用 CVM 和 Telemate 管理语音质量

目录

简介

先决条件

要求

使用的组件

规则

语音质量概述

测量语音质量

ITU G.113 概述

用 CVM 和 Telemate 管理语音质量

限制

网关配置

CVM 和 Telemate 体系结构

Telemate 目录

报告

相关信息

简介

本文档介绍使用Cisco Voice Manager和Telemate在VoIP网络中管理语音质量。所有内容都基于实际IP电话实施。本文档重点介绍产品的应用,而不是产品的使用。您应该已经熟悉CVM和Telemate,并有权访问所需的产品文档。有关文档的列表,请参阅相关信息。

在管理大规模VoIP网络时,您必须拥有客观监控和报告网络语音质量所需的工具。仅依靠用户反馈是不可行的,因为它主观性和不完整性。CVM与Telemate一起提供此功能的一部分。它使用IOS网关为每个呼叫计算的减值/计算减值规划因子(*Icpif*)来报告语音质量。这样,网络管理员就可以识别语音质量较差的站点并相应地处理它们。

确定问题站点后,可能需要其他工具来排除可能的网络QoS问题。网际网络性能监控器(IPM)和思科服务保证代理(CSAA)是两种工具。 这些主题在我们网站上发布的另一份文档中讨论。

先决条件

要求

本文档的读者应掌握以下这些主题的相关知识:

• 思科语音管理器和远程交会

使用的组件

本文档不限于特定的软件和硬件版本。

本文档中的信息都是基于特定实验室环境中的设备编写的。本文档中使用的所有设备最初均采用原始(默认)配置。如果您使用的是真实网络,请确保您已经了解所有命令的潜在影响。

规则

有关文件规则的更多信息请参见" Cisco技术提示规则"。

语音质量概述

以下部分概述语音质量问题:

- 测量语音质量
- ITU G.113 概述

测量语音质量

ITU标准G.113规定了如何测量语音质量。此方法规定您可以通过计算ICPIF来确定语音呼叫*质量*。基于IOS的网关计算每个呼叫的ICPIF值,并将其记录为CDR记录的一部分。此外,如果呼叫的Icpif值超过预设值,它可通过SNMP发*送语*音质量(QoV)陷阱。这意味着网关具有内置语音质量测量功能。只需收集这些测量数据并分析数据,以确定任何趋势。

VoIP语音质量主要受网络QoS影响。因此,呼叫分析将侧重于逐个站点识别语音质量问题。如果可以识别出大量呼叫且语音质量较差的站点,我们可以专注于这些站点的网络路径中的任何QoS问题。

ITU G.113 概述

以下部分仅简要概述:有关详细信息,请参阅G.113标准。

ITOT = Io + IQ + IDTE + ID + IE

其中每一项定义如下(使用ITU术语):

- lo 由非最佳整体响度额定值和/或高电路噪声引起的损坏。
- Ia PCM类型量化失真导致的损坏。
- Idte 讲话者回声造成的损伤。
- Id 长单向传输时间(延迟)导致的语音通信困难。
- le 由特殊设备,特别是非波形低比特率编解码器造成的损坏。

当Cisco IOS软件计算Ito时,它会忽略Io和Iq为可忽略,并将*Idte*设置为0。Idd值从下表中派生,该表来自G.113:

延迟	IDD
150	0
200	3
250	10

300	15
400	25
500	30
600	35
800	40

通常*le*是固定值,具体取决于编解码器类型。G.113指定思科网关通常使用的编解码器的值,如下表所示:

代码	IE
G.711	0
G.729/G.729a	10

但是,由于这些编解码器用于数据包语音环境,因此实际损坏取决于数据包丢失。丢包率越高,损害越大。思科工程部门已通过PSQM(ITU P.861)在离散丢包级别测量语音质量。下表显示了与给定编解码器的丢包级别相关的语音失真值:

丢包率	G.711	G.729/G.729a
0	0	10
1	8	15
2	12	20
3	18	25
4	22	30
5	26	34
6	28	38
7	30	40
8	32	42
9	34	44

如预期, G.729比G.711更容易丢包。

语音质量完全取决于人的感知和期望。手机用户的服务水平期望值比固定电话用户低。在计算 Icpif时,我们考虑*了这*一点,即*Itot*由人的期望因子A来减小。

Icpif = Itot - A

G.113还为典型语音网络提供了预期因素。请参阅下表:

语音网络接入方法	预期因素A
传统固定线路PSTN	0
本地无线(无绳电话)	5
广域无线(手机)	10
卫星	20

G.113还有一个表,在Icpif值和语音质量之间映射。如下表所示:

语音网络接入方法	预期因素A
-H H I I I H W W W W W W W W W W W W W W	50 10 10 10 10 10 10 10 10 10 10 10 10 10

