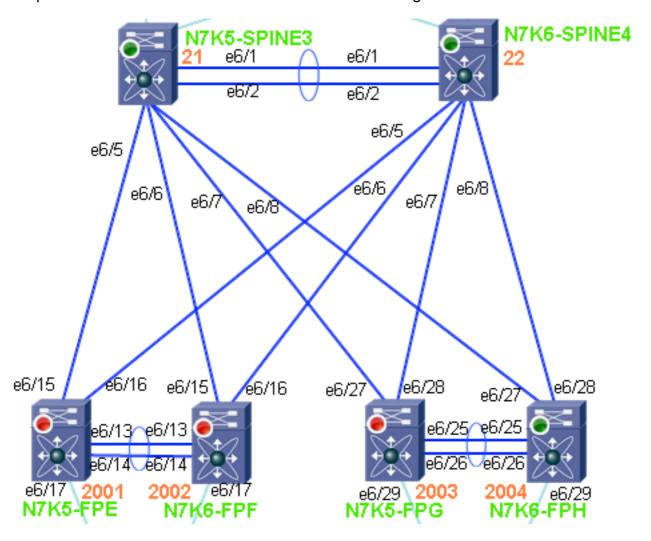
FabricPath: Mapear a árvore multidestino de um FTag

Contents

Introduction

Prerequisites

Requirements


Componentes Utilizados

Informações de Apoio

Mapear a árvore multidestino de um FTag

Introduction

Este documento descreve como mapear a árvore de vários destinos para uma determinada Tag de encaminhamento (FTag) em uma topologia do FabricPath. Isso permite que você siga o fluxo esperado de um pacote multidestino para um FTag específico. Neste exemplo, você começa a partir do switch de borda do FabricPath N7K5-FPE e mapeia a árvore FTag 1. A topologia completa do domínio do FabricPath é mostrada neste diagrama.

Prerequisites

Requirements

Não existem requisitos específicos para este documento.

Componentes Utilizados

As informações neste documento são baseadas nestas versões de software e hardware:

- Nexus 7000 com versão 6.1(2)
- Placas de linha F2 Series

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Informações de Apoio

Os usuários devem estar familiarizados com os conceitos e a terminologia do FabricPath. Uma breve explicação do uso do parâmetro FTag (tag de encaminhamento) no cabeçalho FabricPath é abordada nesta seção.

A função do FTag é detectada pelo tipo de quadro. Especificamente, se o quadro for unicast ou multidestino. No caso de um quadro unicast, o FTag identifica e seleciona a topologia do FabricPath para a qual o quadro especificado deve passar. Topologia única é suportada com um valor de "1" atribuído a ela.

No caso de quadros de vários destinos, o switch de ingresso que recebe o quadro precisa identificar qual árvore de encaminhamento de vários destinos o quadro atravessa.

Quando o tráfego multidestino entra em um domínio do FabricPath, o switch de ingresso usa um algoritmo de hash para decidir qual FTag programar no cabeçalho do FabricPath. Cada topologia do FabricPath tem duas árvores multidestino, árvores FTag 1 e FTag 2. Cada FTag tem um switch raiz calculado de forma semelhante a uma raiz de spanning tree. A eleição é baseada na prioridade do FabricPath e na ID do sistema. O switch com a prioridade mais alta, ou o ID do sistema quando a prioridade é padronizada, torna-se a raiz para FTag 1 e o runner-up é a raiz para FTag 2.

Depois que um FTag é selecionado pelo switch de borda do FabricPath de entrada, o restante do núcleo do FabricPath encaminha o pacote multidestino com base nesse FTag. Um pacote multidestino inclui qualquer pacote unicast de broadcast, multicast ou desconhecido. Cada switch encaminha o pacote com base no menor custo para a raiz. Quando a raiz recebe o pacote, ele o encaminha a todos os switches naquele FTag, exceto o switch do qual ele foi recebido.

Mapear a árvore multidestino de um FTag

1. Confirme a ID do switch local. Note: Quando um switch FabricPath é membro de um domínio vPC+, ele tem um switch-id não emulado (autônomo) e um switch-id emulado (vPC+). No exemplo de saída, observe que este system-ID (6c9c.ed4f.28c4) é mostrado duas vezes.

