
Data Models Configuration Guide

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 527-0883

© 2017 Cisco Systems, Inc. All rights reserved.

C O N T E N T S

C H A P T E R 1 YANG Infrastructure 1

Finding Feature Information 1

Introduction to Data Models - Programmatic and Standards-based Configuration 1

NETCONF 2

Configuring NETCONF 2

Configuring NETCONF Options 3

Configuring SNMP 3

Configuring Operational Data Manager 5

Additional References 7

Feature Information for YANG Infrastructure 7

C H A P T E R 2 In Service Model Update 9

Finding Feature Information 9

Restrictions for In Service Model Update 9

Information About In Service Model Updates 10

Overview of In Service Model Updates 10

Compatibility of In Service Model Update Packages 10

Update Package Naming Conventions 10

Installing the Update Package 11

Deactivating the Update Package 11

Rollback of the Update Package 12

How to Manage In Service Software Updates 12

Managing the Update Package 12

Configuration Examples for In Service Software Updates 14

Example: Managing an Update Package 14

Additional References for In Service Model Updates 17

Feature Information for In Service Model Update 17

Data Models Configuration Guide
iii

C H A P T E R 3 Zero-Touch Provisioning 19

Information About Zero-Touch Provisioning 19

Zero-Touch Provisioning Overview 19

DHCP Server Configuration for Zero-Touch Provisioning 20

Sample Zero-Touch Provisioning Configurations 20

Sample DHCP Server Configuration on a Management Port Using TFTP Copy 20

Sample DHCP Server Configuration on a Management Port Using HTTP Copy 21

Sample DHCP Server Configuration on an In-Band Port Using TFTP Copy 21

Sample DHCP Server Configuration on an In-Band Port Using HTTP Copy 21

Sample DHCP Server Configuration on a Linux Ubuntu Device 21

Sample Python Provisioning Script 22

Zero-Touch Provisioning Boot Log 23

Feature Information for Zero-Touch Provisioning 24

C H A P T E R 4 CLI Python Module 27

Finding Feature Information 27

Information About CLI Python Module 27

About Python 27

Python Scripts Overview 28

Interactive Python Prompt 28

Python Script 28

Supported Python Versions 29

Updating the Cisco CLI Python Module 30

Additional References for the CLI Python Module 30

Feature Information for the CLI Python Module 31

C H A P T E R 5 EEM Python Module 33

Finding Feature Information 33

Prerequisites for the EEM Python Module 33

Information About the EEM Python Module 34

Python Scripting in EEM 34

EEM Python Package 34

Python-Supported EEM Actions 35

EEM Variables 35

 Data Models Configuration Guide
iv

Contents

EEM CLI Library Command Extensions 35

How to Configure the EEM Python Policy 36

Registering a Python Policy 36

Running Python Scripts as Part of EEM Applet Actions 38

Adding a Python Script in an EEM Applet 40

Additional References EEM Python Module 42

Feature Information for EEM Python Module 42

Data Models Configuration Guide
v

Contents

 Data Models Configuration Guide
vi

Contents

C H A P T E R 1
YANG Infrastructure

The Polaris Yang Infrastructure 16.3 feature facilitates a programmatic and standards-based way of writing
configurations and reading operational data from network devices.

• Finding Feature Information, page 1

• Introduction to Data Models - Programmatic and Standards-based Configuration, page 1

• NETCONF, page 2

• Configuring NETCONF Options, page 3

• Additional References, page 7

• Feature Information for YANG Infrastructure, page 7

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not
required.

Introduction to Data Models - Programmatic and
Standards-based Configuration

The traditional way of managing network devices is by using Command Line Interfaces (CLIs) for
configurational (configuration commands) and operational data (show commands). For network management,
Simple Network Management Protocol (SNMP) is widely used, especially for exchanging management
information between various network devices. Although CLIs and SNMP are heavily used, they have several
restrictions. CLIs are highly proprietary, and human intervention is required to understand and interpret their
text-based specification. SNMP does not distinguish between configurational and operational data.

Data Models Configuration Guide
1

http://www.cisco.com/go/cfn

The solution lies in adopting a programmatic and standards-based way of writing configurations to any network
device, replacing the process of manual configuration. Network devices running on Cisco IOS XE support
the automation of configuration for multiple devices across the network using data models. Data models are
developed in a standard, industry-defined language, that can define configuration and state information of a
network.

Cisco IOS XE supports the Yet Another Next Generation (YANG) data modeling language. YANG can be
used with the Network Configuration Protocol (NETCONF) to provide the desired solution of automated and
programmable network operations. NETCONF (RFC 6241) is an XML-based protocol that client applications
use to request information from and make configuration changes to the device. YANG is primarily used to
model the configuration and state data used by NETCONF operations.

In Cisco IOS XE, model-based interfaces interoperate with existing device CLI, Syslog, and SNMP interfaces.
These interfaces are optionally exposed northbound from network devices. YANG is used to model each
protocol based on RFC 6020.

To access Cisco YANG models in a developer-friendly way, please clone the GitHub repository https://
github.com/YangModels/yang, and visit the vendor/cisco
(https://github.com/YangModels/yang/tree/master/vendor/cisco) subdirectory. Models for various release
of IOS-XE, IOS-XR, and NX-OS platforms are available here.

Note

NETCONF
NETCONF provides a simpler mechanism to install, manipulate, and delete the configuration of network
devices.

It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the
protocol messages.

NETCONF uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate communication between
a client and a server. The client can be a script or application typically running as part of a network manager.
The server is typically a network device (switch or router). It uses Secure Shell (SSH) as the transport layer
across network devices.

NETCONF also supports capability discovery and model downloads. Supported models are discovered using
the ietf-netconf-monitoring model. Revision dates for eachmodel are shown in the capabilities response. Data
models are available for optional download from a device using the get-schema rpc. You can use these YANG
models to understand or export the data model.

For more details, refer RFC 6241.

Configuring NETCONF

Before You Begin

You must configure NETCONF-YANG as follows.

 Data Models Configuration Guide
2

YANG Infrastructure
NETCONF

SUMMARY STEPS

1. enable
2. configure terminal
3. netconf-yang
4. exit

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:
Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:
Device# configure terminal

Step 2

Enables the NETCONF interface on your network device.netconf-yangStep 3

Example:
Device (config)# netconf-yang

After the initial enablement through the CLI, network devices
can be managed subsequently through a model based
interface. The complete activation of model-based interface
processes may require up to 90 seconds.

Note

Exits global configuration mode.exit

Example:
Device (config)# exit

Step 4

Configuring NETCONF Options

Configuring SNMP
Enable the SNMP Server in IOS to enable NETCONF to access SNMP MIB data using YANG models
generated from supportedMIBs, and to enable supported SNMP traps in IOS to receiveNETCONF notifications
from the supported traps.

Perform the following steps:

Data Models Configuration Guide
3

YANG Infrastructure
Configuring NETCONF Options

SUMMARY STEPS

1. Enable SNMP features in IOS.
2. After NETCONF-YANG starts, enable SNMP Trap support by sending the following RPC <edit-config>

message to the NETCONF-YANG port.
3. Send the following RPC message to the NETCONF-YANG port to save the running configuration to the

startup configuration.

DETAILED STEPS

Step 1 Enable SNMP features in IOS.

Example:

configure terminal
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging
!
snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp authentication linkdown linkup snmp-server enable traps syslog
snmp-server manager
exit

Step 2 After NETCONF-YANG starts, enable SNMP Trap support by sending the following RPC <edit-config> message to
the NETCONF-YANG port.

Example:

<?xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
<edit-config>
<target>
<running/>

</target>
<config>
<netconf-yang xmlns="http://cisco.com/yang/cisco-self-mgmt">
<cisco-ia xmlns="http://cisco.com/yang/cisco-ia">
<snmp-trap-control>
<trap-list>
<trap-oid>1.3.6.1.4.1.9.9.41.2.0.1</trap-oid>

</trap-list>
<trap-list>
<trap-oid>1.3.6.1.6.3.1.1.5.3</trap-oid>

</trap-list>
<trap-list>
<trap-oid>1.3.6.1.6.3.1.1.5.4</trap-oid>

</trap-list>
</snmp-trap-control>

</cisco-ia>
</netconf-yang>

</config>

 Data Models Configuration Guide
4

YANG Infrastructure
Configuring SNMP

</edit-config>
</rpc>

Step 3 Send the following RPC message to the NETCONF-YANG port to save the running configuration to the startup
configuration.

