Configurar o acesso remoto ASA IKEv2 com EAP-PEAP e cliente Windows nativo

Contents

Introduction

Prerequisites

Requirements

Componentes Utilizados

Informações de Apoio

Considerações do AnyConnect Secure Mobility Client

Configurar

Diagrama de Rede

Certificados

ISE

Etapa 1. Adicione o ASA aos dispositivos de rede no ISE.

Etapa 2. Crie um nome de usuário no repositório local.

ASA

Windows 7

Etapa 1. Instale o certificado CA.

Etapa 2. Configure a conexão VPN.

Verificar

Cliente Windows

Logs

Depurações no ASA

Nível do pacote

Troubleshoot

Informações Relacionadas

Introduction

Este documento fornece um exemplo de configuração para um Cisco Adaptive Security Appliance (ASA) versão 9.3.2 e posterior que permite o acesso remoto à VPN para usar o Internet Key Exchange Protocol (IKEv2) com a autenticação padrão do Extensible Authentication Protocol (EAP). Isso permite que um cliente nativo do Microsoft Windows 7 (e qualquer outro IKEv2 baseado em padrão) se conecte ao ASA com autenticação IKEv2 e EAP.

Prerequisites

Requirements

A Cisco recomenda que você tenha conhecimento destes tópicos:

- Conhecimento básico de VPN e IKEv2
- Autenticação básica, autorização e contabilidade (AAA) e conhecimento RADIUS
- Experiência com a configuração do ASA VPN
- Experiência com a configuração do Identity Services Engine (ISE)

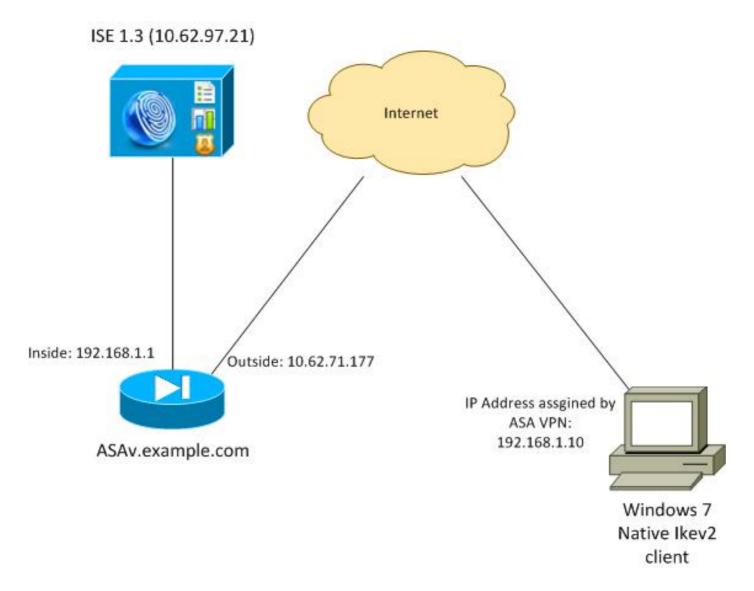
Componentes Utilizados

As informações neste documento são baseadas nestas versões de software e hardware:

- Microsoft Windows 7
- Software Cisco ASA, versão 9.3.2 e posterior
- Cisco ISE, versão 1.2 e posterior

Informações de Apoio

Considerações do AnyConnect Secure Mobility Client


O cliente Windows IKEv2 nativo não suporta o túnel dividido (não há atributos CONF REPLY que possam ser aceitos pelo cliente Windows 7), portanto, a única política possível com o cliente Microsoft é o túnel de todo o tráfego (selecionadores de tráfego 0/0). Se houver necessidade de uma política de túnel dividido específica, o AnyConnect deve ser usado.

O AnyConnect não suporta métodos EAP padronizados que são terminados no servidor AAA (PEAP, Transport Layer Security). Se houver necessidade de encerrar sessões EAP no servidor AAA, o cliente Microsoft poderá ser usado.

Configurar

Note: Use a <u>Command Lookup Tool (somente clientes registrados)</u> para obter mais informações sobre os comandos usados nesta seção.

