Problemen oplossen met bidirectioneel doorsturen van detectie en datacenterverbindingen

Inhoud

Inleiding Voorwaarden Vereisten Gebruikte componenten Informatie over het besturingsplane Local Properties controleren Aansluitingen controleren **Overlay Management-Protocol** Controleer of de OMP-TLOC's vanaf de vEdge geadverteerd zijn Controleer of de vSmart de TLOC's ontvangt en adverteert Detectie van bidirectionele doorsturen Begrijp de opdracht van de showbips Tunnelstatistieken Toegangslijst Netwerkadresomzetting Gebruik van werktuigen vanaf een client om NAT-afbeelding en filtering te detecteren Ondersteunde NAT-typen voor datacentertunnels **Firewalls** Security ISP-problemen met DSCP gemarkeerd verkeer Debug BFD Gerelateerde informatie

Inleiding

Dit document beschrijft problemen met de datalink-verbinding die mogelijk kunnen ontstaan op vEdge-routers nadat u met succes verbinding hebt gemaakt met het besturingsplane, maar er is nog steeds geen datalink tussen de sites.

Voorwaarden

Vereisten

Cisco raadt u aan om kennis te hebben van Cisco-softwaregedefinieerde SDWAN-oplossing (Wide Area Network).

Gebruikte componenten

Dit document is niet beperkt tot specifieke software- en hardware-versies.

De informatie in dit document is gebaseerd op de apparaten in een specifieke laboratoriumomgeving. Alle apparaten die in dit document worden beschreven, hadden een opgeschoonde (standaard)configuratie. Als uw netwerk levend is, zorg er dan voor dat u de mogelijke impact van om het even welke opdracht begrijpt.

Opmerking: Alle opdrachtoutput die in dit document wordt gepresenteerd, komt van vEdgerouters, maar de probleemoplossing is dezelfde als de router die IOS®-XE SDWAN-software uitvoert. Gebruik het sleutelwoord **van** dwan om de zelfde output op IOS:-XE SDWAN software te krijgen. Bijvoorbeeld; **toon sdwan controleverbindingen** in plaats van **tonen controleverbindingen**.

Informatie over het besturingsplane

Local Properties controleren

Om de status van de WAN-interfaces (Wide Area Network) op een vEdge te controleren, **gebruikt** u de **besturing van de lokale eigenschappen van een interface-lijst**. In deze uitvoer kunt u het RFC 4787 Type netwerkadresomzetting (NAT) zien. Wanneer de vEdge achter een NAT-apparaat staat (Firewall, router, etc.), worden Publiek en Private IPv4-adres, Publiek en Private Source User Datagram Protocol (UDP)-poorten gebruikt om de gegevensvliegtuigtunnels te bouwen. U kunt ook de status van de tunnelinterface, de kleur en het maximale aantal geconfigureerde bedieningsverbindingen vinden.

vEdge1	.# sho	ow control lo	cal-prope	rties wan-	interf	ace-lis	st				
NAT I	YPE:	E indicat A indicat N indicat Note: Requir	es End-po es Addres es Not le es minimu	int indepe s-port dep arned m two vbor	endent bendent nds to	mapping mappir learn t	g ng :he NA'	T type			
		PUBLIC	PUBLI	C PRIVATE		PRIVA	ATE		PRIVATE		
MAX	REST	RICT/	LAST	SPI	TIME	NAT V	7M				
INTERF	ACE	IPv4	PORT	IPv4		IPv6			PORT	VS/VM	COLOR
STATE	CNTRI	L CONTROL/	LR/LB	CONNECTION	I REM	AINING	TYPE	CON			
STUN					P:	RF 					
 ge0/0		203.0.113.22	 5 4501	10.19.14	 15.2	::			12386	1/1	gold
up	2	no/yes/no	No/No 7:	02:55:13	0:09:	02:29	Ν	5			
ge0/1		10.20.67.10	12426	10.20.67	1.10	::			12426	0/0	mpls
מנו	2	ves/ves/no	N_{O}/N_{O} O:	00:00:01	0:11:	40:16	Ν	5			

Met deze gegevens kunt u bepaalde informatie identificeren over hoe de gegevenstunnels moeten worden gebouwd en welke poorten u vanuit het routerperspectief moet verwachten om te gebruiken wanneer u de gegevenstunnels vormt.