Example:

<?xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
<cisco-ia:save-config xmlns:cisco-ia="http://cisco.com/yang/cisco-ia"/>

</rpc>

Configuring Operational Data Manager
The NETCONF Operational Data Manager provides the ability to read operational data using YANGmodels.
Each ODMparser polls the specified operational data according to the specified polling interval in milliseconds.

Perform the following steps:

SUMMARY STEPS

1. After NETCONF-YANG starts, send the following RPC <edit-config>message to the NETCONF-YANG
port.

2. Send the following RPC message to the NETCONF-YANG port to save the running configuration to the
startup configuration.

DETAILED STEPS

Step 1 After NETCONF-YANG starts, send the following RPC <edit-config> message to the NETCONF-YANG port.

Example:

<?xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
<edit-config>
<target>
<running/>

</target>
<config>
<netconf-yang xmlns="http://cisco.com/yang/cisco-self-mgmt">
<cisco-odm xmlns="http://cisco.com/yang/cisco-odm">
<polling-enable>true</polling-enable>
<on-demand-default-time>30000</on-demand-default-time>
<on-demand-enable>false</on-demand-enable>
<actions>
<action-name>parse.showACL</action-name>
<polling-interval>120000</polling-interval>
<mode>poll</mode>

</actions>
<actions>
<action-name>parse.showArchive</action-name>
<polling-interval>120000</polling-interval>
<mode>poll</mode>

Data Models Configuration Guide
5

YANG Infrastructure
Configuring Operational Data Manager

</actions>
<actions>
<action-name>parse.showEnvironment</action-name>
<polling-interval>120000</polling-interval>
<mode>poll</mode>

</actions>
<actions>
<action-name>parse.showFlowMonitor</action-name>
<polling-interval>120000</polling-interval>
<mode>poll</mode>

</actions>
<actions>
<action-name>parse.showInterfaces</action-name>
<polling-interval>120000</polling-interval>
<mode>poll</mode>

</actions>
<actions>
<action-name>parse.showIpRoute</action-name>
<polling-interval>120000</polling-interval>
<mode>poll</mode>

</actions>
<actions>
<action-name>parse.showMemoryStatistics</action-name>
<polling-interval>120000</polling-interval>
<mode>poll</mode>

</actions>
<actions>
<action-name>parse.showPlatformSoftware</action-name>
<polling-interval>120000</polling-interval>
<mode>poll</mode>

</actions>
<actions>
<action-name>parse.showProcessesCPU</action-name>
<polling-interval>120000</polling-interval>
<mode>poll</mode>

</actions>
<actions>
<action-name>parse.showProcessesMemory</action-name>
<polling-interval>120000</polling-interval>
<mode>poll</mode>

</actions>
</cisco-odm>

</netconf-yang>
</config>

</edit-config>
</rpc>
The <edit-config> can be modified to enable or disable specific actions and/or to choose a different update frequency.

Step 2 Send the following RPC message to the NETCONF-YANG port to save the running configuration to the startup
configuration.

Example:

<?xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
<cisco-ia:save-config xmlns:cisco-ia="http://cisco.com/yang/cisco-ia"/>

</rpc>

 Data Models Configuration Guide
6

YANG Infrastructure
Configuring Operational Data Manager

Additional References
Related Documents

Document TitleRelated Topic

Clone the GitHub repository https://github.com/
YangModels/yang and visit the vendor/cisco
(https://github.com/YangModels/yang/tree/master/vendor/cisco)
subdirectory.

YANG data models for various release of IOS-XE,
IOS-XR, and NX-OS platforms

Standards and RFCs

TitleStandard/RFC

YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)

RFC 6020

Network Configuration Protocol (NETCONF)RFC 6241

Technical Assistance

LinkDescription

http://www.cisco.com/cisco/web/support/index.htmlThe Cisco Support and Documentation website
provides online resources to download documentation,
software, and tools. Use these resources to install and
configure the software and to troubleshoot and resolve
technical issues with Cisco products and technologies.
Access to most tools on the Cisco Support and
Documentation website requires a Cisco.com user ID
and password.

Feature Information for YANG Infrastructure
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Data Models Configuration Guide
7

YANG Infrastructure
Additional References

http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/go/cfn

Table 1: Feature Information for YANG Data Model

Feature InformationReleasesFeature Name

The Polaris Yang Infrastructure
16.3 feature facilitates a
programmatic and standards-based
way of writing configurations and
reading operational data from
network devices.

The following commands were
introduced or modified:
netconf-yang.

Cisco IOS XE Denali 16.3.1Polaris Yang Infrastructure 16.3

 Data Models Configuration Guide
8

YANG Infrastructure
Feature Information for YANG Infrastructure

C H A P T E R 2
In Service Model Update

This module describes how to update the YANG data models on a device through an In Service Model
Update.

This module contains the following sections:

• Finding Feature Information, page 9

• Restrictions for In Service Model Update, page 9

• Information About In Service Model Updates, page 10

• How to Manage In Service Software Updates, page 12

• Configuration Examples for In Service Software Updates, page 14

• Additional References for In Service Model Updates, page 17

• Feature Information for In Service Model Update, page 17

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not
required.

Restrictions for In Service Model Update
• In Service Model Update does not support In-Service Software Upgrade (ISSU).

• After a switchover, users must install the Software Maintenance Update (SMU) on the standby device.

Data Models Configuration Guide
9

http://www.cisco.com/go/cfn

Information About In Service Model Updates

Overview of In Service Model Updates
In ServiceModel Update adds new data models or extend functionality to existing data models. The In Service
Model Update provides YANG model enhancements outside of a release cycle. The update package is a
superset of all existing models; it includes all existing models as well as updated YANG models.

The data model infrastructure implements the YANG model-defined management interfaces for Cisco IOS
XE devices. The data model infrastructure exposes the NETCONF interface northbound from Cisco IOS XE
devices. The supported data models include industry standard models such as IETF, and Cisco IOS XE
device-specific models.

The functionality provided by the In Service Model Update is integrated into the subsequent Cisco IOS XE
software maintenance release. Data model update packages can be downloaded from the Cisco Download
Software Center.

Compatibility of In Service Model Update Packages
An update package is built on a per image basis.

All contents of an update package will be part of future mainline or maintenance release images. The image
and platform versions are checked by the In Service Model Update commands during the package add and
activate. If an image or platform mismatch occurs, the package install fails.

Update Package Naming Conventions
In Service Model Updates are packaged as a .bin files. This file includes all updates for a specific release and
platform and the Readme file. These files have a release date and are updated periodically with additional
model updates.

The naming convention of the data model update package follows the format—platform type-license
level.release version.DDTS ID-file. The following is an example of a data model update file:

• asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin

The readme file provides the following information:

• Console and error messages during data model activation or deactivation

• Data model installation impact

• Side effects and possible workarounds

• Package(s) that the In Service Model Update impacts

• Restart type

 Data Models Configuration Guide
10

In Service Model Update
Information About In Service Model Updates

https://software.cisco.com
https://software.cisco.com

Installing the Update Package
You can install the In Service Model Update package on a device by using the install add, install activate,
and install commit commands in privileged EXEC mode.

The install add command copies the update package from a remote location to the device. You can also use
other methods to copy the package; however, you must still enable the install add command for the installation
to work. For the install activate command to work, the package must be available in the device bootflash.
Enable the install commit command to make updates persistent over reloads.

Installing an update replaces any previously installed data models. At any time, only one update is installed
on the device. A data model package includes all updated YANG models and all existing YANG models
previously installed on the device.