Diagrama de Rede

O ASA é configurado para autenticar com um certificado (o cliente precisa confiar nesse certificado). O cliente Windows 7 é configurado para autenticação com EAP (EAP-PEAP).

O ASA atua como gateway VPN terminando a sessão IKEv2 do cliente. O ISE atua como um servidor AAA terminando sessão EAP a partir do cliente. Os pacotes EAP são encapsulados em pacotes IKE_AUTH para tráfego entre o cliente e o ASA (IKEv2) e, em seguida, em pacotes RADIUS para tráfego de autenticação entre o ASA e o ISE.

Certificados

A Autoridade de Certificação da Microsoft (AC) foi usada para gerar o certificado para o ASA. Os requisitos de certificado para serem aceitos pelo cliente nativo do Windows 7 são:

- A extensão EKU (Extended Key Usage, uso de chave estendida) deve incluir a Autenticação de servidor (o modelo "servidor Web" foi usado nesse exemplo).
- O nome do assunto deve incluir o nome de domínio totalmente qualificado (FQDN) que será usado pelo cliente para se conectar (neste exemplo, ASAv.example.com).

Para obter mais detalhes sobre o cliente Microsoft, consulte <u>Troubleshooting de Conexões VPN IKEv2</u>.

Note: O Android 4.x é mais restritivo e exige o nome alternativo de assunto correto de

acordo com o RFC 6125. Para obter mais informações sobre Android, consulte <u>IKEv2 de</u> Android strongSwan para Cisco IOS com EAP e autenticação RSA.

Para gerar uma solicitação de assinatura de certificado no ASA, esta configuração foi usada:

```
hostname ASAv
domain-name example.com
crypto ca trustpoint TP
enrollment terminal
crypto ca authenticate TP
crypto ca enroll TP
```

ISE

Etapa 1. Adicione o ASA aos dispositivos de rede no ISE.

Escolha **Administração > Dispositivos de rede**. Defina uma senha pré-compartilhada que será usada pelo ASA.

Etapa 2. Crie um nome de usuário no repositório local.

Escolha Administração > Identidades > Usuários. Crie o nome de usuário conforme necessário.

Todas as outras configurações são habilitadas por padrão para que o ISE autentique endpoints com EAP-PEAP (Protected Extensible Authentication Protocol).

ASA

A configuração para acesso remoto é semelhante para IKEv1 e IKEv2.

```
aaa-server ISE2 protocol radius
aaa-server ISE2 (inside) host 10.62.97.21
key cisco

group-policy AllProtocols internal
group-policy AllProtocols attributes
vpn-tunnel-protocol ikev1 ikev2 ssl-client ssl-clientless

ip local pool POOL 192.168.1.10-192.168.1.20 mask 255.255.255.0

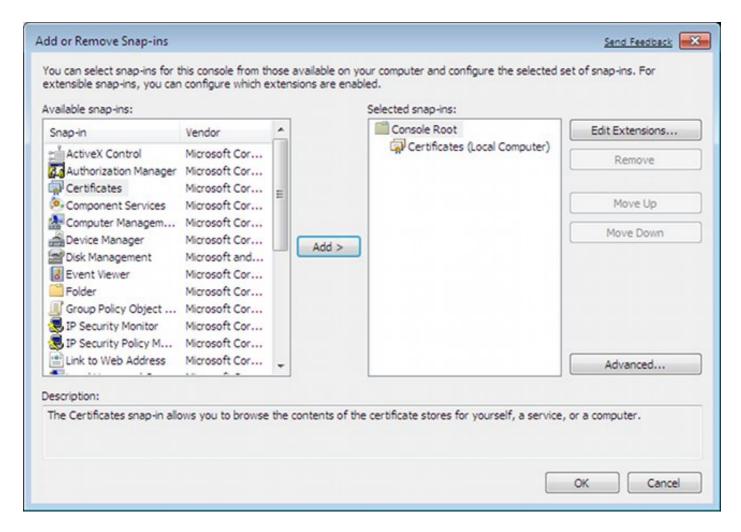
crypto ipsec ikev2 ipsec-proposal ipsec-proposal
protocol esp encryption aes-256 aes-192 aes
protocol esp integrity sha-256 sha-1 md5

crypto dynamic-map DYNMAP 10 set ikev2 ipsec-proposal ipsec-proposal
crypto map MAP 10 ipsec-isakmp dynamic DYNMAP
crypto map MAP interface outside
```

