
dictionary only. Allows iObjArgType:

DEX_BY_IPV6ADDRESS

DEX_BY_IPV6PREFIX

DEX_BY_INSTANCE

DEX_INITIAL

DEX_LEASE

Changes the message context to a relay message or
the client message. Request and response dictionaries.
Allows iObjArgType:

DEX_INITIAL

DEX_RELAY

DEX_BY_NUMBER

DEX_MESSAGE

Changes the prefix context, but does not change the
lease context. Response dictionary only. Allows
iObjArgType:

DEX_BY_IPV6ADDRESS

DEX_BY_IPV6PREFIX

DEX_BY_INSTANCE

DEX_BY_NAME

DEX_INITIAL

DEX_PREFIX

Table 13: DEX iObjArgType Values

DescriptioniObjArgType

General definition: By what means the context is to be changed.

DHCP Extension Dictionary
49

DHCP Extension Dictionary
DHCP Extension Dictionary

DescriptioniObjArgType

Used with DEX_LEASE or DEX_PREFIX
iObjectType. Requires that int follows to specify the
instance number (starting with 0). Used to walk
through the list of all available objects, but only
through the list of objects applicable to the current
request or response: for DEX_LEASE, the leases for
that client (if any); for DEX_PREFIX, the prefixes
on the current link (if any). Used with
DEX_MESSAGE, a synonym for DEX_RELAY.

DEX_BY_INSTANCE

Used with DEX_LEASE and DEX_PREFIX
iObjectType only. Requires that const unsigned char
* follows to specify the 16-byte address.

DEX_BY_IPV6ADDRESS

Used with DEX_LEASE or DEX_PREFIX
iObjectType. Requires that const unsigned char *
follows to specify a 17-byte prefix buffer (16-byte
address followed by a 1-byte prefix length).

DEX_BY_IPV6PREFIX

Used with the DEX_PREFIX iObjectType only.
Requires that a const char * follows to specify the
name of the desired object.

DEX_BY_NAME

Resets the context back to the original for the request
or response, and has no additional argument. Sets the
lease and prefix (DEX_LEASE), prefix
(DEX_PREFIX), or message (DEX_MESSAGE) to
what it was when the extension was originally called
(which can be none).

DEX_INITIAL

Used with DEX_MESSAGE iObjectType only.
Requires that int follows to specify the relay (0
specifies the relay closest to the client). To set the
message context back to the client, use setObject(
pDict, DEX_MESSAGE, DEX_INITIAL).

DEX_RELAY

DescriptioniArgType

General definition: Action and argument that follows the context. There can be any number of iArgType
instances in the calls.

DHCP Extension Dictionary
50

DHCP Extension Dictionary
DHCP Extension Dictionary

DescriptioniArgType

Requires that a pointer to an array of
dex_OptionsArgs_t follow, and is an alternative to
specifying the argument list. Each
dex_OptionsArgs_t structure has two fields:

• iArgType —One of the iArgType DEX values in
this table.

• pData —Data (integer), pointer to the data (for
strings and other data types), or ignored (if the
iArgType takes no arguments).

Note that once the server encounters the
DEX_ARG_ARRAY (in an argument list or in an
array of dex_OptionsArgs_t), it ignores any
subsequent arguments in the original list.

DEX_ARG_ARRAY

Required, has no additional argument, and
marks the end of the argument list.

NoteDEX_END

Requires that const char * follow to specify the option
definition set name, from which the server extracts
the enterprise-id to get the vendor option data. Valid
only for vendor-identifying options. Requires that the
vendor option definition set exists.

DEX_ENTERPRISE_NAME

Requires that int follow to specify the enterprise-id
for the vendor.

DEX_ENTERPRISE_ID

Moves the context back to the client or relay message
options. Has no additional argument. Always returns
success. If used, must be the first iArgType. Valid
only for getOption, getOptionBytes, and
moveToOption methods.

DEX_HOME

DHCP Extension Dictionary
51

DHCP Extension Dictionary
DHCP Extension Dictionary

DescriptioniArgType

Requires that int follow with the index of the option
data (if any array of data is to be acted on). If omitted,
index 0 is assumed, except for removeOption, in
which case DEX_REMOVE_ALL is assumed. Use
the special value DEX_RAW to get, put, or remove
the entire option data. However, for the DHCPv4
Vendor-Identifying Vendor Options (RFC 3925 and
RFC 4243), DEX_RAW returns the data for only one
vendor (based on the instance or enterprise-id) and
not that for the entire option.