The following flow chart explains how the model update package works:

Figure 1: Committing a Model Update Package

If NETCONG-YANG is enabled during package activation, NETCONF processes are restarted. All active
NETCONF sessions are killed during package activation. Failure during a package verification aborts the
activation process.

Deactivating the Update Package
You can deactivate an update package by using the install deactivate command. Enable the install commit
command to make changes persistent.

Table 2: Deactivating a Model Update Package

Command to UseAction

Use the install remove command.
Deactivate a package before removing
it.

Note
To remove a package.

Data Models Configuration Guide
11

In Service Model Update
Installing the Update Package

Command to UseAction

Use the install deactivate command, followed by the
install commit command.

The install commit command must be used
to ensure that the deactivation of the model
package is persistent across reloads.
Subsequent attempts at removal of the
package will fail, if the deactivation is not
committed.

Note

To deactivate a package

When you deactivate an update, if more than onemodel update package is installed, themost recently committed
model update package becomes the model package used by the device. If there are no other previously
committed model packages, then the base version of data models included with the standard image is used.

Rollback of the Update Package
Rollback provides a mechanism tomove a device back to the state in which it was operating prior to an update.
After a rollback, NETCONF-YANG processes are restarted before changes are visible.

You can roll back an update to the base version, the last committed version, or a known commit ID by using
the install rollback command.

How to Manage In Service Software Updates

Managing the Update Package

SUMMARY STEPS

1. enable
2. install add file tftp: filename
3. install activate file bootflash: filename
4. install commit
5. install deactivate file bootflash: filename
6. install commit
7. install rollback to {base | committed | id commit-ID}
8. install remove {file bootflash: filename | inactive}
9. show install summary

 Data Models Configuration Guide
12

In Service Model Update
Rollback of the Update Package

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:
Device> enable

• Enter your password if
prompted.

Copies themodel update package from
a remote location (via FTP, TFTP) to

install add file tftp: filename

Example:
Device# install add file tftp://172.16.0.1//tftpboot/folder1/
asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin

Step 2

the device, and performs a
compatibility check for the platform
and image versions.

• You can use other methods to
copy the update package from
the remote location to the device,
however; you still have to
execute the install add
command before the package is
activated.

Validates whether the update package
is added through the install add

install activate file bootflash: filename

Example:
Device# install activate file
bootflash:asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin

Step 3

command, and restarts the NETCONF
processes.

• Perform the install add
operation prior to activating an
update package.

Makes the changes persistent over
reload.

install commit

Example:
Device# install commit

Step 4

• NETCONF processes are not
restarted.

Deactivates the specified update
package, and restarts the NETCONF
processes.

install deactivate file bootflash: filename

Example:
Device# install deactivate file bootflash:
asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin

Step 5

Makes the changes persistent over
reload.

install commit

Example:
Device# install commit

Step 6

• NETCONF processes are not
restarted.

Data Models Configuration Guide
13

In Service Model Update
Managing the Update Package

PurposeCommand or Action

Rolls back the update to the base
version, the last committed version,

install rollback to {base | committed | id commit-ID}

Example:
Device# install rollback to base

Step 7

or a known commit ID, and restarts
NETCONF processes.

• Valid values for the commit-id
argument are from 1 to
4294967295.

• Older versions of data models
updates are available for use.

Removes the specified update package
from the bootflash.

install remove {file bootflash: filename | inactive}

Example:
Device# install remove file bootflash:
√asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin

Step 8

• A package must be deactivated
before it is removed.

Displays information about the active
package.

show install summary

Example:
Device# show install summary

Step 9

• The output of this command
varies according to the install
commands that are configured.

Configuration Examples for In Service Software Updates

Example: Managing an Update Package
The following example shows how to add a model update package file:
Device# install add file tftp://172.16.0.1//tftpboot/folder1/
asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin

install_add: START Sun Feb 26 05:57:04 UTC 2017
Downloading file
tftp://172.16.0.1//tftpboot/folder1/asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin
Finished downloading file
tftp://172.16.0.1//tftpboot/folder1/asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin
to bootflash:asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin
SUCCESS: install_add /bootflash/asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin

Sun Feb 26 05:57:22 UTC 2017
Device#

The following is sample output from the show install summary command after adding an update package
file to the device:
Device# show install summary

 Data Models Configuration Guide
14

In Service Model Update
Configuration Examples for In Service Software Updates

Active Packages:
No packages
Inactive Packages:
bootflash: isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
Committed Packages:
No packages
Uncommitted Packages:
No packages
Device#

The following example shows how to activate an added update package file:
Device# install activate file bootflash:
asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin

install_activate: START Sun Feb 26 05:58:41 UTC 2017
DMP package.
Netconf processes stopped
SUCCESS: install_activate
/bootflash/asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin
Sun Feb 26 05:58:58 UTC 2017*Feb 26 05:58:47.655: %DMI-4-CONTROL_SOCKET_CLOSED:
SIP0: nesd: Confd control socket closed Lost connection to ConfD (45): EOF on socket to
ConfD.
*Feb 26 05:58:47.661: %DMI-4-SUB_READ_FAIL: SIP0: vtyserverutild:
Confd subscription socket read failed Lost connection to ConfD (45):
EOF on socket to ConfD.
*Feb 26 05:58:47.667: %DMI-4-CONTROL_SOCKET_CLOSED: SIP0: syncfd:
Confd control socket closed Lost connection to ConfD (45): EOF on socket to ConfD.
*Feb 26 05:59:43.269: %DMI-5-SYNC_START: SIP0: syncfd:
External change to running configuration detected.
The running configuration will be synchronized to the NETCONF running data store.
*Feb 26 05:59:44.624: %DMI-5-SYNC_COMPLETE: SIP0: syncfd:
The running configuration has been synchronized to the NETCONF running data store.
Device#

The following sample output from the show install summary command displays the status of the model
package as active and uncommitted:
Device# show install summary

Active Packages:
bootflash:asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin
Inactive Packages:
No packages
Committed Packages:
No packages
Uncommitted Packages:
bootflash:asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin
Device#

The following example shows how to execute the install commit command:
Device# install commit

install_commit: START Sun Feb 26 06:46:48 UTC 2017
SUCCESS: install_commit Sun Feb 26 06:46:52 UTC 2017
Device#

The following sample output from the show install summary command displays that the update package is
now committed, and that it will be persistent across reloads:
Device# show install summary

Active Packages:
bootflash:asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin
Inactive Packages:
No packages
Committed Packages:
bootflash:asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin
Uncommitted Packages:
No packages

Data Models Configuration Guide
15

In Service Model Update
Example: Managing an Update Package

Device#

The following example shows how to rollback an update package to the base package:
Device# install rollback to base

install_rollback: START Sun Feb 26 06:50:29 UTC 2017
7 install_rollback: Restarting impacted processes to take effect
7 install_rollback: restarting confd
*Feb 26 06:50:34.957: %DMI-4-CONTROL_SOCKET_CLOSED: SIP0: syncfd:
Confd control socket closed Lost connection to ConfD (45): EOF on socket to ConfD.
*Feb 26 06:50:34.962: %DMI-4-CONTROL_SOCKET_CLOSED: SIP0: nesd:
Confd control socket closed Lost connection to ConfD (45): EOF on socket to ConfD.
*Feb 26 06:50:34.963: %DMI-4-SUB_READ_FAIL: SIP0: vtyserverutild:
Confd subscription socket read failed Lost connection to ConfD (45):
EOF on socket to ConfD.Netconf processes stopped
7 install_rollback: DMP activate complete
SUCCESS: install_rollback Sun Feb 26 06:50:41 UTC 2017
*Feb 26 06:51:28.901: %DMI-5-SYNC_START: SIP0: syncfd:
External change to running configuration detected.
The running configuration will be synchronized to the NETCONF running data store.
*Feb 26 06:51:30.339: %DMI-5-SYNC_COMPLETE: SIP0: syncfd:
The running configuration has been synchronized to the NETCONF running data store.
Device#

The following is sample output from the show install package command:
Device# show install package bootflash:
asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin