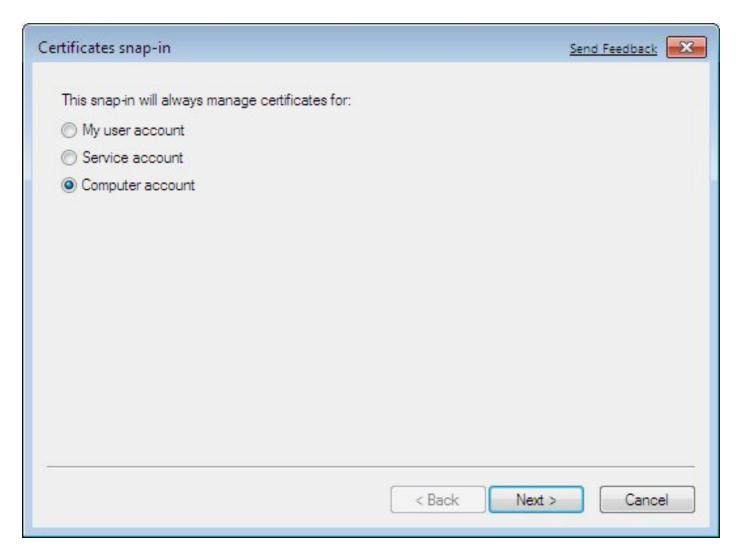
```
crypto ikev2 policy 10
encryption 3des
integrity sha
group 2
prf sha
lifetime seconds 86400
```

Como o Windows 7 envia um endereço do tipo IKE-ID no pacote IKE_AUTH, o **DefaultRAGgroup** deve ser usado para garantir que a conexão aterre no grupo de túneis correto. O ASA autentica com um certificado (autenticação local) e espera que o cliente use EAP (autenticação remota). Além disso, o ASA precisa enviar especificamente uma solicitação de identidade EAP para que o cliente responda com resposta de identidade EAP (identidade de consulta).

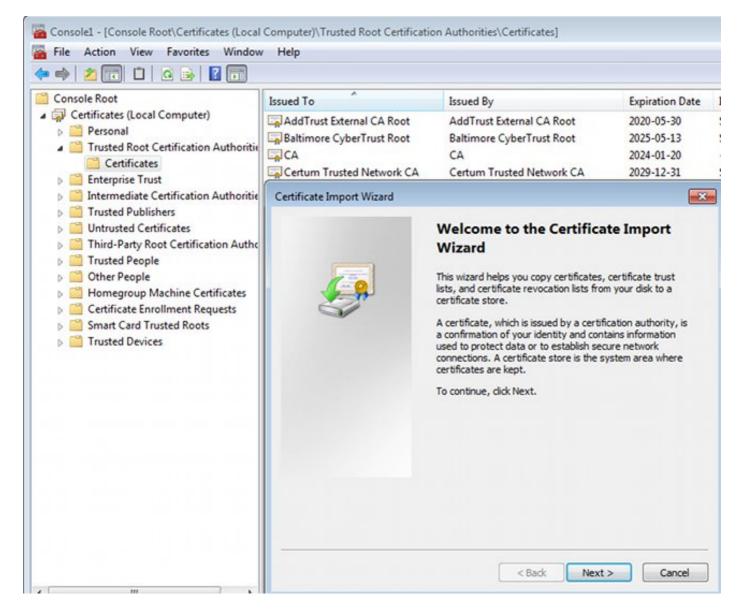
```
tunnel-group DefaultRAGroup general-attributes
address-pool POOL
authentication-server-group ISE
default-group-policy AllProtocols
tunnel-group DefaultRAGroup ipsec-attributes
ikev2 remote-authentication eap query-identity
ikev2 local-authentication certificate TP
Finalmente, o IKEv2 precisa ser ativado e o certificado correto usado.
```


```
crypto ikev2 enable outside client-services port 443 crypto ikev2 remote-access trustpoint TP
```

