Este documento descreve como configurar a redundância do provedor de serviços de Internet (ISP) em um spoke Dynamic Multipoint VPN (DMVPN) via recurso Virtual Routing and Forwarding-Lite (VRF-Lite).
A Cisco recomenda que você tenha conhecimento desses tópicos antes de tentar a configuração descrita neste documento:
As informações neste documento são baseadas no Cisco IOS® versão 15.4(2)T.
The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.
O VRF é uma tecnologia incluída nos roteadores de rede IP que permite que várias instâncias de uma tabela de roteamento coexistam em um roteador e trabalhem simultaneamente. Isso aumenta a funcionalidade porque permite que os caminhos da rede sejam segmentados sem o uso de vários dispositivos.
O uso de ISPs duplos para redundância se tornou uma prática comum. Os administradores usam dois links ISP; uma atua como uma conexão principal e a outra como uma conexão de backup.
O mesmo conceito pode ser implementado para redundância de DMVPN em um spoke com o uso de ISPs duplos. O objetivo deste documento é demonstrar como VRF-Lite pode ser usado para segregar a tabela de roteamento quando um spoke tem ISPs duplos. O roteamento dinâmico é usado para fornecer redundância de caminho para o tráfego que atravessa o túnel DMVPN. Os exemplos de configuração descritos neste documento usam este esquema de configuração:
Interface | IP Address | VRF | Descrição |
---|---|---|---|
Ethernet0/0
|
172.16.1.1 |
VRF ISP1
|
ISP principal
|
Ethernet0/1
|
172.16.2.1
|
VRF ISP2
|
ISP secundário
|
Com o recurso VRF-Lite, várias instâncias de roteamento/encaminhamento de VPN podem ser suportadas no spoke DMVPN. O recurso VRF-Lite força o tráfego de várias interfaces de túnel de Encapsulamento de Roteamento Genérico Multiponto (mGRE - Multipoint Generic Routing Encapsulation) a usar suas respectivas tabelas de roteamento VRF. Por exemplo, se o ISP primário termina no VRF do ISP1 e o ISP secundário termina no VRF do ISP2, o tráfego gerado no VRF do ISP2 usa a tabela de roteamento VRF do ISP2, enquanto o tráfego gerado no VRF do ISP1 usa oISP1 VRF tabela de roteamento.
Uma vantagem que vem com o uso de um VRF (fVRF) de porta frontal é primeiramente criar uma tabela de roteamento separada da tabela de roteamento global (onde existem interfaces de túnel). A vantagem com o uso de um VRF interno (iVRF) é definir um espaço privado para manter o DMVPN e as informações de rede privada. Ambas as configurações fornecem segurança extra contra ataques no roteador da Internet, onde as informações de roteamento são separadas.
Essas configurações de VRF podem ser usadas no hub DMVPN e no spoke. Isso oferece grande vantagem sobre um cenário no qual ambos os ISPs terminam na tabela de roteamento global.
Se ambos os ISPs terminam no VRF global, eles compartilham a mesma tabela de roteamento e ambas as interfaces mGRE dependem das informações de roteamento global. Nesse caso, se o ISP principal falhar, a interface primária do ISP pode não ficar inativa se o ponto de falha estiver na rede de backbone dos ISPs e não estiver diretamente conectado. Isso resulta em um cenário em que ambas as interfaces de túnel mGRE ainda usam a rota padrão que aponta para o ISP principal, o que faz com que a redundância de DMVPN falhe.
Embora haja algumas soluções alternativas que usam os scripts IP Service Level Agreements (IP SLA) ou Embedded Event Manager (EEM) para resolver esse problema sem VRF-Lite, elas nem sempre são a melhor opção.
Esta seção fornece breves entrevistas de túneis divididos e túneis spoke-to-spoke.
Quando sub-redes específicas ou rotas resumidas são aprendidas através de uma interface mGRE, é chamado de tunelamento dividido. Se a rota padrão for aprendida através de uma interface mGRE, então ela é chamada de tunnel-all.