Name: asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin
Version: 16.7.1.0.199.1484082952..Everest
Platform: ASR1000
Package Type: dmp
Defect ID: CSCxxxxxxx
Package State: Added
Supersedes List: {}
Smu ID: 1
Device#

The following sample NETCONF hello message verifies the new data model package version:

Getting Capabilities: (admin @ 172.16.0.1:830)
PROTOCOL netconf
<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>
<capability>urn:ietf:params:netconf:capability:notification:1.0</capability>
<capability>urn:ietf:params:netconf:capability:interleave:1.0</capability>
<capability>http://tail-f.com/ns/netconf/actions/1.0</capability>
<capability>http://tail-f.com/ns/netconf/extensions</capability>
<capability>urn:ietf:params:netconf:capability:with-defaults:1.0?basic-mode=
explicit&also-supported=report-all-tagged</capability>
<capability>urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults?
revision=2011-06-01&module=ietf-netconf-with-defaults</capability>
<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-aaa?module=
Cisco-IOS-XE-aaa&revision=2017-02-07</capability>
<<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-native?module=
Cisco-IOS-XE-native&revision=2017-01-07&features=virtual-
template,punt-num,multilink,eth-evc,esmc,efp,dot1x</capability>
Device#

 Data Models Configuration Guide
16

In Service Model Update
Example: Managing an Update Package

The following is sample output from the show install log command:
Device# show install log

[0|install_op_boot]: START Fri Feb 24 19:20:19 Universal 2017
[0|install_op_boot]: END SUCCESS Fri Feb 24 19:20:23 Universal 2017
[3|install_add]: START Sun Feb 26 05:55:31 UTC 2017
[3|install_add(FATAL)]: File path (scp) is not yet supported for this command
[4|install_add]: START Sun Feb 26 05:57:04 UTC 2017
[4|install_add]: END SUCCESS
/bootflash/asr1000-universalk9.2017-08-23_17.48.0.CSCxxxxxxx.SSA.dmp.bin
Sun Feb 26 05:57:22 UTC 2017
[5|install_activate]: START Sun Feb 26 05:58:41 UTC 2017
Device#

Additional References for In Service Model Updates
Related Documents

Document TitleRelated Topic

Programmability commands

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online
resources, including documentation and tools for
troubleshooting and resolving technical issues with
Cisco products and technologies.

To receive security and technical information about
your products, you can subscribe to various services,
such as the Product Alert Tool (accessed from Field
Notices), the Cisco Technical Services Newsletter,
and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website
requires a Cisco.com user ID and password.

Feature Information for In Service Model Update
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Data Models Configuration Guide
17

In Service Model Update
Additional References for In Service Model Updates

http://www.cisco.com/support
http://www.cisco.com/go/cfn

Table 3: Feature Information for In Service Model Update

Feature InformationReleaseFeature Name

This module describes how to update YANG
datamodels through In ServiceModel Update.

This feature is supported on the following
platforms:

The following commands were introduced or
updated: install (Programmability), show
install (Programmability).

In Service Model Update

 Data Models Configuration Guide
18

In Service Model Update
Feature Information for In Service Model Update

C H A P T E R 3
Zero-Touch Provisioning

To address network provisioning challenges, Cisco introduces a zero-touch provisioning model. This module
describes the Zero-Touch Provisioning feature.

The Zero-Touch Provisioning feature is enabled automatically; no configuration is required.Note

• Information About Zero-Touch Provisioning, page 19

• Sample Zero-Touch Provisioning Configurations, page 20

• Feature Information for Zero-Touch Provisioning, page 24

Information About Zero-Touch Provisioning

Zero-Touch Provisioning Overview
Zero-Touch Provisioning provides open bootstrap interfaces to automate network device provisioning in
heterogeneous network environments.

When a device that supports Zero-Touch Provisioning boots up, and does not find the startup configuration
(during initial installation), the device enters the Zero-Touch Provisioning mode. The device searches for a
Dynamic Host Control Protocol (DHCP) server, bootstraps itself with its interface IP address, gateway, and
Domain Name System (DNS) server IP address, and enables Guest Shell. The device then obtains the IP
address or URL of an HTTP/TFTP server, and downloads the Python script from an HTTP/TFTP server to
configure the device.

Guest Shell provides the environment for the Python script to run. Guest Shell executes the downloaded
Python script and applies an initial configuration to the device.

After initial provisioning is complete, Guest Shell remains enabled. For more information, see theGuest Shell
chapter.

Data Models Configuration Guide
19

In case Zero-Touch Provisioning fails, the device falls back to AutoInstall to load configuration files. For
more information, see Using AutoInstall and Setup.

Note

DHCP Server Configuration for Zero-Touch Provisioning
In Zero-Touch Provisioning, a DHCP server must be running on the same network as the new device that is
being provisioned. Zero-Touch Provisioning is supported on both management ports and in-band ports.

When the new device is switched on, it retrieves the IP address information of the HTTP/TFTP server where
the Python script resides, and the folder path of the Python script from the DHCP server. For more information
on Python Scripts, see the Python API and Python CLI Module chapters.

The DHCP server responds to DHCP discovery events with the following options:

• Option 150—(Optional) Contains a list of IP addresses that points to the HTTP/TFTP server on the
management network that hosts the Python scripts to be run.

• Option 67—Contains the Python script file path on the HTTP/TFTP server.

After receiving these DHCP options, the device connects to the HTTP/TFTP server, and downloads the Python
script. The device, at this point does not have any route to reach the HTTP/TFTP server, so it uses the default
route provided by the DHCP server.

Sample Zero-Touch Provisioning Configurations

Sample DHCP Server Configuration on a Management Port Using TFTP Copy
The following is a sample DHCP server configuration using TFTP copy, when connected via the management
port on a device:

Device> enable
Device# configure terminal
Device(config)# ip dhcp excluded-address 10.1.1.1
Device(config)# ip dhcp excluded-address vrf Mgmt-vrf 10.1.1.1 10.1.1.10
Device(config)# ip dhcp pool pnp_device_pool
Device(config-dhcp)# vrf Mgmt-vrf
Device(config-dhcp)# network 10.1.1.0 255.255.255.0
Device(config-dhcp)# default-router 10.1.1.1
Device(config-dhcp)# option 150 ip 203.0.113.254
Device(config-dhcp)# option 67 ascii /sample_python_dir/python_script.py
Device(config-dhcp)# exit
Device(config)# interface gigabitethernet 1/0/2
Device(config-if)# no ip dhcp client request tftp-server-address
Device(config-if)# end

 Data Models Configuration Guide
20

Zero-Touch Provisioning
DHCP Server Configuration for Zero-Touch Provisioning

http://www.cisco.com/c/en/us/td/docs/ios/12_2/configfun/configuration/guide/ffun_c/fcf002.html

Sample DHCP Server Configuration on a Management Port Using HTTP Copy
The following is a sample DHCP server configuration using HTTP copy, when connected via the management
port on a device:

Device> enable
Device# configure terminal
Device(config)# ip dhcp pool pnp_device_pool
Device(config-dhcp)# vrf Mgmt-vrf
Device(config-dhcp)# network 10.1.1.0 255.255.255.0
Device(config-dhcp)# default-router 10.1.1.1
Device(config-dhcp)# option 67 ascii http://198.51.100.1:8000/sample_python_2.py
Device(config-dhcp)# end

Sample DHCP Server Configuration on an In-Band Port Using TFTP Copy
The following is a sample DHCP server configuration using TFTP copy, when connected via the in-band port
on a device:

Device> enable
Device# configure terminal
Device(config)# ip dhcp excluded-address 10.1.1.1
Device(config)# ip dhcp pool pnp_device_pool
Device(config-dhcp)# network 10.1.1.0 255.255.255.0
Device(config-dhcp)# default-router 10.1.1.1
Device(config-dhcp)# option 150 ip 203.0.113.254
Device(config-dhcp)# option 67 ascii /sample_python_dir/python_script.py
Device(config-dhcp)# exit
Device(config)# interface gigabitethernet 1/0/2
Device(config-if)# no ip dhcp client request tftp-server-address
Device(config-if)# end