Windows 7

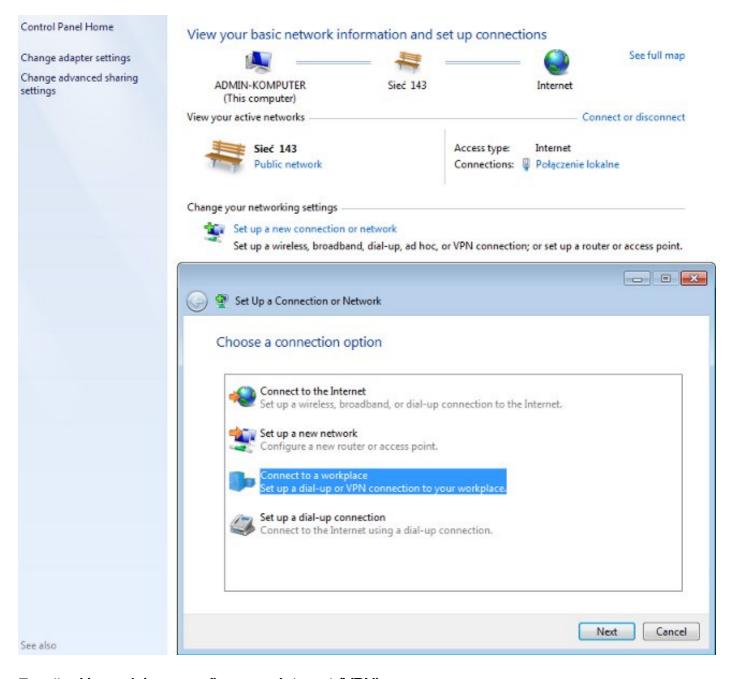

Etapa 1. Instale o certificado CA.

Para confiar no certificado apresentado pelo ASA, o cliente Windows precisa confiar em sua CA. Esse certificado CA deve ser adicionado ao repositório de certificados do computador (não ao repositório de usuários). O cliente Windows usa o armazenamento do computador para validar o certificado IKEv2.


Para adicionar a CA, escolha MMC > Adicionar ou remover snap-ins > Certificados.

Clique no botão de opção Conta do computador.

Importar a AC para as Autoridades de Certificado Raiz Confiáveis.



Se o cliente Windows não puder validar o certificado apresentado pelo ASA, ele relata:

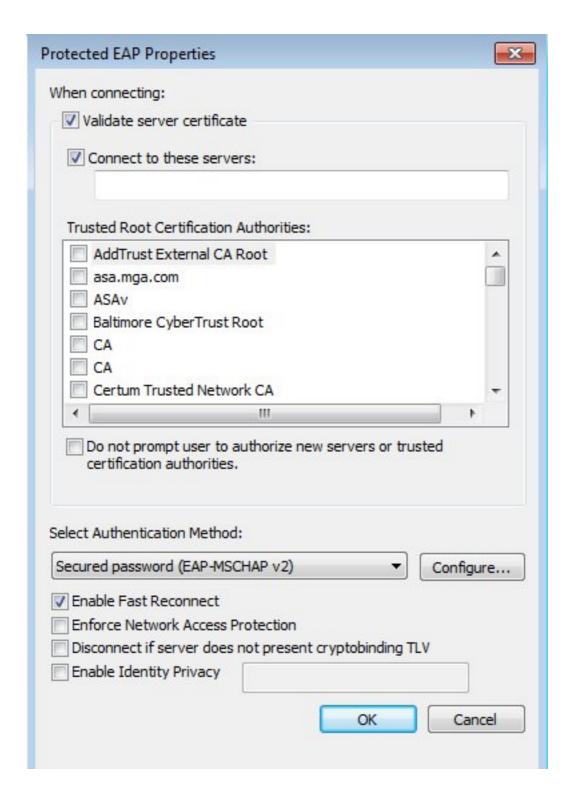
13801: IKE authentication credentials are unacceptable

Etapa 2. Configure a conexão VPN.