O exemplo de configuração fornecido neste documento é baseado em tunelamento dividido.
O exemplo de configuração fornecido neste documento é um bom projeto para o método de implantação tunnel-all (a rota padrão é aprendida através da interface mGRE).
O uso de dois fVRFs segrega as tabelas de roteamento e garante que os pacotes encapsulados pós-GRE sejam encaminhados para o respectivo fVRF, o que ajuda a garantir que o túnel spoke-to-spoke venha com um ISP ativo.
Esta seção descreve como configurar a redundância do ISP em um spoke DMVPN através do recurso VRF-Lite.
Esta é a topologia usada para os exemplos neste documento:
Aqui estão algumas observações sobre a configuração relevante no hub:
version 15.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname HUB1
!
crypto isakmp policy 1
encr aes 256
hash sha256
authentication pre-share
group 24
crypto isakmp key cisco123 address 0.0.0.0
!
crypto ipsec transform-set transform-dmvpn esp-aes 256 esp-sha256-hmac
mode transport
!
crypto ipsec profile profile-dmvpn
set transform-set transform-dmvpn
!
interface Loopback0
description LAN
ip address 192.168.0.1 255.255.255.0
!
interface Tunnel0
bandwidth 1000
ip address 10.0.0.1 255.255.255.0
no ip redirects
ip mtu 1400
no ip split-horizon eigrp 1
ip nhrp map multicast dynamic
ip nhrp network-id 100000
ip nhrp holdtime 600
ip nhrp redirect
ip summary-address eigrp 1 0.0.0.0 0.0.0.0
ip tcp adjust-mss 1360
delay 1000
tunnel source Ethernet0/0
tunnel mode gre multipoint
tunnel key 100000
tunnel protection ipsec profile profile-dmvpn shared
!
interface Tunnel1
bandwidth 1000
ip address 10.0.1.1 255.255.255.0
no ip redirects
ip mtu 1400
no ip split-horizon eigrp 1
ip nhrp map multicast dynamic
ip nhrp network-id 100001
ip nhrp holdtime 600
ip nhrp redirect
ip summary-address eigrp 1 0.0.0.0 0.0.0.0
ip tcp adjust-mss 1360
delay 1500
tunnel source Ethernet0/0
tunnel mode gre multipoint
tunnel key 100001
tunnel protection ipsec profile profile-dmvpn shared
!
router eigrp 1
network 10.0.0.0 0.0.0.255
network 10.0.1.0 0.0.0.255
network 192.168.0.0 0.0.255.255
!
ip route 0.0.0.0 0.0.0.0 172.16.0.100
!
end
Aqui estão algumas observações sobre a configuração relevante no spoke:
version 15.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname SPOKE1
!
vrf definition ISP1
rd 1:1
!
address-family ipv4
exit-address-family
!
vrf definition ISP2
rd 2:2
!
address-family ipv4
exit-address-family
!
crypto keyring ISP2 vrf ISP2
pre-shared-key address 0.0.0.0 0.0.0.0 key cisco123
crypto keyring ISP1 vrf ISP1
pre-shared-key address 0.0.0.0 0.0.0.0 key cisco123
!
crypto isakmp policy 1
encr aes 256
hash sha256
authentication pre-share
group 24
crypto isakmp keepalive 10 periodic
!
crypto ipsec transform-set transform-dmvpn esp-aes 256 esp-sha256-hmac
mode transport
!