The DEX_RAW special value accesses the entire
option (or suboption) data. It provides consistent
access to the data, regardless of what the option
definitions might specify in terms of the data type and
repeat counts of the data type. It is recommended for
general-purpose extensions that decode the data.

Use the special values DEX_REPLACE (replace a
value), DEX_APPEND (add to end), and
DEX_AUGMENT (add if no value currently exists)
with putOption and putOptionBytesmethods, which
operate the same as the put, putByType, putBytes,
and putBytesByType methods. Use
DEX_REMOVE_ALL for removeOption to remove
the option completely.

DEX_INDEX

Results in an int value returned with the count of the
number of indexed entries of the option, rather than
the option data. Has no additional argument, and
cannot be used with DEX_INDEX or
DEX_INSTANCE_COUNT.DEX_ENDmust follow.
Valid only for getOption and getOptionBytes.

DEX_INDEX_COUNT

Requires that int follow to specify the instance of the
option (valid only for DHCPv6 options, which can
have more than one instance). 0 specifies the first
instance.

DEX_INSTANCE

Results in an int value returned with the count of the
number of instances of the option, rather than the
option data. Has no additional argument and cannot
be used with DEX_INSTANCE. DEX_END must
follow. Valid only for getOption and
getOptionBytes.

DEX_INSTANCE_COUNT

Requires that abool_t * follow to specify the location
at which a more flag is to be written. This location is
set to TRUE if more array items exist beyond the
index that DEX_INDEX specified. Valid only for
getOption and getOptionBytes methods.

DEX_MORE

DHCP Extension Dictionary
52

DHCP Extension Dictionary
DHCP Extension Dictionary

DescriptioniArgType

Leaves the context at the option or suboption
immediately preceding DEX_MOVE_TO. Has no
additional argument. If omitted, the context does not
change. Use moveToOption to move the context
without getting any data. Valid only for getOption
and getOptionBytes methods.

An attempt to move to an option or
suboption that does not exist logs an error.
Use moveToOption if your extension did
not previously confirm that the option
exists.

Note

DEX_MOVE_TO

Requires that const char * follow to specify the
desired option name. Option names should be in the
dhcpv4-config or dhcpv6-config option definition
set.

DEX_OPTION_NAME

Requires that const char * follow to specify the
desired option name. Option names should be in the
dhcpv4-config or dhcpv6-config option definition
set.

DEX_OPTION_NUMBER

Moves the context to the parent option. Has no
additional argument. It does not move beyond the
client or relay message and returns FALSE if the
context does not change. If used, must be the first
iArgType. Valid only for getOption, getOptionBytes,
and moveToOption methods.

DEX_PARENT

Requires that const char * follow to specify the name
of the desired suboption. Suboptions must be in the
current option definition.

DEX_SUBOPTION_NAME

Requires that int follow to specify the desired
suboption number. Suboption numbers should be in
the current option definition, although there is no
requirement that a definition exists. However, if the
suboption does not exist, it is assumed to be a byte
blob of data.

DEX_SUBOPTION_NUMBER

Requires that const char * follow to specify the
vendor string. The string serves only to find the
appropriate option definition set.

DEX_VENDOR_NAME

Handling Objects and Options
The following sections describe specialized ways of handling DHCP objects and options in extensions.

DHCP Extension Dictionary
53

DHCP Extension Dictionary
Handling Objects and Options

Using Object and Option Handling Methods
Extensions can call methods to set DHCP objects, and get, move to, put, and remove DHCP options. The
methods are setObject, getOption, moveToOption, putOption, and removeOption methods in Tcl and
C/C++.

These new callback methods were introduced primarily to provide support for DHCPv6. However, you can
use the option-related functions for DHCPv4. In fact, it is recommended to use these methods for DHCPv4,
because they provide richer access to options than the original get[Bytes], get[Bytes]ByType, put[Bytes],
put[Bytes]ByType, and remove[ByType] methods.

See DEX Request and Response Dictionary Methods, on page 42 for the different usages of some of
these methods in C/C++.