Para configurar a conexão VPN do Centro de Rede e Compartilhamento, escolha **Conectar a um local de trabalho** para criar uma conexão VPN.

Escolha Usar minha conexão com a Internet (VPN).

How do you want to connect?



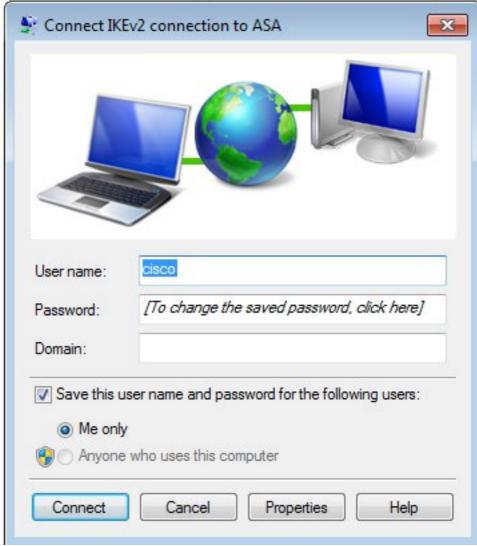
Configure o endereço com um FQDN ASA. Verifique se ele foi resolvido corretamente pelo Domain Name Server (DNS).

Type the Internet address to connect to

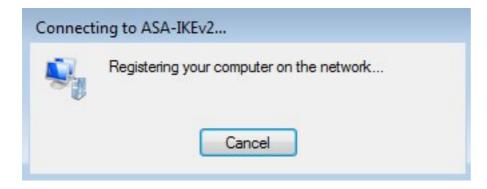
Your network administra	tor can give you this address.
Internet address:	ASAv.example.com
Destination name:	IKEv2 connection to ASA
Use a smart card	
Allow other peop	ole to use this connection
This option allow	s anyone with access to this computer to use this connection.
Don't connect no	ow; just set it up so I can connect later

Se necessário, ajuste as propriedades (como validação de certificado) na janela Propriedades do EAP Protegido.

Verificar


Use esta seção para confirmar se a sua configuração funciona corretamente.

A ferramenta Output Interpreter (exclusiva para clientes registrados) é compatível com alguns comandos de exibição.. Use a ferramenta Output Interpreter para visualizar uma análise do resultado gerado pelo comando show..


Cliente Windows

Ao conectar-se, digite suas credenciais.

Após a autenticação bem-sucedida, a configuração do IKEv2 é aplicada.

A sessão está ativa.

Internet > Network Connections >

Rename this connection

View status of this connection

Delete this connection

Cisco AnyConnect Secure Mobility Client Connection Disabled

IKEv2 connection to ASA IKEv2 connection to ASA WAN Miniport (IKEv2)

A tabela de roteamento foi atualizada com a rota padrão com o uso de uma nova interface com a métrica baixa.

C:\Users\admin>route print

Interface List

41.....IKEv2 connection to ASA

11...08 00 27 d2 cb 54Karta Intel(R) PRO/1000 MT Desktop Adapter

1.....Software Loopback Interface 1

15...00 00 00 00 00 00 00 e0 Karta Microsoft ISATAP

12...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface

22...00 00 00 00 00 00 00 e0 Karta Microsoft ISATAP #4

IPv4 Route Table

Active I	Routes:

Network Destinati	on Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	192.168.10.1	192.168.10.68	4491
0.0.0.0	0.0.0.0	On-link	192.168.1.10	11
10.62.71.177	255.255.255.255	192.168.10.1	192.168.10.68	4236
127.0.0.0	255.0.0.0	On-link	127.0.0.1	4531
127.0.0.1	255.255.255.255	On-link	127.0.0.1	4531
127.255.255.255	255.255.255.255	On-link	127.0.0.1	4531
192.168.1.10	255.255.255.255	On-link	192.168.1.10	266
192.168.10.0	255.255.255.0	On-link	192.168.10.68	4491
192.168.10.68	255.255.255.255	On-link	192.168.10.68	4491
192.168.10.255	255.255.255.255	On-link	192.168.10.68	4491
224.0.0.0	240.0.0.0	On-link	127.0.0.1	4531
224.0.0.0	240.0.0.0	On-link	192.168.10.68	4493
224.0.0.0	240.0.0.0	On-link	192.168.1.10	11
255.255.255.255	255.255.255.255	On-link	127.0.0.1	4531
255.255.255.255	255.255.255.255	On-link	192.168.10.68	4491
255.255.255.255	255.255.255.255	On-link	192.168.1.10	266