5	良好
10	好
20	足够
30	限制案例
45	异常限制案例
55	用户可能会强烈抱怨

呼叫的Icpif值为零是完美得分。这应该是我们VoIP网络的目标。

在传统语音网络中,设计人员会计算总损失预算。

例如,Io = 0; 智商= 0; Idte = 0; Id = 3; Ie = 7, 这给 Itot = 10。

如果用户从无绳电话访问网络,则可减去的最大期望系数为5,因此最终结果是:

Icpif = Itot - A = 10 - 5 = 5

根据上表,用户可能认为语音质量非常好。

本文档讨论的解决方案使用Icpif值来监控语音质量,而不是将其用于规划目的。

用 CVM 和 Telemate 管理语音质量

以下各节讨论如何通过CVM和Telemate管理语音质量:

- 限制
- 网关配置
- CVM 和 Telemate 体系结构
- Telemate 目录
- 报告

限制

虽然推荐的解决方案确实存在一些限制,但似乎没有其他可扩展的工具。已知限制包括:

- 只有通过网关的呼叫受质量控制。您不能测量从IPhone到IPhone的呼叫。网关未看到这些呼叫 ,并且CallManager当前不支持G.113。
- *Icpif*计算仅考虑数据包丢失和延迟。Echo不包括在Icpif计*算*中。因此,呼叫可能会出现严重回声,并仍能获得完*美的Icpif*得分。
- 语音质量仅在IP电话到网关的方向测量。分组语音*网络*中的*Icpif值可能在两个方向上是非对称的。*网关到IPhone方向中的任何单向网络QoS问题都不会反映在网关*计算*的Icpif值中。
- 语音质量问题通常是整个WAN的一个问题。所讨论的解决方案最适合具有集中式网关的环境 ,因为来自远程站点IPhone的呼叫必须通过广域网才能访问网关。如果网关是分布式的(即 ,每个远程站点都由本地网关提供服务),则大多数网关呼叫不会通过广域网。WAN中的 VoIP呼叫将主要是IP电话到IP电话,这些呼叫对网关不可见。

网关配置

作为推荐解决方案的一部分,需要为CDR收集配置所有网关:

```
dial-control-mib max-size <max-number-of-cdr>
dial-control-mib retain-timer 600
```

所有网关还必须启用QoV陷阱功能。默认情况下禁用此功能:

```
Calibra#show dial-peer voice 99 | include QOV|Icpif
Expect factor = 0, Icpif = 20,
VAD = enabled, Poor QOV Trap = disabled,
```

通过添加以下内容,可以按VoIP拨号对等体启用此功能:

```
dial-peer voice XYZ voip
snmp enable peer-trap poor-qov
icpif <threshold>
expect-factor 0
```

让我们看一个示例,其中网关配置如下:

```
dial-peer voice XYZ voip
icpif 10
expect-factor 5
```

假设呼叫完成且*Itot* 值为20。然后网关从此数字中减去期望因子5,从而得出*Icpif* 值15。由于15大于10,因此网关会生成QoV SNMP陷阱。

全局而言,必须启用QoV陷阱才能发送到CVM:

```
snmp-server enable traps voice poor-qov
snmp-server host 10.x.x.x.x public<---- CVM station</pre>
```

请注意,每次建立或断开呼叫时,语音网关都会生成链路打开/链路关闭SNMP陷阱。这可能导致高密度网关上存在大量陷阱。通过添加以下命令,确保禁用这些陷阱:

interface serial1/0:15no snmp trap link-status

CVM 和 Telemate 体系结构

CVM和Telemate是完全独立的应用。顾名思义,CVM是思科开发的产品。另一方面,Telemate是思科与CVM捆绑销售的第三方产品。

CVM执行各种功能。我们将利用的两个功能是:

• 通过SNMP从网关收集呼叫详细记录(CDR)。

• 从网关接收语音质量(QoV)SNMP陷阱。

收集此信息后,CVM将格式化数据并通过简单文件共享将其传递到Telemate。然后,Telemate处理 此数据并将其存储在Microsoft SQL数据库中。最终结果是一个数据库,其中包含呼叫列表及其各自 的详细信息,包括Icpif值。然后,可以针对数据库运行各种报告,包括QoV报告。

我们感兴趣的远程QoV报告是"Packet Voice Calls with Quality of Service Traps"报告。此报告列出 网关为其生成QoV陷阱的所有呼叫。我们对个人电话不感兴趣;相反,我们感兴趣的是确定语音质量呼叫比例高于平均水平的站点(如果有)。为此,Telemate需要能够按站点对呼叫进行分类。这将在下一节讨论。