!
crypto ipsec profile profile-dmvpn
set transform-set transform-dmvpn
!
interface Loopback10
ip address 192.168.1.1 255.255.255.0
!
interface Tunnel0
description Primary mGRE interface source as Primary ISP
bandwidth 1000
ip address 10.0.0.10 255.255.255.0
no ip redirects
ip mtu 1400
ip nhrp network-id 100000
ip nhrp holdtime 600
ip nhrp nhs 10.0.0.1 nbma 172.16.0.1 multicast
ip nhrp shortcut
ip tcp adjust-mss 1360
delay 1000
tunnel source Ethernet0/0
tunnel mode gre multipoint
tunnel key 100000
tunnel vrf ISP1
tunnel protection ipsec profile profile-dmvpn
!
interface Tunnel1
description Secondary mGRE interface source as Secondary ISP
bandwidth 1000
ip address 10.0.1.10 255.255.255.0
no ip redirects
ip mtu 1400
ip nhrp network-id 100001
ip nhrp holdtime 360
ip nhrp nhs 10.0.1.1 nbma 172.16.0.1 multicast
ip nhrp shortcut
ip tcp adjust-mss 1360
delay 1500
tunnel source Ethernet0/1
tunnel mode gre multipoint
tunnel key 100001
tunnel vrf ISP2
tunnel protection ipsec profile profile-dmvpn
!
interface Ethernet0/0
description Primary ISP
vrf forwarding ISP1
ip address 172.16.1.1 255.255.255.0
!
interface Ethernet0/1
description Seconday ISP
vrf forwarding ISP2
ip address 172.16.2.1 255.255.255.0
!
router eigrp 1
network 10.0.0.0 0.0.0.255
network 10.0.1.0 0.0.0.255
network 192.168.0.0 0.0.255.255
!
ip route vrf ISP1 0.0.0.0 0.0.0.0 172.16.1.254
ip route vrf ISP2 0.0.0.0 0.0.0.0 172.16.2.254
!
logging dmvpn
!
end
Use as informações descritas nesta seção para verificar se sua configuração funciona corretamente.
Neste cenário de verificação, os ISPs principal e secundário estão ativos. Aqui estão algumas notas adicionais sobre este cenário:
Estes são os comandos show relevantes que você pode usar para verificar sua configuração neste cenário:
SPOKE1#show ip route
<snip>
Gateway of last resort is 10.0.0.1 to network 0.0.0.0
D* 0.0.0.0/0 [90/2944000] via 10.0.0.1, 1w0d, Tunnel0
!--- This is the default route for all of the spoke and hub LAN segments.
10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C 10.0.0.0/24 is directly connected, Tunnel0
L 10.0.0.10/32 is directly connected, Tunnel0
C 10.0.1.0/24 is directly connected, Tunnel1
L 10.0.1.10/32 is directly connected, Tunnel1
192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.1.0/24 is directly connected, Loopback10
L 192.168.1.1/32 is directly connected, Loopback10
SPOKE1#show ip route vrf ISP1
Routing Table: ISP1
<snip>
Gateway of last resort is 172.16.1.254 to network 0.0.0.0
S* 0.0.0.0/0 [1/0] via 172.16.1.254
172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
C 172.16.1.0/24 is directly connected, Ethernet0/0
L 172.16.1.1/32 is directly connected, Ethernet0/0
SPOKE1#show ip route vrf ISP2
Routing Table: ISP2
<snip>
Gateway of last resort is 172.16.2.254 to network 0.0.0.0
S* 0.0.0.0/0 [1/0] via 172.16.2.254
172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
C 172.16.2.0/24 is directly connected, Ethernet0/1
L 172.16.2.1/32 is directly connected, Ethernet0/1
SPOKE1#show crypto session
Crypto session current status
Interface: Tunnel0
Session status: UP-ACTIVE
Peer: 172.16.0.1 port 500
Session ID: 0
IKEv1 SA: local 172.16.1.1/500 remote 172.16.0.1/500 Active
!--- Tunnel0 is Active and the routes are preferred via Tunnel0.
IPSEC FLOW: permit 47 host 172.16.1.1 host 172.16.0.1
Active SAs: 2, origin: crypto map
Interface: Tunnel1
Session status: UP-ACTIVE
Peer: 172.16.0.1 port 500
Session ID: 0
IKEv1 SA: local 172.16.2.1/500 remote 172.16.0.1/500 Active
!--- Tunnel0 is Active and the routes are preferred via Tunnel0.