Aansluitingen controleren

Het is van belang ervoor te zorgen dat de kleur die geen datatununtunnels vormt, wel een regelverbinding heeft met de controllers in de overlay. Anders stuurt de vEdge geen informatie over Transport Locator (TLOC) naar vSmart via Overlay Management Protocol (OMP). U kunt er

zeker van zijn of dit al dan niet is met het gebruik van de opdracht **Show control connecties** en u kunt op de **state-**connectie **zoeken**.

vEdge1# show control connections

								PEER
PEER					CONTROLLER	R		
PEER	PEER	PEER	SITE	DOMA	IN PEER			PRIV
PEER				PUB				GROUP
TYPE	PROT	SYSTEM IP	ID	ID	PRIVATE IP			PORT
PUBLIC :	IP			PORT	LOCAL COLOR	STATE	UPTIME	ID
vsmart	dtls	1.1.1.3	3	1	203.0.113.13		12	446
203.0.1	13.13		1	2446	gold	up	7:03:18:31	0
vbond	dtls	-	0	0	203.0.113.12		12	346
203.0.1	13.12		1	2346	mpls	connect		0
vmanage	dtls	1.1.1.1	1	0	203.0.113.14		12	646
203.0.1	13.14		1	2646	gold	up	7:03:18:31	0
					-	-		

Als de interface die geen datastuntunnels vormt probeert aan te sluiten, kunt u deze oplossen door de besturingsverbindingen via die kleur succesvol op te halen. Of, u kunt errond werken door de **max-controle-connecties 0** in de geselecteerde interface onder het vak van de tunnelinterface in te stellen.

```
vpn 0
interface ge0/1
 ip address 10.20.67.10/24
 tunnel-interface
  encapsulation ipsec
  color mpls restrict
  max-control-connections 0
  no allow-service bgp
  allow-service dhcp
  allow-service dns
  allow-service icmp
  no allow-service sshd
  no allow-service netconf
  no allow-service ntp
  no allow-service ospf
  no allow-service stun
  !
 no shutdown
 !
```

Opmerking: Soms kan je de opdracht **geen control-connecties** gebruiken om hetzelfde doel te bereiken. Deze opdracht bevat echter geen maximum aantal bedieningsverbindingen. Deze opdracht wordt vanaf 15.4 afgevoerd en mag niet op nieuwere software worden gebruikt.

Overlay Management-Protocol

Controleer of de OMP-TLOC's vanaf de vEdge geadverteerd zijn

Zoals u hebt opgemerkt, kan in de vorige stap OMP TLOCs niet worden verzonden omdat de interface probeert om bedieningsverbindingen via die kleur te vormen en niet in staat is om de

controllers te bereiken. Controleer dus of de kleur die de data tunnels niet werken of omhoog komen de TLOC voor die bepaalde kleur naar de vSmarts stuurt. Gebruik de opdracht **show omp tlocs geadverteerd** om de TLOC's te controleren die naar de OMP-peers worden verzonden.

Voorbeeld: Kleuren **splitsen** en **goud**. Er wordt geen TLOC naar vSmart verzonden voor kleurenmodellen.

vEdge1# show omp tlocs advertised C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet Stg -> staged Inv -> invalid

PUBLIC		PRIVATE								
ADDRESS									PSEUDO	
PUBLIC			PRIVATE	PUBLIC	IPV6	PRIVATE	IPV6	BFD		
FAMILY	TLOC IP		COLOR		ENCAP	FROM PEE	R	STATUS	KEY	PUBLIC IP
PORT	PRIVATE	LP 	PORT	IPV6 	PORT	IPV6	PORT	STATUS		
	1.1.1.1()	gold		ipsec	0.0.0.0		C,Red,R	1	
203.0.11	L3.225	4501	10.19.14	5.2	12386	::	0	::	0	up
	1.1.1.20)	mpls		ipsec	1.1.1.3		C,I,R	1	10.20.67.20
12386	10.20.67	.20	12386	::	0	::	0	down		
	1.1.1.20)	blue		ipsec	1.1.1.3		C,I,R	1	
198.51.1	L00.187	12406	10.19.14	6.2	12406	::	0	::	0	up
	1.1.1.30)	mpls		ipsec	1.1.1.3		C,I,R	1	10.20.67.30
12346	10.20.67	.30	12346	::	0	::	0	down		
	1.1.1.30)	gold		ipsec	1.1.1.3		C,I,R	1	192.0.2.129
12386	192.0.2.1	129	12386	::	0	::	0	up		
	1.1.1.40)	mpls		ipsec	1.1.1.3		C,I,R	1	10.20.67.40
12426	10.20.67	.40	12426	::	0	::	0	down		
	1.1.1.40)	gold		ipsec	1.1.1.3		C,I,R	1	
203.0.11	L3.226	12386	203.0.11	3.226	12386	::	0	::	0	up