Sample DHCP Server Configuration on an In-Band Port Using HTTP Copy
The following is a sample DHCP server configuration using HTTP copy, when connected via the in-band
port on a device:

Device> enable
Device# configure terminal
Device(config)# ip dhcp excluded-address 10.1.1.1
Device(config)# ip dhcp pool pnp_device_pool
Device(config-dhcp)# network 10.1.1.0 255.255.255.0
Device(config-dhcp)# default-router 10.1.1.1
Device(config-dhcp)# option 67 ascii http://192.0.2.1:8000/sample_python_2.py
Device(config-dhcp)# end

Sample DHCP Server Configuration on a Linux Ubuntu Device
The following sample DHCP server configuration displays that the server is either connected to themanagement
port or in-band port on a device, and a Python script is copied from a TFTP server.

root@ubuntu-server:/etc/dhcp# more dhcpd.conf

Data Models Configuration Guide
21

Zero-Touch Provisioning
Sample DHCP Server Configuration on a Management Port Using HTTP Copy

subnet 10.1.1.0 netmask 255.255.255.0 {
range 10.1.1.2 10.1.1.255;

host 3850 {
fixed-address 10.1.1.246 ;
hardware ethernet CC:D8:C1:85:6F:00;
option bootfile-name !<opt 67> " /python_dir/python_script.py";
option tftp-server-name !<opt 150> "203.0.113.254";

}
}

The following sample DHCP configuration shows that a Python script is copied from an HTTP server to the
device:

Day0_with_mgmt_port_http

subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.2 192.168.1.255;

host C2-3850 {
fixed-address 192.168.1.246 ;
hardware ethernet CC:D8:C1:85:6F:00;
option bootfile-name "http://192.168.1.46/sample_python_2.py";

}
}

Once the DHCP server is running, boot a management-network connected device, and the rest of the
configuration is automatic.

Sample Python Provisioning Script
The following is a sample Python script can be used from either an HTTP or a TFTP server:

print "\n\n *** Sample ZTP Day0 Python Script *** \n\n"

Importing cli module
import cli

print "\n\n *** Executing show platform *** \n\n"
cli_command = "show platform"
cli.executep(cli_command)

print "\n\n *** Executing show version *** \n\n"
cli_command = "show version"
cli.executep(cli_command)

print "\n\n *** Configuring a Loopback Interface *** \n\n"
cli.configurep(["interface loop 100", "ip address 10.10.10.10 255.255.255.255", "end"])

print "\n\n *** Executing show ip interface brief *** \n\n"
cli_command = "sh ip int brief"
cli.executep(cli_command)

print "\n\n *** ZTP Day0 Python Script Execution Complete *** \n\n"

 Data Models Configuration Guide
22

Zero-Touch Provisioning
Sample Python Provisioning Script

Zero-Touch Provisioning Boot Log
The following sample Zero-Touch Provisioning boot log displays that Guest Shell is successfully enabled,
the Python script is downloaded to the Guest Shell, and the Guest Shell executes the downloaded Python
script and configures the device for Day Zero.

% failed to initialize nvram
! <This message indicates that the startup configuration
is absent on the device. This is the first indication that the Day Zero work flow is
going to start.>

This product contains cryptographic features and is subject to United
States and local country laws governing import, export, transfer and
use. Delivery of Cisco cryptographic products does not imply
third-party authority to import, export, distribute or use encryption.
Importers, exporters, distributors and users are responsible for
compliance with U.S. and local country laws. By using this product you
agree to comply with applicable laws and regulations. If you are unable
to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at:
http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to
export@cisco.com.

cisco ISR4451-X/K9 (2RU) processor with 7941237K/6147K bytes of memory.
Processor board ID FJC1950D091
4 Gigabit Ethernet interfaces
32768K bytes of non-volatile configuration memory.
16777216K bytes of physical memory.
7341807K bytes of flash memory at bootflash:.
0K bytes of WebUI ODM Files at webui:.

%INIT: waited 0 seconds for NVRAM to be available

--- System Configuration Dialog ---

Would you like to enter the initial configuration dialog? [yes/no]: %
!!<DO NOT TOUCH. This is Zero-Touch Provisioning>>
Generating 2048 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 1 seconds)
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
The process for the command is not responding or is otherwise unavailable
Guestshell enabled successfully

*** Sample ZTP Day0 Python Script ***

*** Configuring a Loopback Interface ***

Line 1 SUCCESS: interface loop 100
Line 2 SUCCESS: ip address 10.10.10.10 255.255.255.255
Line 3 SUCCESS: end

Data Models Configuration Guide
23

Zero-Touch Provisioning
Zero-Touch Provisioning Boot Log

*** Executing show ip interface brief ***

Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0/0 unassigned YES unset down down
GigabitEthernet0/0/1 unassigned YES unset down down
GigabitEthernet0/0/2 unassigned YES unset down down
GigabitEthernet0/0/3 192.168.1.246 YES DHCP up up
GigabitEthernet0 192.168.1.246 YES DHCP up up
Loopback100 10.10.10.10 YES TFTP up up

*** ZTP Day0 Python Script Execution Complete ***

Press RETURN to get started!

The Day Zero provisioning is complete, and the IOS prompt is accessible.

Feature Information for Zero-Touch Provisioning
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 4: Feature Information for Zero-Touch Provisioning

Feature InformationReleaseFeature Name

To address network provisioning challenges,
Cisco introduces a zero-touch provisioning
model.

In Cisco IOS XE Everest 16.5.1a, this feature
was implemented on the following platforms:

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9500 Series Switches

In Cisco IOS XE Everest 16.5.1b, this feature
was implemented on the following platform:

• Cisco 4000 Series Integrated Services
Routers

Cisco IOS XE Everest
16.5.1a

Cisco IOS XE Everest
16.5.1b

Zero-Touch Provisioning

 Data Models Configuration Guide
24

Zero-Touch Provisioning
Feature Information for Zero-Touch Provisioning

http://www.cisco.com/go/cfn

Feature InformationReleaseFeature Name

Zero-Touch Provisioning supports HTTP and
TFTP file download.

In Cisco IOS XE Everest 16.6.1, this feature
was implemented on the following platforms:

• Cisco 4000 Series Integrated Services
Routers

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9500 Series Switches

Cisco IOSXEEverest 16.6.1Zero-Touch Provisioning:
HTTP Download

In Cisco IOS XE Everest 16.6.2, this feature
was implemented on Cisco Catalyst 9400
Series Switches.

Cisco IOSXEEverest 16.6.2

Data Models Configuration Guide
25

Zero-Touch Provisioning
Feature Information for Zero-Touch Provisioning

 Data Models Configuration Guide
26

Zero-Touch Provisioning
Feature Information for Zero-Touch Provisioning

C H A P T E R 4
CLI Python Module

Python Programmability provides a Python module that allows users to interact with IOS using CLIs.

• Finding Feature Information, page 27

• Information About CLI Python Module, page 27

• Updating the Cisco CLI Python Module, page 30

• Additional References for the CLI Python Module, page 30

• Feature Information for the CLI Python Module, page 31

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not
required.

Information About CLI Python Module

About Python
The Cisco IOS XE devices support Python Version 2.7 in both interactive and non-interactive (script) modes
within the Guest Shell. The Python scripting capability gives programmatic access to a device's CLI to perform
various tasks and Zero Touch Provisioning or Embedded Event Manager (EEM) actions.

Data Models Configuration Guide
27

http://www.cisco.com/go/cfn

Python Scripts Overview
Python run in a virtualized Linux-based environment, Guest Shell. For more information, see the Guest Shell
chapter. Cisco provides a Python module that allows user’s Python scripts to run IOS CLI commands on the
host device.

Interactive Python Prompt
When you execute the guestshell run python command on a device, the interactive Python prompt is opened
inside the Guest Shell. The Python interactive mode allows users to execute Python functions from the Cisco
Python CLI module to configure the device.