Logs

Após a autenticação bem-sucedida, o ASA relata:

ASAv(config)# show vpn-sessiondb detail ra-ikev2-ipsec

Session Type: Generic Remote-Access IKEv2 IPsec Detailed

Username : cisco Index : 13

Assigned IP : 192.168.1.10 Public IP : 10.147.24.166

Protocol : **IKEv2 IPsecOverNatT**License : AnyConnect Premium

Group Policy : AllProtocols Tunnel Group : DefaultRAGroup

Login Time : 17:31:34 UTC Tue Nov 18 2014

Duration : 0h:00m:50s
Inactivity : 0h:00m:00s

Audt Sess ID : c0a801010000d000546b8276

Security Grp : none

IKEv2 Tunnels: 1

IPsecOverNatT Tunnels: 1

IKEv2:

Tunnel ID : 13.1

UDP Src Port : 4500 UDP Dst Port : 4500

Rem Auth Mode: EAP

Loc Auth Mode: rsaCertificate

Encryption : 3DES Hashing : SHA1

Rekey Int (T): 86400 Seconds Rekey Left(T): 86351 Seconds

PRF : SHA1 D/H Group : 2

Filter Name :

IPsecOverNatT:

Tunnel ID : 13.2

Local Addr : 0.0.0.0/0.0.0.0/0/0

Remote Addr : 192.168.1.10/255.255.255.255/0/0

Encryption : AES256 Hashing : SHA1

Encapsulation: Tunnel

Rekey Int (T): 28800 Seconds Rekey Left(T): 28750 Seconds Idle Time Out: 30 Minutes Idle TO Left: 29 Minutes Bytes Tx : 0 Bytes Rx : 7834 Pkts Tx : 0 Pkts Rx : 95

Os registros ISE indicam autenticação bem-sucedida com as regras de autenticação e autorização padrão.

Os detalhes indicam o método PEAP.

Source Timestamp	2014-11-19 08:10:02.819
Received Timestamp	2014-11-19 08:10:02.821
Policy Server	ise13
Event	5200 Authentication succeeded
Failure Reason	
Resolution	
Root cause	
Username	cisco
User Type	User
Endpoint Id	10.147.24.166
Endpoint Profile	
IP Address	
Authentication Identity Store	Internal Users
Identity Group	
Audit Session Id	c0a8010100010000546c424a
Authentication Method	MSCHAPV2
Authentication Protocol	PEAP (EAP-MSCHAPv2)
Service Type	Login
Network Device	ASAv
Device Type	All Device Types
Location	All Locations
NAS IP Address	10.62.71.177
NAS Port Id	
NAS Port Type	Virtual
Authorization Profile	PermitAccess

Depurações no ASA

As depurações mais importantes incluem:

```
ASAv# debug crypto ikev2 protocol 32 <most debugs omitted for clarity....
```

Pacote IKE_SA_INIT recebido pelo ASA (inclui propostas IKEv2 e troca de chaves para Diffie-Hellman (DH)):

```
IKEv2-PROTO-2: Received Packet [From 10.147.24.166:500/To 10.62.71.177:500/VRF i0:f0]
Initiator SPI : 7E5B69A028355701 - Responder SPI : 0000000000000000 Message id: 0
IKEv2 IKE_SA_INIT Exchange REQUESTIKEv2-PROTO-3: Next payload: SA,
version: 2.0 Exchange type: IKE_SA_INIT, flags: INITIATOR Message id: 0, length: 528
Payload contents:
    SA Next payload: KE, reserved: 0x0, length: 256
    last proposal: 0x2, reserved: 0x0, length: 40
    Proposal: 1, Protocol id: IKE, SPI size: 0, #trans: 4 last transform: 0x3,
reserved: 0x0: length: 8
```

