- Read Me First
- Configuring OSPF
- IPv6 Routing: OSPFv3
- IPv6 Routing: OSPFv3 Authentication Support with IPsec
- OSPFv2 Cryptographic Authentication
- OSPFv3 External Path Preference Option
- OSPFv3 Graceful Restart
- Graceful Shutdown Support for OSPFv3
- OSPF Stub Router Advertisement
- OSPF Update Packet-Pacing Configurable Timers
- OSPF Sham-Link Support for MPLS VPN
- OSPF Support for Multi-VRF on CE Routers
- OSPFv2 Multiarea Adjacency
- OSPFv2 Autoroute Exclude
- OSPFv3 Address Families
- OSPFv3 Authentication Trailer
- Autoroute Announce and Forwarding Adjacencies For OSPFv3
- OSPFv3 Autoroute Exclude
- OSPFv2 IP FRR Local Microloop Avoidance
- OSPFv2-OSPF Live-Live
- OSPF Forwarding Address Suppression in Translated Type-5 LSAs
- OSPF Inbound Filtering Using Route Maps with a Distribute List
- OSPFv3 Route Filtering Using Distribute-List
- OSPF Shortest Path First Throttling
- OSPF Support for Fast Hello Packets
- OSPF Incremental SPF
- OSPF Limit on Number of Redistributed Routes
- OSPFv3 Fast Convergence: LSA and SPF Throttling
- OSPFv3 Max-Metric Router LSA
- OSPF Link-State Advertisement Throttling
- OSPF Support for Unlimited Software VRFs per PE Router
- OSPF Area Transit Capability
- OSPF Per-Interface Link-Local Signaling
- OSPF Link-State Database Overload Protection
- OSPF MIB Support of RFC 1850 and Latest Extensions
- OSPF Enhanced Traffic Statistics
- TTL Security Support for OSPFv3 on IPv6
- Configuring OSPF TTL Security Check and OSPF Graceful Shutdown
- OSPF Sham-Link MIB Support
- OSPF SNMP ifIndex Value for Interface ID in Data Fields
- OSPFv2 Local RIB
- OSPF Support for Forwarding Adjacencies over MPLS TE Tunnels
- Enabling OSPFv2 on an Interface Basis
- OSPF Nonstop Routing
- OSPFv3 NSR
- OSPFv2 Loop-Free Alternate Fast Reroute
- OSPFv3 MIB
- Prefix Suppression Support for OSPFv3
- OSPFv3 VRF-Lite/PE-CE
- OSPFv3 ABR Type 3 LSA Filtering
- OSPFv3 Demand Circuit Ignore
- OSPF IPv4 Remote Loop-Free Alternate IP Fast Reroute
- OSPFv3 Multiarea Adjacency
- OSPF Limiting Adjacency Formations
OSPF Incremental SPF
The Open Shortest Path First (OSPF) protocol can be configured to use an incremental SPF algorithm for calculating the shortest path first routes. Incremental SPF is more efficient than the full SPF algorithm, thereby allowing OSPF to converge faster on a new routing topology in reaction to a network event.
- Finding Feature Information
- Prerequisites for OSPF Incremental SPF
- Information About OSPF Incremental SPF
- How to Enable OSPF Incremental SPF
- Configuration Examples for OSPF Incremental SPF
- Additional References
- Feature Information for OSPF Incremental SPF
Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for OSPF Incremental SPF
It is presumed that you have OSPF configured in your network.
Information About OSPF Incremental SPF
OSPF uses Dijkstra’s SPF algorithm to compute the shortest path tree (SPT). During the computation of the SPT, the shortest path to each node is discovered. The topology tree is used to populate the routing table with routes to IP networks. When changes to a Type-1 or Type-2 link-state advertisement (LSA) occur in an area, the entire SPT is recomputed. In many cases, the entire SPT need not be recomputed because most of the tree remains unchanged. Incremental SPF allows the system to recompute only the affected part of the tree. Recomputing only a portion of the tree rather than the entire tree results in faster OSPF convergence and saves CPU resources. Note that if the change to a Type-1 or Type-2 LSA occurs in the calculating router itself, then the full SPT is performed.
Incremental SPF is scheduled in the same way as the full SPF. Routers enabled with incremental SPF and routers not enabled with incremental SPF can function in the same internetwork.
How to Enable OSPF Incremental SPF
Enabling Incremental SPF
1.
enable
2.
configure
terminal
3.
router
ospf
process-id
4.
ispf
5.
end
DETAILED STEPS
Configuration Examples for OSPF Incremental SPF
Example Incremental SPF
This example enables incremental SPF:
router ospf 1 ispf
Additional References
The following sections provide references related to OSPF Incremental SPF.
Related Documents
Related Topic |
Document Title |
---|---|
OSPF commands |
Cisco IOS IP Routing: OSPF Command Reference |
Configuring OSPF |
"Configuring OSPF" |
Cisco IOS master command list, all releases |
Standards
Standard |
Title |
---|---|
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. |
-- |
MIBs
MIB |
MIBs Link |
---|---|
No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature. |
To locate and download MIBs for selected platforms, Cisco IOS XE releases, and feature sets, use Cisco MIB Locator found at the following URL: |
RFCs
RFC |
Title |
---|---|
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. |
-- |
Technical Assistance
Description |
Link |
---|---|
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password. |
Feature Information for OSPF Incremental SPF
The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.