The following example shows how to enable the interactive Python prompt:

Device# guestshell run python

Python 2.7.5 (default, Jun 17 2014, 18:11:42)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

Device#

Python Script
Python scripts can run in non-interactive mode by providing the Python script name as an argument in the
Python command. Python scripts must be accessible from within the Guest Shell. To access Python scripts
from the Guest Shell, save the scripts in bootflash/flash that is mounted within the Guest Shell.

The following sample Python script uses different CLI functions to configure and print show commands:
Device# more flash:sample_script.py

import sys
import cli

intf= sys.argv[1:]
intf = ''.join(intf[0])

print "\n\n *** Configuring interface %s with 'configurep' function *** \n\n" %intf
cli.configurep(["interface loopback55","ip address 10.55.55.55 255.255.255.0","no
shut","end"])

print "\n\n *** Configuring interface %s with 'configure' function *** \n\n"
cmd='interface %s,logging event link-status ,end' % intf
cli.configure(cmd.split(','))

print "\n\n *** Printing show cmd with 'executep' function *** \n\n"
cli.executep('show ip interface brief')

print "\n\n *** Printing show cmd with 'execute' function *** \n\n"
output= cli.execute('show run interface %s' %intf)
print (output)

print "\n\n *** Configuring interface %s with 'cli' function *** \n\n"
cli.cli('config terminal; interface %s; spanning-tree portfast edge default' %intf)

print "\n\n *** Printing show cmd with 'clip' function *** \n\n"
cli.clip('show run interface %s' %intf)

 Data Models Configuration Guide
28

CLI Python Module
Python Scripts Overview

To run a Python script from the Guest Shell, execute the guestshell run python
/flash/script.py command
at the device prompt.
The following example shows how to run a Python script from the Guest Shell:

The following example shows how to run a Python script from the Guest Shell:

Device# guestshell run python /flash/sample_script.py loop55

*** Configuring interface loop55 with 'configurep' function ***

Line 1 SUCCESS: interface loopback55
Line 2 SUCCESS: ip address 10.55.55.55 255.255.255.0
Line 3 SUCCESS: no shut
Line 4 SUCCESS: end

*** Configuring interface %s with 'configure' function ***

*** Printing show cmd with 'executep' function ***

Interface IP-Address OK? Method Status Protocol
Vlan1 unassigned YES NVRAM administratively down down
GigabitEthernet0/0 192.0.2.1 YES NVRAM up up
GigabitEthernet1/0/1 unassigned YES unset down down
GigabitEthernet1/0/2 unassigned YES unset down down
GigabitEthernet1/0/3 unassigned YES unset down down

:
:
:

Te1/1/4 unassigned YES unset down down
Loopback55 10.55.55.55 YES TFTP up up
Loopback66 unassigned YES manual up up

*** Printing show cmd with 'execute' function ***

Building configuration...
Current configuration : 93 bytes
!
interface Loopback55
ip address 10.55.55.55 255.255.255.0
logging event link-status
end

*** Configuring interface %s with 'cli' function ***

*** Printing show cmd with 'clip' function ***

Building configuration...
Current configuration : 93 bytes
!
interface Loopback55
ip address 10.55.55.55 255.255.255.0
logging event link-status
end

Supported Python Versions
Guest Shell is pre-installed with Python Version 2.7. Guest Shell is a virtualized Linux-based environment,
designed to run custom Linux applications, including Python applications for automated control and
management of Cisco devices. Platforms withMontavista CGE7 support Python Version 2.7.11, and platforms
with CentOS 7 support Python Version 2.7.5.

Data Models Configuration Guide
29

CLI Python Module
Supported Python Versions

The following table provides information about Python versions and the supported platforms:

Table 5: Python Version Support

PlatformPython Version

Platforms with CentOS 7 support the installation of Redhat Package Manager (RPM) from the open source
repository.

Updating the Cisco CLI Python Module
The Cisco CLI Python module and EEMmodule are pre-installed on devices. However, when you update the
Python version by using either Yum or prepackaged binaries, the Cisco-provided CLI module must also be
updated.

When you update to Python Version 3 on a device that already has Python Version 2, both versions of
Python exist on the device. Use one of the following IOS commands to run Python:

Note

• The guestshell run python2 command enables Python Version 2.

• The guestshell run python3 command enables Python Version 3.

• The guestshell run python command enables Python Version 2.

Use one of the following methods to update the Python version:

• Standalone tarball installation

• PIP install for the CLI module

Additional References for the CLI Python Module
Related Documents

Document TitleRelated Topic

Guest Shell

EEM Python Module

 Data Models Configuration Guide
30

CLI Python Module
Updating the Cisco CLI Python Module

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online
resources, including documentation and tools for
troubleshooting and resolving technical issues with
Cisco products and technologies.

To receive security and technical information about
your products, you can subscribe to various services,
such as the Product Alert Tool (accessed from Field
Notices), the Cisco Technical Services Newsletter,
and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website
requires a Cisco.com user ID and password.

Feature Information for the CLI Python Module
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 6: Feature Information for the CLI Python Module

Feature InformationReleaseFeature Name

Python programmabilty provides a Python
module that allows users to interact with IOS
using CLIs.

CLI Python Module

Data Models Configuration Guide
31

CLI Python Module
Feature Information for the CLI Python Module

http://www.cisco.com/support
http://www.cisco.com/go/cfn

 Data Models Configuration Guide
32

CLI Python Module
Feature Information for the CLI Python Module

C H A P T E R 5
EEM Python Module

Embedded Event Manager (EEM) policies support Python scripts. Python scripts can be executed as part of
EEM actions in EEM applets.

• Finding Feature Information, page 33

• Prerequisites for the EEM Python Module, page 33

• Information About the EEM Python Module, page 34

• How to Configure the EEM Python Policy, page 36

• Additional References EEM Python Module, page 42

• Feature Information for EEM Python Module, page 42

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not
required.

Prerequisites for the EEM Python Module
Guest Shell must be working within the container. Guest Shell is not enabled by default. For more information
see the Guest Shell feature.

Data Models Configuration Guide
33

http://www.cisco.com/go/cfn

Information About the EEM Python Module

Python Scripting in EEM
Embedded Event Manager (EEM) policies support Python scripts. You can register Python scripts as EEM
policies, and execute the registered Python scripts when a corresponding event occurs. The EEMPython script
has the same event specification syntax as the EEM TCL policy.

Configured EEM policies run within the Guest Shell. Guest Shell is a virtualized Linux-based environment,
designed to run custom Linux applications, including Python for automated control and management of Cisco
devices. The Guest Shell container provides a Python interpreter.

EEM Python Package
The EEM Python package can be imported to Python scripts for running EEM-specific extensions.

The EEM Python package is available only within the EEM Python script (The package can be registered
with EEM, and has the EEM event specification in the first line of the script.) and not in the standard
Python script (which is run using the Python script name).

Note

The Python package includes the following application programming interfaces (APIs):

• Action APIs—Perform EEM actions and have default parameters.

• CLI-execution APIs—Run IOS commands, and return the output. The following are the list of
CLI-execution APIs:

◦eem_cli_open()

◦eem_cli_exec()

◦eem_cli_read()

◦eem_cli_read_line()

◦eem_cli_run()

◦eem_cli_run_interactive()

◦eem_cli_read_pattern()

◦eem_cli_write()

◦eem_cli_close()

• Environment variables-accessing APIs—Get the list of built-in or user-defined variables. The following
are the environment variables-accessing APIs:

◦eem_event_reqinfo ()-Returns the built-in variables list.

◦eem_user_variables()-Returns the current value of an argument.

 Data Models Configuration Guide
34

EEM Python Module
Information About the EEM Python Module

Python-Supported EEM Actions
The Python package (is available only within the EEM script, and not available for the standard Python script)
supports the following EEM actions:

• Syslog message printing

• Send SNMP traps

• Reload the box

• Switchover to the standby device

• Run a policy

• Track Object read

• Track Object Set

• Cisco Networking Services event generation

The EEM Python package exposes the interfaces for executing EEM actions. You can use the Python script
to call these actions, and they are forwarded from the Python package via Cisco Plug N Play (PnP) to the
action handler.