Tip

For DHCPv6, you must use the setObject, getOption, moveToOption, putOption, and removeOption
methods to access options. The setObject method was introduced for DHCPv6, because there can be many
leases, prefixes, and messages (client or multiple relay) that an extension might want to access. So, setObject
serves to set the context for subsequent calls to get request and response dictionary data items and options.
When the server calls an extension, the context is set to the current lease (if applicable), prefix (if applicable),
and client message. For example, when the server calls the pre-packet-encode extension point, only the
request and response dictionarymessage context is valid, and set to the corresponding client message, because
there is no lease or prefix associated with this extension point. However, when the server calls the
lease-state-change extension point, it sets the response dictionary lease context to the lease on which the state
has changed, sets the response dictionary prefix context to the prefix for the lease, and sets the request and
response dictionary message context to the corresponding client message.

Options and Suboptions in C/C++
Some C/C++ extensions provide specialized argument type values to handle DHCP options and suboptions.
The DEX_OPTION_* argument type specifies to use the standard DHCPv4 or DHCPv6 option definition set
and not the definitions under an option (or suboption). So, DEX_OPTION_* means that the server looks up
the option name or number in the standard DHCPv4 or DHCPv6 option definition set, whereas
DEX_SUBOPTION_* means that the server looks up the suboption name or number of the current option
definition (if any).

Thus, when you access options in DHCPv6, you often use DEX_OPTION_* followed by DEX_OPTION_*
when options are encapsulated. You would use DEX_SUBOPTION when looking at vendor options. For
DHCPv4, you would use DEX_OPTION at the client packet level, and then DEX_SUBOPTION perhaps one
or more times, depending on the nesting level. Generally, only options have enterprise numbers or vendor
names, but there is no prohibition on this. The option definition sets determine what is valid (although one
can walk off definitions, at which point everything is treated as binary bytes and thus it limits what is possible,
and you cannot use the option or suboption names, but must use numbers).

The option ordering rules for the getOption, moveToOption, putOption, and removeOption methods are
similar to the request expression syntax. The ordering generally consists of:

• Preamble clause ([parent | home])
• Option clause (option [vendor | enterprise] [instance])
• Suboption clause (suboption [vendor | enterprise] [instance])
• End clause ([instance-count | index-count | [index] [more] end)

DHCP Extension Dictionary
54

DHCP Extension Dictionary
Using Object and Option Handling Methods

You can construct calls by using a preamble clause, followed by zero or more option clauses, followed by
zero or more suboption clauses (which may themselves be followed by option and suboption clauses), followed
by an end clause. Note that some things are possible only through a get method (such as instance-count,
index-count, and more), and move-to can appear anywhere to move the context to the current option or
suboption.

The option definition determines its data format, which can differ from what the older functions return for a
specific option. To handle specific options:

• For the vendor class options (v-i-vendor-class [124] for DHCPv4 and vendor-class [16] for DHCPv6),
if you ask for a specific instance of the option (instead of by enterprise-id or name), the only way to get
the enterprise-id is to ask for the raw data (DEX_INDEX with DEX_RAW).

• For the DHCPv4 vendor options (v-i-vendor-class [124] and v-i-vendor-opts [125]), operating on the
raw data (DEX_INDEX with DEX_RAW) only applies to an instance (preset value 0) of that option,
not the entire option. There is no way to get the entire data for this option, which means that you cannot
use putOption for the entire data. This is not an issue with the DHCPv6 vendor options, because these
are separate options.

• If one of the DHCPv4 vendor options (124 or 125) is not formatted properly, the entire data is returned
as a blob (if you asked for instance 0 and did not specify a particular enterprise-id). However, if an
extension tries to use putOption, depending on the operation, that data might be appended to the existing
data, and the result will be formatted incorrectly.

• For the vendor options, if there is no option, putOption(pDict, "01:02", DEX_OPTION_NUMBER,
124, DEX_END) fails because no enterprise-id is available. However, putOption(pDict,
"00:00:00:09:04:03:65:66:67", DEX_OPTION_NUMBER, 124, DEX_END) will work because it
is assumed that 00:00:00:09 is the enterprise-id and the bytes following it starting with 04 are the length
of the option data of that enterprise-id. Note that the length byte is validated in this case, and putOption
fails if it does not have the correct length. The recommended way to add this data is to use putOption(
pDict, "65:66:67", DEX_OPTION_NUMBER, 124, DEX_ENTERPRISE_ID, 9, DEX_END).

Examples of Option and Object Method Calls
These sections include some examples of how to use methods to handle DHCP option and object data.