Resposta IKE_SA_INIT ao iniciador (inclui propostas IKEv2, troca de chave para DH e solicitação de certificado):

```
IKEv2-PROTO-2: (30): Generating IKE_SA_INIT message
IKEv2-PROTO-2: (30): IKE Proposal: 1, SPI size: 0 (initial negotiation),
Num. transforms: 4
                    SHA1(30):
       3DES(30):
                                  SHA96(30):
                                                DH_GROUP_1024_MODP/Group
(30):
2IKEv2-PROTO-5:
Construct Vendor Specific Payload: DELETE-REASONIKEv2-PROTO-5: Construct Vendor
Specific Payload: (CUSTOM) IKEv2-PROTO-5: Construct Notify Payload:
NAT_DETECTION_SOURCE_IPIKEv2-PROTO-5: Construct Notify Payload:
NAT_DETECTION_DESTINATION_IPIKEv2-PROTO-5: Construct Vendor Specific Payload:
FRAGMENTATION(30):
IKEv2-PROTO-2: (30): Sending Packet [To 10.147.24.166:500/From
10.62.71.177:500/VRF i0:f0]
```

IKE_AUTH para cliente com IKE-ID, solicitação de certificado, conjuntos de transformação propostos, configuração solicitada e seletores de tráfego:

```
IKEv2-PROTO-2: (30): Received Packet [From 10.147.24.166:4500/To 10.62.71.177:500/VRF
i0:f0]
(30): Initiator SPI : 7E5B69A028355701 - Responder SPI : 1B1A94C7A7739855 Message id: 1
(30): IKEv2 IKE_AUTH Exchange REQUESTIKEv2-PROTO-3: (30): Next payload: ENCR,
version: 2.0 (30): Exchange type: IKE_AUTH, flags: INITIATOR (30): Message id: 1,
length: 948(30):
```

Resposta IKE_AUTH do ASA que inclui uma solicitação de identidade EAP (primeiro pacote com extensões EAP). Esse pacote também inclui o certificado (se não houver certificado correto no ASA, há uma falha):

```
IKEv2-PROTO-2: (30): Generating EAP request
IKEv2-PROTO-2: (30): Sending Packet [To 10.147.24.166:4500/From 10.62.71.177:4500/VRFi0:f0]
```

Resposta EAP recebida pelo ASA (comprimento 5, payload: cisco):

```
(30): REAL Decrypted packet:(30): Data: 14 bytes
(30): EAP(30): Next payload: NONE, reserved: 0x0, length: 14
(30): Code: response: id: 36, length: 10
(30): Type: identity
(30): EAP data: 5 bytes
```

Em seguida, vários pacotes são trocados como parte do EAP-PEAP. Finalmente, o sucesso do EAP é recebido pelo ASA e encaminhado ao requerente:

```
Payload contents:
(30): EAP(30): Next payload: NONE, reserved: 0x0, length: 8
(30): Code: success: id: 76, length: 4
```

A autenticação de peer foi bem-sucedida:

IKEv2-PROTO-2: (30): Verification of peer's authenctication data PASSED E a sessão VPN foi concluída corretamente.

Nível do pacote

A solicitação de identidade EAP é encapsulada em "Autenticação extensível" do IKE_AUTH enviado pelo ASA. Juntamente com a solicitação de identidade, IKE_ID e certificados são enviados.