Telemate 目录

通过填写Telemate目录,了解哪些分机位于哪些站点,我们可以使用Telemate按站点对呼叫进行分类。

Telemate目录是五层层次结构,具有以下级别:

- 第1级 公司
- 第2级 部门
- 第3级 部门
- 第4级 用户
- 第5级 分机

您可以将多个分机与一个用户关联。

理想情况下,我们希望QoV报告中的每个呼叫都与部门名称一起列出。然后,我们可以使用部门名称来代表给定的站点。这允许我们按部门/站点对呼叫进行排序。但是,由于扩展只能与用户关联,因此我们必须以一种稍显尴尬的方式实现。基本上,我们为每个站点创建一个虚拟用户,并将此用户的名称设置为站点名称或站点代码。然后,为该特定站点分配该虚拟用户的所有分机。然后,我们可以按用户对呼叫进行排序,这就相当于按站点对呼叫进行排序。

为了进行QoV报告,我们不关心目录层次结构的前三个级别,这些级别可以分配任何任意值。

对于此实施,有200个站点,分配了45,000个分机,但不一定全部都在使用。因此,该目录包含200个虚拟用户,并且每个虚拟用户与其站点的扩展范围相关联。手动填写目录是一项不可能的任务,因此,我们半自动地完成此操作,方法是生成一个CSV文件,每个扩展名一行,然后使用Telemate导入功能将文件导入目录。此CSV文件中的每行都具有以下格式:

Company, Division, Department, User, Extension

通过运行Unix外壳脚本,也可半自动生成CSV文件。此脚本将种子文件作为输入。此种子文件列出站点和关联的扩展范围。种子文件中的每行都具有以下格式:

site_name, extention_start, extension_end

外壳脚本本身非常简单,如下所示:

#----- Telemate script start -----

假设脚本本身命名为"make_dir",种子文件命名为"seedfile.csv",则导入CSV telemate_dir.csv文件是在Unix提示符下执行以下命令创建的:

```
unix$ make_dir seedfile.csv > telemate_dir.csv
```

然后,输出文件telemate_dir.csv将导入到Telemate中。有关如何执行此操作的详细说明,请参阅Telemate文档。

报告

运行Telemate报告时,可以选择输出目标。对于大型报告,建议以CSV格式生成文件。然后,您可以在Excel中操作报表,其外观如下所示:

持续时 间	拨号号	位置	日期	时间	站 点	分机
0:00:5	3-573-	10.200.16	10/05/20	1	BL	375
7	7783	.33	00	45	М	69
0:00:5	3-573-	10.200.16	10/05/20		BL	375
7	7783	.33	00	45	М	69
0:00:3	3-577-	10.200.16	10/05/20	1	BL	375
8	2958	.33	00	28	М	76
0:00:3	3-577-	10.200.16	10/05/20	4:28:	BL	375
8	2958	.33	00	28	М	76
0:00:5	3-577-	10.200.16	10/05/20	9:26:	BL	375
2	2985	.33	00	33	М	93
0:01:1	3-577-	10.200.16	10/05/20	7:26:	ВМ	342
9	1770	.33	00	05	С	70
0:00:2	3-577-	10.200.16	10/05/20	8:08:	ВМ	342
3	1770	.33	00	27	С	70
0:00:2	3-577-	10.200.16	10/05/20	8:08:	ВМ	342
3	1770	.33	00	27	С	70
0:00:1	4-566-	10.132.16	10/05/20	7:05:	CO	427
1	5302	.33	00	33	R	91
0:00:3	4-567-	10.132.16	10/05/20	5:29:	CO	428
2	0417	.33	00	51	R	05
0:00:3	4-567-	10.132.16	10/05/20	5:29:	CO	428
2	0417	.33	00	51	R	05
0:00:3	4-232-		10/05/20	1	CO	428
6	8545	.33	00	07	R	23
0:00:3	4-232-	10.132.16	10/05/20	5:42:	СО	428