IPSEC FLOW: permit 47 host 172.16.2.1 host 172.16.0.1
Active SAs: 2, origin: crypto map
Neste cenário, os temporizadores de espera do EIGRP expiram para a vizinhança através do Tunnel0 quando o link do ISP1 fica inativo, e as rotas para o hub e os outros spokes agora apontam para Tunnel1 (originado pela Ethernet0/1).
Estes são os comandos show relevantes que você pode usar para verificar sua configuração neste cenário:
*Sep 2 14:07:33.374: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.0.0.1 (Tunnel0)
is down: holding time expired
SPOKE1#show ip route
<snip>
Gateway of last resort is 10.0.1.1 to network 0.0.0.0
D* 0.0.0.0/0 [90/3072000] via 10.0.1.1, 00:00:20, Tunnel1
!--- This is the default route for all of the spoke and hub LAN segments.
10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C 10.0.0.0/24 is directly connected, Tunnel0
L 10.0.0.10/32 is directly connected, Tunnel0
C 10.0.1.0/24 is directly connected, Tunnel1
L 10.0.1.10/32 is directly connected, Tunnel1
192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.1.0/24 is directly connected, Loopback10
L 192.168.1.1/32 is directly connected, Loopback10
SPOKE1#show ip route vrf ISP1
Routing Table: ISP1
<snip>
Gateway of last resort is 172.16.1.254 to network 0.0.0.0
S* 0.0.0.0/0 [1/0] via 172.16.1.254
172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
C 172.16.1.0/24 is directly connected, Ethernet0/0
L 172.16.1.1/32 is directly connected, Ethernet0/0
SPOKE1#show ip route vrf ISP2
Routing Table: ISP2
<snip>
Gateway of last resort is 172.16.2.254 to network 0.0.0.0
S* 0.0.0.0/0 [1/0] via 172.16.2.254
172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks
C 172.16.2.0/24 is directly connected, Ethernet0/1
L 172.16.2.1/32 is directly connected, Ethernet0/1
SPOKE1#show crypto session
Crypto session current status
Interface: Tunnel0
Session status: DOWN
Peer: 172.16.0.1 port 500
IPSEC FLOW: permit 47 host 172.16.1.1 host 172.16.0.1
!--- Tunnel0 is Inactive and the routes are preferred via Tunnel1.
Active SAs: 0, origin: crypto map
Interface: Tunnel1
Session status: UP-ACTIVE
Peer: 172.16.0.1 port 500
Session ID: 0
IKEv1 SA: local 172.16.2.1/500 remote 172.16.0.1/500 Active
!--- Tunnel0 is Inactive and the routes are preferred via Tunnel1.
IPSEC FLOW: permit 47 host 172.16.2.1 host 172.16.0.1
Active SAs: 2, origin: crypto map
Interface: Tunnel0
Session status: DOWN-NEGOTIATING
Peer: 172.16.0.1 port 500
Session ID: 0
IKEv1 SA: local 172.16.1.1/500 remote 172.16.0.1/500 Inactive
!--- Tunnel0 is Inactive and the routes are preferred via Tunnel1.
Session ID: 0
IKEv1 SA: local 172.16.1.1/500 remote 172.16.0.1/500 Inactive
Quando a conectividade através do ISP principal é restaurada, a sessão de criptografia Tunnel0 se torna ativa e as rotas que são aprendidas através da interface Tunnel0 são preferidas.
Aqui está um exemplo:
*Sep 2 14:15:59.128: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.0.0.1 (Tunnel0)
is up: new adjacency
SPOKE1#show ip route
<snip>
Gateway of last resort is 10.0.0.1 to network 0.0.0.0
D* 0.0.0.0/0 [90/2944000] via 10.0.0.1, 00:00:45, Tunnel0
!--- This is the default route for all of the spoke and hub LAN segments.