Voorbeeld: Kleuren splitsen en goud. TLOC wordt voor beide kleuren verzonden.

vEdge2# show omp tlocs advertised C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet Stg -> staged Inv -> invalid

PUBLI	C	PRIVATE PUBL	IC IPV6	PRIVATE	IPV6	BFD		
FAMIL	Y TLOC IP	COLOR	ENCAP	FROM PEE	R	STATUS	KEY	PUBLIC IP
PORT	PRIVATE IP	PORT IPV6	PORT	IPV6	PORT	STATUS		
			·					
ipv4	1.1.1.10	gold	ipsec	1.1.1.3		C,I,R	1	
203.0	.113.225 4501	10.19.145.2	12386	::	0	::	0	up
	1.1.1.20	mpls	ipsec	0.0.0.0		C,Red,R	1	10.20.67.20
12386	10.20.67.20	12386 ::	0	::	0	up		
	1.1.1.20	blue	ipsec	0.0.0.0		C,Red,R	1	
198.5	1.100.187 12406	5 10.19.146.2	12406	::	0	::	0	up
	1.1.1.30	mpls	ipsec	1.1.1.3		C,I,R	1	10.20.67.30
12346	10.20.67.30	12346 ::	0	::	0	up		
	1.1.1.30	gold	ipsec	1.1.1.3		C,I,R	1	192.0.2.129
	12386 192.0.2.1	12386	:: 0	::	0	up)	
	1.1.1.40	mpls	ipsec	1.1.1.3		C,I,R	1	10.20.67.40
12426	10.20.67.40	12426 ::	0	::	0	up		
	1.1.1.40	gold	ipsec	1.1.1.3		C,I,R	1	
203.0	.113.226 12386	5 203.0.113.226	12386	::	0	::	0	up

Opmerking: Voor informatie over lokaal gegenereerde besturingsplane wordt het veld "VANAF PEER" ingesteld op 0.0.0.0. Wanneer u lokaal gemaakte informatie opzoekt, dient u deze op basis van deze waarde bij elkaar te passen.

Controleer of de vSmart de TLOC's ontvangt en adverteert

Nu u weet dat uw TLOCs aan vSmart worden geadverteerd, bevestig dat deze TLOCs van de juiste peer ontvangt en naar de andere vEdge adverteert.

Voorbeeld: vSmart ontvangt de TLOC's van 1.1.1.20 vEdge1.

vSmart1# show omp tlocs received

C -> chosen

-> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet

I

Stg ->	staged								
Inv ->	invalid								
PUBLIC	PRIVA	TE							
ADDRES	S							PSEUDO	
PUBLIC		PRIVATE	PUBLIC	IPV6	PRIVATE	IPV6	BFD		
FAMILY	TLOC IP	COLOR		ENCAP	FROM PEE	R	STATUS	KEY	PUBLIC IP
PORT	PRIVATE IP	PORT	IPV6	PORT	IPV6	PORT	STATUS		
ipv4	1.1.1.10	gold		ipsec	1.1.1.10		C,I,R	1	
203.0.2	113.225 4501	10.19.145.	2	12386	:: 0		:: () -	-
	1.1.1.20	mpls		ipsec	1.1.1.20		C,I,R	1	10.20.67.20
12386	10.20.67.20	12386	::	0	::	0	-		
	1.1.1.20	blue		ipsec	1.1.1.20		C,I,R	1	
198.51	.100.187 12406	10.19.14	6.2	12406	::	0	::	0	-
	1.1.1.30	mpls		ipsec	1.1.1.30		C,I,R	1	10.20.67.30
12346	10.20.67.30	12346	::	0	::	0	-		