6	8545	.33	00	07	R	23
0:00:3	4-472-	10.132.16	10/05/20	5:59:	CO	465
9	5011	.33	00	23	R	78
0:00:3	4-472-	10.132.16	10/05/20	5:59:	CO	465
9	5011	.33	00	23	R	78
0:00:2	4-236-	10.132.16	10/05/20	7:17:	CO	465
8	7687	.33	00	51	R	78
0:00:1	6-867-	10.132.16	10/05/20	4:08:	GI	641
7	9766	.35	00	02	S	97
0:00:1	6-867-	10.132.16	10/05/20	4:08:	GI	641
7	9766	.35	00	02	S	97
0:00:3	6-868-	10.132.16	10/05/20	6:15:	GI	685
0	6889	.35	00	48	S	49
0:00:3	6-868-	10.132.16	10/05/20	6:15:	G	685
0	6889	.35	00	48	S	49
0:01:2	6-876-	10.132.16	10/05/20	7:10:	HA	683
6	5223	.35	00	23	H	69
0:01:2	6-876-	10.132.16	10/05/20	7:10:	HA	683
6	5223	.35	00	23	H	69
0:00:5	6-876-	10.132.16	10/05/20	5:37:	HA	683
2	2223	.35	00	58	H	97
0:01:0	4-477-	10.132.16	10/05/20	4:23:	JV	471
5	5402	.33	00	20	L	62
0:00:2	4-478-	10.132.16	10/05/20	7:07:	JV	471
4	8848	.33	00	09	L	68
0:00:2	4-478-	10.132.16	10/05/20	7:07:	JV	471
4	8848	.33	00	09	L	68
0:00:4	4-387-	10.132.16	10/05/20	7:49:	KIB	492
4	1333	.33	00	16		52
0:00:4	4-387-	10.132.16	10/05/20	7:49:	KIB	492
4	1333	.33	00	16		52
0:01:1	4-389-	10.132.16	10/05/20	4:07:	KIB	492
4	4299	.33	00	10		54
0:01:1	4-389-	10.132.16	10/05/20	4:07:	KIB	492
4	4299	.33	00	10		54
0:00:2	4-387-	10.132.16	10/05/20	4:06:	KIB	492
9	1337	.33	00	45		56
0:00:2	4-387-	10.132.16	10/05/20	4:06:	KIB	492
9	1337	.33	00	45		56
0:00:4	4-384-	10.132.16	10/05/20	4:09:	KIB	492
1	9269	.33	00	38		61
0:00:4	4-384-	10.132.16	10/05/20	4:09:	KIB	492
1	9269	.33	00	38		61
0:00:4	4-384-	10.132.16	10/05/20	4:09:	KIB	492
1	9269	.33	00	38		61
0:00:1	4-387-	10.132.16	10/05/20	4:33:	KIB	492
7	1344	.33	00	04		63

0:00:1	4-387-	10.132.16	10/05/20	4:33:	KIB	492
7	1344	.33	00	04		63
0:00:3	6-367-	10.132.16	10/05/20	8:44:	列夫	642
1	5103	.35	00	46		33
0:00:3	6-367-	10.132.16	10/05/20	8:44:	列夫	642
1	5103	.35	00	46		33
0:00:3	6-368-	10.132.16	10/05/20	4:11:	列夫	642
0	9088	.35	00	06		47
0:00:3	6-368-	10.132.16	10/05/20	4:11:	列夫	642
0	9088	.35	00	06		47
0:00:3	4-570-	10.132.16	10/05/20	4:08:	LH	436
8	2450	.33	00	26	T	36
0:00:3	4-570-	10.132.16	10/05/20	4:08:	LH	436
8	2450	.33	00	26	T	36

使用Excel"小计"功能计算每个用户/站点的错误呼叫数。然后创建Excel宏,以半自动执行子合计。 请参阅以下示例:

持续时间	拨号号	位置	日期	时间	站点	分机
				BCM计数	5	
				BMC计数	3	
				COR计数	8	
				GIS计数	4	
				HAH计数	3	
				JVL计数	3	
				KIB计数	11	
				LEV计数	4	
	_			LHT计数	2	
				大伯爵	43	

现在,**站点**列包含该站点的错误呼叫数。报告中的**Location**列是VoIP支路另一端的IP地址,来自网关CDR记录。在CallManager(CCM)环境中,信令和媒体端点是两个不同的IP地址。列出的IP地址是信令端点(即CallManager)。已提交DDTS(CSCds23283)以请求允许CDR记录记录介质IP地址的旋钮。这将允许按子网对错误呼叫进行排序。这样可以提供更精细的粒度,因为每个站点通常有多个子网。如果这些子网中只有一部分出现QoV问题,则可以确定这些问题。

我们建议您设置Telemate调度程序,以每天自动运行一次"Packet Voice Calls with Quality of Service Traps"报告。然后,可将已完成的报告通过电子邮件发送给选定的运营人员。然后,这些员工会对过去24小时进行每日QoV审计。报告应至少存档一个月,以便QoV的任何恶化都可以与该时间前后执行的任何网络更改相关联。

注意:报告需要Telemate 4.7或更高版本才能与在CallManager环境中运行的网关正常工作。早期版本的Telemate假设本地分机始终位于网关的POTS端。在CallManager环境中,本地分机(IPhone)位于网关的VoIP端。因此,早期版本的Telemate会变得混乱,报告的价值有限。

相关信息

- 统一通信产品支持Cisco IP 电话故障排除技术支持和文档 Cisco Systems