10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
C 10.0.0.0/24 is directly connected, Tunnel0
L 10.0.0.10/32 is directly connected, Tunnel0
C 10.0.1.0/24 is directly connected, Tunnel1
L 10.0.1.10/32 is directly connected, Tunnel1
192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.1.0/24 is directly connected, Loopback10
L 192.168.1.1/32 is directly connected, Loopback10
SPOKE1#show crypto session
Crypto session current status
Interface: Tunnel0
Session status: UP-ACTIVE
Peer: 172.16.0.1 port 500
Session ID: 0
IKEv1 SA: local 172.16.1.1/500 remote 172.16.0.1/500 Active
!--- Tunnel0 is Active and the routes are preferred via Tunnel0.
IPSEC FLOW: permit 47 host 172.16.1.1 host 172.16.0.1
Active SAs: 2, origin: crypto map
Interface: Tunnel1
Session status: UP-ACTIVE
Peer: 172.16.0.1 port 500
Session ID: 0
IKEv1 SA: local 172.16.2.1/500 remote 172.16.0.1/500 Active
!--- Tunnel0 is Active and the routes are preferred via Tunnel0.
IPSEC FLOW: permit 47 host 172.16.2.1 host 172.16.0.1
Active SAs: 2, origin: crypto map
Para solucionar problemas de configuração, habilite debug ip eigrp e logging dmvpn.
Aqui está um exemplo:
################## Tunnel0 Failed and Tunnel1 routes installed ####################
*Sep 2 14:07:33.374: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.0.0.1 (Tunnel0)
is down: holding time expired
*Sep 2 14:07:33.374: EIGRP-IPv4(1): table(default): route installed for 0.0.0.0/0
(90/3072000) origin(10.0.1.1)
*Sep 2 14:07:33.391: EIGRP-IPv4(1): table(default): 0.0.0.0/0 - do advertise
out Tunnel1
*Sep 2 14:07:33.399: EIGRP-IPv4(1): table(default): 0.0.0.0/0 - do advertise
out Tunnel1
*Sep 2 14:07:36.686: %DMVPN-5-CRYPTO_SS: Tunnel0: local address : 172.16.1.1 remote
address : 172.16.0.1 socket is DOWN
*Sep 2 14:07:36.686: %DMVPN-5-NHRP_NHS_DOWN: Tunnel0: Next Hop Server : (Tunnel:
10.0.0.1 NBMA: 172.16.0.1 ) for (Tunnel: 10.0.0.10 NBMA: 172.16.1.1) is DOWN, Reason:
External(NHRP: no error)
################## Tunnel0 came up and routes via Tunnel0 installed #################
*Sep 2 14:15:55.120: %DMVPN-5-CRYPTO_SS: Tunnel0: local address : 172.16.1.1 remote
address : 172.16.0.1 socket is UP
*Sep 2 14:15:56.109: %DMVPN-5-NHRP_NHS_UP: Tunnel0: Next Hop Server : (Tunnel:
10.0.0.1 NBMA: 172.16.0.1) for (Tunnel: 10.0.0.10 NBMA: 172.16.1.1) is UP
*Sep 2 14:15:59.128: %DUAL-5-NBRCHANGE: EIGRP-IPv4 1: Neighbor 10.0.0.1 (Tunnel0)
is up: new adjacency
*Sep 2 14:16:01.197: EIGRP-IPv4(1): table(default): route installed for 0.0.0.0/0
(90/3072000) origin(10.0.1.1)
*Sep 2 14:16:01.197: EIGRP-IPv4(1): table(default): route installed for 0.0.0.0/0
(90/2944000) origin(10.0.0.1)
*Sep 2 14:16:01.214: EIGRP-IPv4(1): table(default): 0.0.0.0/0 - do advertise
out Tunnel0
*Sep 2 14:16:01.214: EIGRP-IPv4(1): table(default): 0.0.0.0/0 - do advertise
out Tunnel1
Revisão | Data de publicação | Comentários |
---|---|---|
1.0 |
22-Jun-2015 |
Versão inicial |