Handling Vendor Class Option Data
For DHCPv4, to include the Vendor-Identifying Vendor Class option (124) data for two enterprise-ids in the
response to the client, here is some sample Tcl code that uses the putOption method:

$response putOption 65:66:67 option 124 enterprise 999998
#adds "abc" (65:66:67) under enterprise-id 999998
$response putOption 68:69:6a:6b option v-i-vendor-class enterprise 999998 index append
#appends "defg" (68:69:6a:6b) under the same enterprise-id
$response putOption 01:02:03:04 option 124 enterprise 999999
#adds 01:02:03:04 under enterprise-id 999999

To get the options, use the getOption method:

$response getOption option v-i-vendor-class instance-count
#returns 2 because there were two instances added (enterprise id 999998 and enterprise id
999999)
$response getOption option 124
#returns index 0 of instance 0, which is 65:66:67

DHCP Extension Dictionary
55

DHCP Extension Dictionary
Examples of Option and Object Method Calls

$response getOption option 124 index-count
#returns 2 because there were two vendor classes added for the first enterprise id (9999998)
$response getOption option 124 index raw
#returns 00:0f:42:3e:09:03:65:66:67:04:68:69:6a:6b for the complete encoding of the
enterprise-id 999998 data (see RFC 3925)
$response getOption option 124 index 1
#returns 68:69:6a:6b
$response getOption option 124 instance 1 index-count
#returns 1 because there is only one vendor class
$response getOption option 124 instance 1 index raw
#returns 00:0f:42:3f:05:04:01:02:03:04 for the complete encoding of the enterprise-id
999999 data (see RFC 3925)
$response getOption option 124 enterprise 999999
#returns 01:02:03:04

To remove the data, two removeOption calls are necessary because of the two separate enterprise-ids:

$response removeOption option 124
$response removeOption option 124

Handling Object Data
Suppose that at the pre-packet-encode extension point you want to extract data for all of the leases for the
client. Here is sample Tcl code that uses the setObject method:

proc logleasesinit { request response environ } {
if { [$environ get "extension-point"] == "initialize" } {
Set up for DHCPv6 only]
$environ put dhcp-support "v6"
$environ put extension-extensionapi-version 2

}
}
proc logleases { request response environ } {

for { set i 0 } { 1 } { incr i } {
Set context to next lease
if { ![$response setObject lease $i] } {
Lease does not exist, so done
break

}
Log the lease address, prefix name, and prefix address
$environ log LOG_INFO "Lease [$response get lease-ipaddress], Prefix\

[$response get lease-prefix-name] - [$response get prefix-address]"
}
Restore the lease context to where we started
$response setObject lease initial
Do other things...

}

The C++ equivalent code for this might be:

// Print the current leases for the client
for(int i=0; ; i++) {

if(!pRes->setObject(pRes, DEX_LEASE, DEX_BY_INSTANCE, i))
break;

const char *pszLeaseAddress =
pRes->get(pRes, "lease-ipaddress", 0, 0);

if(pszLeaseAddress == 0)
pszLeaseAddress = "<error>";

const char *pszPrefixName =

DHCP Extension Dictionary
56

DHCP Extension Dictionary
Handling Object Data

pRes->get(pRes, "prefix-name", 0, 0);
if(pszPrefixName == 0)

pszPrefixName = "<error>";
pEnv->log(pEnv, DEX_LOG_INFO,
"Lease %s, Prefix %s",

pszLeaseAddress, pszPrefixName);
}

DHCP Extension Dictionary
57

DHCP Extension Dictionary
DHCP Extension Dictionary

DHCP Extension Dictionary
58

DHCP Extension Dictionary
DHCP Extension Dictionary

	DHCP Extension Dictionary
	Extension Dictionary Entries
	Decoded DHCP Packet Data Items
	Request Dictionary
	Response Dictionary

	Extension Dictionary API
	Tcl Attribute Dictionary API
	Tcl Request and Response Dictionary Methods
	Tcl Environment Dictionary Methods

	DEX Attribute Dictionary API
	DEX Request and Response Dictionary Methods
	DEX Environment Dictionary Methods
	Differences in get, put, Option, Bytes, and OptionBytes Methods
	Differences in get, put, remove, and ByType Methods

	Handling Objects and Options
	Using Object and Option Handling Methods
	Options and Suboptions in C/C++

	Examples of Option and Object Method Calls
	Handling Vendor Class Option Data
	Handling Object Data