EEM Variables
An EEM policy can have the following types of variables:

• Event-specific built-in variables—A set of predefinied variables that are populated with details about
the event that triggered the policy. The eem_event_reqinfo () API returns the builtin variables list. These
variables can be stored in the local machine and used as local variables. Changes to local variables do
not reflect in builtin variables.

• User-defined variables—Variables that can be defined and used in policies. The value of these variables
can be referred in the Python script. While executing the script, ensure that the latest value of the variable
is available. The eem_user_variables() API returns the current value of the argument that is provided in
the API.

EEM CLI Library Command Extensions
The following CLI library commands are available within EEM for the Python script to work:

• eem_cli_close()—Closes the EXEC process and releases the VTY and the specified channel handler
connected to the command.

• eem_cli_exec—Writes the command to the specified channel handler to execute the command. Then
reads the output of the command from the channel and returns the output.

• eem_cli_open—Allocates a VTY, creates an EXEC CLI session, and connects the VTY to a channel
handler. Returns an array including the channel handler.

• eem_cli_read()—Reads the command output from the specified CLI channel handler until the pattern
of the device prompt occurs in the contents read. Returns all the contents read up to the match.

Data Models Configuration Guide
35

EEM Python Module
Python-Supported EEM Actions

• eem_cli_read_line()—Reads one line of the command output from the specified CLI channel handler.
Returns the line read.

• eem_cli_read_pattern()—Reads the command output from the specified CLI channel handler until the
pattern that is to be matched occurs in the contents read. Returns all the contents read up to the match.

• eem_cli_run()—Iterates over the items in the clist and assumes that each one is a command to be executed
in the enable mode. On success, returns the output of all executed commands and on failure, returns
error.

• eem_cli_run_interactive()—Provides a sublist to the clistwhich has three items. On success, returns the
output of all executed commands and on failure, returns the error. Also uses arrays when possible as a
way of making things easier to read later by keeping expect and reply separated.

• eem_cli_write()—Writes the command that is to be executed to the specified CLI channel handler. The
CLI channel handler executes the command.

How to Configure the EEM Python Policy
For the Python script to work, you must enable the Guest Shell. For more information, see the Guest Shell
chapter.

Registering a Python Policy

SUMMARY STEPS

1. enable
2. configure terminal
3. event manager directory user policy path
4. event manager policy policy-filename
5. exit
6. show event manager policy registered
7. show event manager history events

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:
Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:
Device# configure terminal

Step 2

 Data Models Configuration Guide
36

EEM Python Module
How to Configure the EEM Python Policy

PurposeCommand or Action

Specifies a directory to use for storing user library files or
user-defined EEM policies.

event manager directory user policy path

Example:
Device(config)# event manager directory
user policy flash:/user_library

Step 3

Youmust have a policy in the specified path. For example,
in this step, the eem_script.py policy is available in the
flash:/user_library folder or path.

Note

Registers a policy with EEM.event manager policy policy-filenameStep 4

Example:
Device(config)# event manager policy
eem_script.py

• The policy is parsed based on the file extension. If the file
extension is .py, the policy is registered as Python policy.

• EEM schedules and runs policies on the basis of an event
specification that is contained within the policy itself. When
the event manager policy command is invoked, EEM
examines the policy and registers it to be run when the
specified event occurs.

Exits global configuration mode and returns to privileged EXEC
mode.

exit

Example:
Device(config)# exit

Step 5

Displays the registered EEM policies.show event manager policy registered

Example:
Device# show event manager policy
registered

Step 6

Displays EEM events that have been triggered.show event manager history events

Example:
Device# show event manager history events

Step 7

The following is sample output from the show event manager policy registered command:
Device# show event manager policy registered

No. Class Type Event Type Trap Time Registered Name
1 script user multiple Off Tue Aug 2 22:12:15 2016 multi_1.py
1: syslog: pattern {COUNTER}
2: none: policyname {multi_1.py} sync {yes}
trigger delay 10.000
correlate event 1 or event 2
attribute tag 1 occurs 1
nice 0 queue-priority normal maxrun 100.000 scheduler rp_primary Secu none

2 script user multiple Off Tue Aug 2 22:12:20 2016 multi_2.py
1: syslog: pattern {COUNTER}
2: none: policyname {multi_2.py} sync {yes}
trigger
correlate event 1 or event 2
nice 0 queue-priority normal maxrun 100.000 scheduler rp_primary Secu none

3 script user multiple Off Tue Aug 2 22:13:31 2016 multi.tcl

Data Models Configuration Guide
37

EEM Python Module
Registering a Python Policy

1: syslog: pattern {COUNTER}
2: none: policyname {multi.tcl} sync {yes}
trigger
correlate event 1 or event 2
attribute tag 1 occurs 1
nice 0 queue-priority normal maxrun 100.000 scheduler rp_primary Secu none

Running Python Scripts as Part of EEM Applet Actions

Python Script: eem_script.py

An EEM applet can include a Python script with an action command. In this example, an user is trying to run
a standard Python script as part of the EEM action, however; EEM Python package is not available in the
standard Python script. The standard Python script in IOS has a package named from cli import cli,clip and
this package can be used to execute IOS commands.

import sys
from cli import cli,clip,execute,executep,configure,configurep

intf= sys.argv[1:]
intf = ''.join(intf[0])

print ('This script is going to unshut interface %s and then print show ip interface
brief'%intf)

if intf == 'loopback55':
configurep(["interface loopback55","no shutdown","end"])
else :
cmd='int %s,no shut ,end' % intf
configurep(cmd.split(','))

executep('show ip interface brief')

This following is sample output from the guestshell run python command.
Device# guestshell run python /flash/eem_script.py loop55

This script is going to unshut interface loop55 and then print show ip interface brief
Line 1 SUCCESS: int loop55
Line 2 SUCCESS: no shut
Line 3 SUCCESS: end
Interface IP-Address OK? Method Status Protocol
Vlan1 unassigned YES NVRAM administratively down down
GigabitEthernet0/0 5.30.15.37 YES NVRAM up up
GigabitEthernet1/0/1 unassigned YES unset down down
GigabitEthernet1/0/2 unassigned YES unset down down
GigabitEthernet1/0/3 unassigned YES unset down down
GigabitEthernet1/0/4 unassigned YES unset up up
GigabitEthernet1/0/5 unassigned YES unset down down
GigabitEthernet1/0/6 unassigned YES unset down down
GigabitEthernet1/0/7 unassigned YES unset down down
GigabitEthernet1/0/8 unassigned YES unset down down
GigabitEthernet1/0/9 unassigned YES unset down down
GigabitEthernet1/0/10 unassigned YES unset down down
GigabitEthernet1/0/11 unassigned YES unset down down
GigabitEthernet1/0/12 unassigned YES unset down down
GigabitEthernet1/0/13 unassigned YES unset down down
GigabitEthernet1/0/14 unassigned YES unset down down
GigabitEthernet1/0/15 unassigned YES unset down down
GigabitEthernet1/0/16 unassigned YES unset down down
GigabitEthernet1/0/17 unassigned YES unset down down
GigabitEthernet1/0/18 unassigned YES unset down down
GigabitEthernet1/0/19 unassigned YES unset down down
GigabitEthernet1/0/20 unassigned YES unset down down
GigabitEthernet1/0/21 unassigned YES unset down down

 Data Models Configuration Guide
38

EEM Python Module
Running Python Scripts as Part of EEM Applet Actions

GigabitEthernet1/0/22 unassigned YES unset down down
GigabitEthernet1/0/23 unassigned YES unset up up
GigabitEthernet1/0/24 unassigned YES unset down down
GigabitEthernet1/1/1 unassigned YES unset down down
GigabitEthernet1/1/2 unassigned YES unset down down
GigabitEthernet1/1/3 unassigned YES unset down down
GigabitEthernet1/1/4 unassigned YES unset down down
Te1/1/1 unassigned YES unset down down
Te1/1/2 unassigned YES unset down down
Te1/1/3 unassigned YES unset down down
Te1/1/4 unassigned YES unset down down
Loopback55 10.55.55.55 YES manual up up

Device#
Jun 7 12:51:20.549: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback55,
changed state to up
Jun 7 12:51:20.549: %LINK-3-UPDOWN: Interface Loopback55, changed state to up

The following is a sample script for printing messages to the syslog. This script must be stored in a file, copied
to the file system on the device, and registered using the event manager policy file.