Uma vez para o switch-id não emulado e uma vez para o switch-id emulado.

N7K5-FPE# show fabricpath switch-id

FABRICPATH SWITCH-ID TABLE

Legend: '*' - this system

========	==========	=======	========	======	========	==			
SWITCH-ID	SYSTEM-ID	FLAGS	STATE	STATIC	EMULATED				
+	+-		++						
21	6c9c.ed4f.28c3	Primary	Confirmed	Yes	No				
22	6c9c.ed4d.d943	Primary	Confirmed	Yes	No				
201	6c9c.ed4f.28c4	Primary	Confirmed	No	Yes				
201	6c9c.ed4d.d944	Primary	Confirmed	No	Yes				
202	6c9c.ed4f.28c5	Primary	Confirmed	No	Yes				
202	6c9c.ed4d.d945	Primary	Confirmed	No	Yes				
*2001	6c9c.ed4f.28c4	Primary	Confirmed	Yes	No				
2002	6c9c.ed4d.d944	Primary	Confirmed	Yes	No				
2003	6c9c.ed4f.28c5	Primary	Confirmed	Yes	No				
2004	6c9c.ed4d.d945	Primary	Confirmed	Yes	No				
Total Switch-ids: 10									

2. Identifique a raiz do valor FTag. Como mostrado no exemplo de saída, a raiz para FTag 1 é

```
N7K5-FPE# show fabricpath isis topology summ
Fabricpath IS-IS domain: default FabricPath IS-IS Topology Summary
MT-0
 Configured interfaces: Ethernet6/15 Ethernet6/16 port-channel1
 Number of trees: 2
    Tree id: 1, ftaq: 1 [transit-traffic-only], root system: 6c9c.ed4f.28c3, 21
    Tree id: 2, ftag: 2, root system: 6c9c.ed4d.d943, 22
```

3. Determine a rota do FabricPath para acessar o switch-id 21.

```
N7K5-FPE# show fabricpath route switchid 21
FabricPath Unicast Route Table
'a/b/c' denotes ftag/switch-id/subswitch-id
'[x/y]' denotes [admin distance/metric]
ftag 0 is local ftag
subswitch-id 0 is default subswitch-id
FabricPath Unicast Route Table for Topology-Default
1/21/0, number of next-hops: 1
via Eth6/15, [115/40], 10 day/s 20:49:54, isis_fabricpath-default
```

4. Essa é uma alternativa à Etapa 3. Use um segundo método para determinar a rota do

```
FabricPath para acessar o switch-id 21.
N7K5-FPE# show fabricpath isis trees multidestination 1
Fabricpath IS-IS domain: default
Note: The metric mentioned for multidestination tree is from the root of that tree to that
switch-id
MT-0
Topology 0, Tree 1, Swid routing table
via Ethernet6/15, metric 0
22. L1
via Ethernet6/15, metric 20
201, L1
via Ethernet6/15, metric 40
202. L1
via Ethernet6/15, metric 40
2002, L1
via Ethernet6/15, metric 40
2003, L1
via Ethernet6/15, metric 40
via Ethernet6/15, metric 40
```

5. Veja o dispositivo vizinho Ethernet6/15 e faça telnet para esse dispositivo.

```
N7K5-FPE# show cdp neighbors int e6/15 detail
```

```
Device ID:N7K5-SPINE3(JAF1620ABAB)
System Name: N7K5-SPINE3
Interface address(es):
IPv4 Address: 14.2.36.51
Platform: N7K-C7009, Capabilities: Router Switch IGMP Filtering Supports-STP-Dispute
Interface: Ethernet6/15, Port ID (outgoing port): Ethernet6/5
Holdtime: 149 sec
Version:
Cisco Nexus Operating System (NX-OS) Software, Version 6.1(1)
Advertisement Version: 2
Native VLAN: 1
Duplex: full
MTU: 1500
Mgmt address(es):
IPv4 Address: 14.2.36.51
```

6. Verifique se N7K5-SPINE3 concorda em quem tem a raiz para FTag 1.

```
N7K5-SPINE3# show fabricpath isis topology summary
Fabricpath IS-IS domain: default FabricPath IS-IS Topology Summary
MT-0
Configured interfaces: Ethernet6/5 Ethernet6/6 Ethernet6/7 Ethernet6/8 port-channel1
Number of trees: 2
Tree id: 1, ftag: 1, root system: 6c9c.ed4f.28c3, 21
Tree id: 2, ftag: 2, root system: 6c9c.ed4d.d943, 22
```

7. Verifique o switch-id local para determinar se você é a raiz ou se precisa mover-se em direção à raiz. O exemplo de saída mostra que este sistema é switch-id 21. Você sabe disso nas etapas 2 e 6. É a raiz do FTaq 1.