No.	Source	Destination	Protocol	Length	Info
1	10.147.24.166	10.62.71.177	ISAKMP	570	IKE_SA_INIT
2	10.62.71.177	10.147.24.166	ISAKMP	501	IKE_SA_INIT
3	10.147.24.166	10.62.71.177	ISAKMP	990	IKE_AUTH
4	10.147.24.166	10.62.71.177	ISAKMP	959	IKE_AUTH
5	10.62.71.177	10.147.24.166	EAP	1482	Request, Identity
6	10.62.71.177	10.147.24.166	ISAKMP	1514	

Length: 1440

- ▶ Type Payload: Vendor ID (43) : Unknown Vendor ID
- ▶ Type Payload: Identification Responder (36)
- ▼ Type Payload: Certificate (37)

Next payload: Authentication (39)

0... = Critical Bit: Not Critical

Payload length: 1203

Certificate Encoding: X.509 Certificate - Signature (4)

- Certificate Data (iso.2.840.113549.1.9.2=ASAv.example.com)
- Type Payload: Authentication (39)
- ▼ Type Payload: Extensible Authentication (48)

Next payload: NONE / No Next Payload (0)

0... = Critical Bit: Not Critical

Payload length: 10

▼ Extensible Authentication Protocol

Code: Request (1)

Id: 36 Length: 6

Type: Identity (1)

Identity:

Todos os pacotes EAP subsequentes são encapsulados em IKE_AUTH. Depois que o requerente confirmar o método (EAP-PEAP), ele começa a criar um túnel SSL (Secure Sockets Layer) que protege a sessão MSCHAPv2 usada para autenticação.

5 10.62.71.177	10.147.24.166	EAP	1482 Request, Identity
6 10.62.71.177	10.147.24.166	ISAKMP	1514
7 10.147.24.166	10.62.71.177	ISAKMP	110 IKE_AUTH
8 10.147.24.166	10.62.71.177	EAP	84 Response, Identity
9 10.62.71.177	10.147.24.166	EAP	80 Request, Protected EAP (EAP-PEAP)
10 10.62.71.177	10.147.24.166	ISAKMP	114
11 10.147.24.166	10.62.71.177	ISAKMP	246 IKE_AUTH
12 10.147.24.166	10.62.71.177	SSL	220 Client Hello
13 10.62.71.177	10.147.24.166	TLSv1	1086 Server Hello

Depois que vários pacotes são trocados, o ISE confirma o sucesso.

43 10.147.24.166	10.62.71.177	ISAKMP	150 IKE_AUTH
44 10.147.24.166	10.62.71.177	TLSv1	117 Application Data
45 10.62.71.177	10.147.24.166	EAP	78 Success

▼ Type Payload: Extensible Authentication (48)

Next payload: NONE / No Next Payload (0)

0... = Critical Bit: Not Critical

Payload length: 8

▼ Extensible Authentication Protocol

Code: Success (3)

Id: 101 Length: 4

A sessão IKEv2 é concluída pelo ASA, a configuração final (resposta de configuração com valores como um endereço IP atribuído), os conjuntos de transformação e os seletores de tráfego são enviados ao cliente VPN.

45 10.62.71.177	10.147.24.166	EAP	78 Success
46 10.62.71.177	10.147.24.166	ISAKMP	114
47 10.147.24.166	10.62.71.177	ISAKMP	126 IKE_AUTH
48 10.147.24.166	10.62.71.177	ISAKMP	98 IKE_AUTH
49 10.62.71.177	10.147.24.166	ISAKMP	222 IKE_AUTH

- Type Payload: Configuration (47)
- Type Payload: Security Association (33)
- ▼ Type Payload: Traffic Selector Initiator (44) # 1

Next payload: Traffic Selector - Responder (45)

0... - Critical Bit: Not Critical

Payload length: 24

Number of Traffic Selector: 1

Traffic Selector Type: TS_IPV4_ADDR_RANGE (7)

Protocol ID: Unused Selector Length: 16

Start Port: 0 End Port: 65535

Starting Addr: 192.168.1.10 (192.168.1.10)

Ending Addr: 192.168.1.10 (192.168.1.10)

▼ Type Payload: Traffic Selector - Responder (45) # 1

Next payload: Notify (41)

0... = Critical Bit: Not Critical

Payload length: 24

Troubleshoot

Atualmente, não existem informações disponíveis específicas sobre Troubleshooting para esta configuração.

Informações Relacionadas

- Guia de configuração de CLI para VPN da Cisco ASA Series, 9.3
- Manual do usuário do Cisco Identity Services Engine, versão 1.2
- Suporte Técnico e Documentação Cisco Systems