::cisco::eem::event_register_syslog tag "1" pattern COUNTER maxrun 200

import eem
import time

eem.action_syslog("SAMPLE SYSLOG MESSAGE","6","TEST")

The following is sample script to print EEM environment variables. This script must be stored in a file, copied
to the file system on the device, and registered using the event manager policy file.

::cisco::eem::event_register_syslog tag "1" pattern COUNTER maxrun 200

import eem
import time

c = eem.env_reqinfo()

print "EEM Environment Variables"
for k,v in c.iteritems():

print "KEY : " + k + str(" ---> ") + v

print "Built in Variables"
for i,j in a.iteritems() :

print "KEY : " + i + str(" ---> ") + j

Data Models Configuration Guide
39

EEM Python Module
Running Python Scripts as Part of EEM Applet Actions

Adding a Python Script in an EEM Applet

SUMMARY STEPS

1. enable
2. configure terminal
3. event manager applet applet-name
4. event [tag event-tag] syslog pattern regular-expression
5. action label cli command cli-string
6. action label cli command cli-string [pattern pattern-string]
7. end
8. show event manager policy active
9. show event manager history events

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:
Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:
Device# configure terminal

Step 2

Registers an applet with the Embedded Event Manager
(EEM) and enters applet configuration mode.

event manager applet applet-name

Example:
Device(config)# event manager applet
interface_Shutdown

Step 3

Specifies a regular expression to perform the syslog
message pattern match.

event [tag event-tag] syslog pattern regular-expression

Example:
Device(config-applet)# event syslog pattern
"Interface Loopback55,
changed state to administratively down"

Step 4

Specifies the IOS command to be executed when an
EEM applet is triggered.

action label cli command cli-string

Example:
Device(config-applet)# action 0.0 cli command "en"

Step 5

Specifies the action to be specified with the pattern
keyword.

action label cli command cli-string [pattern pattern-string
]

Step 6

 Data Models Configuration Guide
40

EEM Python Module
Adding a Python Script in an EEM Applet

PurposeCommand or Action

Example:
Device(config-applet)# action 1.0 cli command
"guestshell run python3 /bootflash/eem_script.py
loop55"

• Specify a regular expression pattern string that
will match the next solicited prompt.

Exits applet configurationmode and returns to privileged
EXEC mode.

end

Example:
Device(config-applet)# end

Step 7

Displays EEM policies that are executing.show event manager policy active

Example:
Device# show event manager policy active

Step 8

Displays the EEM events that have been triggered.show event manager history events

Example:
Device# show event manager history events

Step 9

What to Do Next

The following example shows how to trigger the Python script configured in the task:
Device(config)# interface loopback 55
Device(config-if)# shutdown
Device(config-if)# end
Device#

Mar 13 10:53:22.358 EDT: %SYS-5-CONFIG_I: Configured from console by console
Mar 13 10:53:24.156 EDT: %LINK-5-CHANGED: Line protocol on Interface Loopback55, changed
state to down
Mar 13 10:53:27.319 EDT: %LINK-3-UPDOWN: Interface Loopback55, changed state to
administratively down
Enter configuration commands, one per line. End with CNTL/Z.
Mar 13 10:53:35.38 EDT: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback55, changed
state to up
*Mar 13 10:53:35.39 EDT %LINK-3-UPDOWN: Interface Loopback55, changed state to up
+++ 10:54:33 edi37(default) exec +++
show ip interface br
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0/0 unassigned YES unset down down
GigabitEthernet0/0/1 unassigned YES unset down down
GigabitEthernet0/0/2 10.1.1.31 YES DHCP up up
GigabitEthernet0/0/3 unassigned YES unset down down
GigabitEthernet0 192.0.2.1 YES manual up up
Loopback55 198.51.100.1 YES manual up up
Loopback66 172.16.0.1 YES manual up up
Loopback77 192.168.0.1 YES manual up up
Loopback88 203.0.113.1 YES manual up up

Data Models Configuration Guide
41

EEM Python Module
Adding a Python Script in an EEM Applet

Additional References EEM Python Module
Related Documents

Document TitleRelated Topic

Cisco IOS Master Command List, All ReleasesCisco IOS commands

Embedded Event Manager Configuration GuideEEM configuration

Embedded Event Manager Command ReferenceEEM commands

Guest Shell configuration

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online
resources, including documentation and tools for
troubleshooting and resolving technical issues with
Cisco products and technologies.

To receive security and technical information about
your products, you can subscribe to various services,
such as the Product Alert Tool (accessed from Field
Notices), the Cisco Technical Services Newsletter,
and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website
requires a Cisco.com user ID and password.

Feature Information for EEM Python Module
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

 Data Models Configuration Guide
42

EEM Python Module
Additional References EEM Python Module

http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/mcl/allreleasemcl/all-book.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-3s/eem-xe-3s-book.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/command/eem-cr-book.html
http://www.cisco.com/support
http://www.cisco.com/go/cfn

Table 7: Feature Information for EEM Python Module

Feature InformationReleaseFeature Name

This feature supports Python scripts as EEM
policies.

No new commands were introduced.

Cisco IOS XE Everest
16.5.1b

EEM Python Module

Data Models Configuration Guide
43

EEM Python Module
Feature Information for EEM Python Module

 Data Models Configuration Guide
44

EEM Python Module
Feature Information for EEM Python Module

	Data Models Configuration Guide
	Contents
	YANG Infrastructure
	Finding Feature Information
	Introduction to Data Models - Programmatic and Standards-based Configuration
	NETCONF
	Configuring NETCONF

	Configuring NETCONF Options
	Configuring SNMP
	Configuring Operational Data Manager

	Additional References
	Feature Information for YANG Infrastructure

	In Service Model Update
	Finding Feature Information
	Restrictions for In Service Model Update
	Information About In Service Model Updates
	Overview of In Service Model Updates
	Compatibility of In Service Model Update Packages
	Update Package Naming Conventions
	Installing the Update Package
	Deactivating the Update Package
	Rollback of the Update Package

	How to Manage In Service Software Updates
	Managing the Update Package

	Configuration Examples for In Service Software Updates
	Example: Managing an Update Package

	Additional References for In Service Model Updates
	Feature Information for In Service Model Update

	Zero-Touch Provisioning
	Information About Zero-Touch Provisioning
	Zero-Touch Provisioning Overview
	DHCP Server Configuration for Zero-Touch Provisioning

	Sample Zero-Touch Provisioning Configurations
	Sample DHCP Server Configuration on a Management Port Using TFTP Copy
	Sample DHCP Server Configuration on a Management Port Using HTTP Copy
	Sample DHCP Server Configuration on an In-Band Port Using TFTP Copy
	Sample DHCP Server Configuration on an In-Band Port Using HTTP Copy
	Sample DHCP Server Configuration on a Linux Ubuntu Device
	Sample Python Provisioning Script
	Zero-Touch Provisioning Boot Log

	Feature Information for Zero-Touch Provisioning

	CLI Python Module
	Finding Feature Information
	Information About CLI Python Module
	About Python
	Python Scripts Overview
	Interactive Python Prompt
	Python Script

	Supported Python Versions

	Updating the Cisco CLI Python Module
	Additional References for the CLI Python Module
	Feature Information for the CLI Python Module

	EEM Python Module
	Finding Feature Information
	Prerequisites for the EEM Python Module
	Information About the EEM Python Module
	Python Scripting in EEM
	EEM Python Package
	Python-Supported EEM Actions
	EEM Variables
	EEM CLI Library Command Extensions

	How to Configure the EEM Python Policy
	Registering a Python Policy
	Running Python Scripts as Part of EEM Applet Actions
	Adding a Python Script in an EEM Applet

	Additional References EEM Python Module
	Feature Information for EEM Python Module