N7K5-SPINE3# show fabricpath switch-id

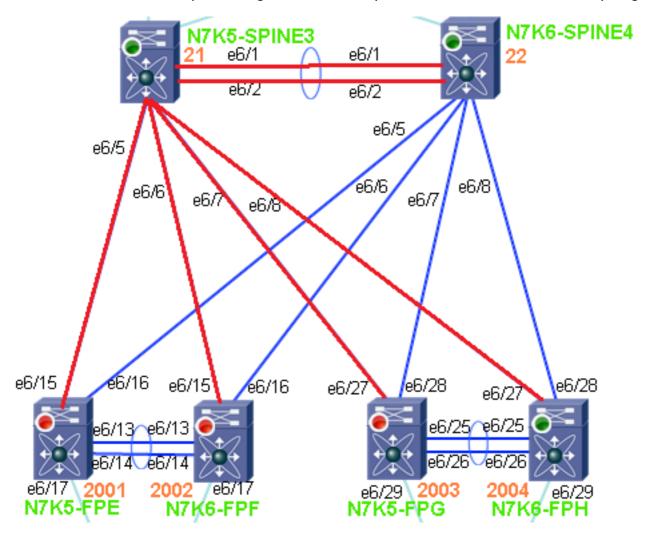
FABRICPATH SWITCH-ID TABLE

Legend: '*' - this system

SWITCH-ID	SYSTEM-ID	FLAGS	STATE	STATIC	EMULATED			
	+	+-	+					
*21	6c9c.ed4f.28c3	Primary	Confirmed	Yes	No			
22	6c9c.ed4d.d943	Primary	Confirmed	Yes	No			
201	6c9c.ed4f.28c4	Primary	Confirmed	No	Yes			
201	6c9c.ed4d.d944	Primary	Confirmed	No	Yes			
202	6c9c.ed4f.28c5	Primary	Confirmed	No	Yes			
202	6c9c.ed4d.d945	Primary	Confirmed	No	Yes			
2001	6c9c.ed4f.28c4	Primary	Confirmed	Yes	No			
2002	6c9c.ed4d.d944	Primary	Confirmed	Yes	No			
2003	6c9c.ed4f.28c5	Primary	Confirmed	Yes	No			
2004	6c9c.ed4d.d945	Primary	Confirmed	Yes	No			
Total Switch-ids: 10								

8. Como você sabe que N7K5-SPINE3 é a raiz, você precisa ver como ele encaminha um quadro multidestino recebido com FTag 1. Com base nessa saída, o N7K5-SPINE3 encaminha um quadro de vários destinos com FTag 1 para Eth6/5 - Eth6/8 e Port-channel 1.

N7K5-SPINE3# show fabricpath isis trees multidestination 1


```
Fabricpath IS-IS domain: default
```

Note: The metric mentioned for multidestination tree is from the root of that tree to that switch-id

```
MT-0
Topology 0, Tree 1, Swid routing table 22, L1
via port-channel1, metric 20
201, L1
via Ethernet6/6, metric 40
202, L1
```

```
via Ethernet6/8, metric 40
2001, L1
via Ethernet6/5, metric 40
2002, L1
via Ethernet6/6, metric 40
2003, L1
via Ethernet6/7, metric 40
2004, L1
via Ethernet6/8, metric 40
```

Use as informações coletadas para desenhar a árvore de múltiplos destinos para FTag 1. A árvore de vários destinos para FTag 1 é destacada por links VERMELHOS nesta topologia.

Referência de comando:

```
show fabricpath isis topology summary
show fabricpath isis trees multidestination <ftag>
show fabricpath route switchid <switch-id>
show fabricpath switch-id
```