	1.1.1.	30	gold		ipsec	1.1.1.	30	C,I,R	1	192.0.2.129
12386	192.0.2	.129	12386	::	0	::	0	-		
	1.1.1.	40	mpls		ipsec	1.1.1.	40	C,I,R	1	10.20.67.40
12426	10.20.6	7.40	12426	::	0	::	0	-		
	1.1.1.	40	gold		ipsec	1.1.1.	40	C,I,R	1	
203.0.	113.226	12386	203.0.1	13.226	12386	::	0	::	0	-

Voor het geval u de TLOC's niet ziet of u hier geen andere codes ziet, kunt u deze controleren:

vSmart-vIPtela-MEX# show omp tlocs received

C -> chosen

I->installedRed->redistributedRej->rejectedL->loopedR->resolvedS->staleExt->extranetStg->stagedInv->invalid

PUBLIC		PRIVATE								
ADDRES	S								PSEUDO	
PUBLIC			PRIVATE	PUBLIC	IPV6	PRIVATE	IPV6	BFD		
FAMILY	TLOC IP		COLOR		ENCAP	FROM PEE	R	STATUS	KEY	PUBLIC IP
PORT	PRIVATE :	[P 	PORT	IPV6	PORT	IPV6	PORT	STATUS		
 ipv4	1.1.1.1)	gold			1.1.1.10		 C,I,R	1	
203.0.3	113.225	4501	10.19.14	5.2	12386	::	0	::	0	-
	1.1.1.2	0	mpls		ipsec	1.1.1.20		C,I,R	1	10.20.67.20
12386	10.20.67	.20	12386	::	0	::	0	-		
	1.1.1.2	0	blue		ipsec	1.1.1.20		Rej,R,Ir	1 v 1	
198.51	.100.187	12406	10.19.14	6.2	12406	::	0	::	0	-
	1.1.1.3)	mpls		ipsec	1.1.1.30		C,I,R	1	10.20.67.30
12346	10.20.67	.30	12346	::	0	::	0	-		
	1.1.1.3)	gold		ipsec	1.1.1.30		C,I,R	1	192.0.2.129
123	386 192.0	0.2.129	1238	6 ::	0	::	0	-		
	1.1.1.40)	mpls		ipsec	1.1.1.40		C,I,R	1	10.20.67.40
12426	10.20.67	.40	12426	::	0	::	0	-		
	1.1.1.40)	gold		ipsec	1.1.1.40		C,I,R	1	
203.0.3	113.226	12386	203.0.11	3.226	12386	::	0	::	0	-

Controleer of er geen beleid is dat de TLOC's blokkeert.

Stel beleidscontrole-beleid-op voor elke tloc-lijst die uw TLOCs ervan afwijst dat ze in het vSmart geadverteerd of ontvangen worden.

```
vSmart1(config-policy)# sh config
policy
lists
tloc-list SITE20
tloc 1.1.1.20 color blue encap ipsec
!
!
control-policy SDWAN
sequence 10
match tloc
```

```
tloc-list SITE20
!
action reject ----> here we are rejecting the TLOC 1.1.1.20,blue,ipsec
!
default-action accept
!
apply-policy
site-list SITE20
control-policy SDWAN in -----> the policy is applied to control traffic coming IN the vSmart,
it will filter the tlocs before adding it to the OMP table.
```

Opmerking: Als een TLOC wordt verworpen of ongeldig wordt, wordt deze niet naar de andere vEdge geadverteerd.

Zorg ervoor dat een beleid de TLOC niet filtert wanneer het van de vSmart wordt geadverteerd. U kunt zien dat de TLOC is ontvangen op vSmart, maar u ziet het niet op de andere vEdge.

Voorbeeld 1: vSmart met TLOC in C,I,R.

vSmartl# show omp tlocs C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet Stg -> staged Inv -> invalid

PUBLIC	PRIVAT	Е							
ADDRES	S							PSEUDO	
PUBLIC		PRIVATE	PUBLIC	IPV6	PRIVATE	IPV6	BFD		
FAMILY	TLOC IP	COLOR		ENCAP	FROM PEE	R	STATUS	KEY	PUBLIC IP
PORT	PRIVATE IP	PORT	IPV6 	PORT	IPV6	PORT	STATUS		
 ipv4	1.1.1.10	mpls		ipsec	1.1.1.10		C,I,R	1	10.20.67.10
12406	10.20.67.10	12406	::	0	::	0	-		
	1.1.1.10	gold		ipsec	1.1.1.10		C,I,R	1	
203.0.	113.225 4501	10.19.14	5.2	12386	::	0	::	0	-
	1.1.1.20	mpls		ipsec	1.1.1.20		C,I,R	1	10.20.67.20
12386	10.20.67.20	12386	::	0	::	0	-		
	1.1.1.20	blue		ipsec	1.1.1.20		C,I,R	1	
198.51	.100.187 12426	10.19.14	6.2	12426	::	0	::	0	-
	1.1.1.30	mpls		ipsec	1.1.1.30		C,I,R	1	10.20.67.30
12346	10.20.67.30	12346	::	0	::	0	-		
	1.1.1.30	gold		ipsec	1.1.1.30		C,I,R	1	192.0.2.129
12386	192.0.2.129	12386	::	0	::	0	-		
	1.1.1.40	mpls		ipsec	1.1.1.40		C,I,R	1	10.20.67.40
12426	10.20.67.40	12426	::	0	::	0	-		
	1.1.1.40	gold		ipsec	1.1.1.40		C,I,R	1	
203.0.	113.226 12386	203.0.11	3.226	12386	::	0	::	0	-

Voorbeeld 2: vEdge1 ziet de TLOC niet van gekleurd blauw dat van vEdge2 komt. Het ziet alleen

vEdgel# show omp tlocs C -> chosen I -> installed Red -> redistributed Rej -> rejected L -> looped R -> resolved S -> stale Ext -> extranet Stg -> staged Inv -> invalid

PUBLIC	PRIVAT	E							
ADDRES	S							PSEUDO	
PUBLIC	!	PRIVATE	PUBLIC	IPV6	PRIVATE	IPV6	BFD		
FAMILY	TLOC IP	COLOR		ENCAP	FROM PEE	R	STATUS	KEY	PUBLIC IP
PORT	PRIVATE IP	PORT	IPV6	PORT	IPV6	PORT	STATUS		
 ipv4	1.1.1.10	mpls		ipsec	0.0.0.0		C,Red,R	 1	10.20.67.10
12406	10.20.67.10	12406	::	0	::	0	up		
	1.1.1.10	gold		ipsec	0.0.0.0		C,Red,R	1	
203.0.	113.225 4501	10.19.14	5.2	12386	::	0	::	0	up
	1.1.1.20	mpls		ipsec	1.1.1.3		C,I,R	1	10.20.67.20
12386	10.20.67.20	12386	::	0	::	0	up		
	1.1.1.30	mpls		ipsec	1.1.1.3		C,I,R	1	10.20.67.30
12346	10.20.67.30	12346	::	0	::	0	up		
	1.1.1.30	gold		ipsec	1.1.1.3		C,I,R	1	192.0.2.129
12386	192.0.2.129	12386	::	0	::	0	up		
	1.1.1.40	mpls		ipsec	1.1.1.3		C,I,R	1	10.20.67.40
12426	10.20.67.40	12426	::	0	::	0	up		
	1.1.1.40	gold		ipsec	1.1.1.3		C,I,R	1	
203.0.	113.226 12386	203.0.11	3.226	12386	::	0	::	0	up

Wanneer u het beleid controleert, kunt u zien waarom de TLOC niet op vEdge1 verschijnt.

```
vSmart1# show running-config policy
policy
lists
 tloc-list SITE20
  tloc 1.1.1.20 color blue encap ipsec
  !
  site-list SITE10
  site-id 10
  !
 !
 control-policy SDWAN
 sequence 10
  match tloc
   tloc-list SITE20
  !
  action reject
   !
  !
 default-action accept
 !
apply-policy
 site-list SITE10
```

!

Detectie van bidirectionele doorsturen

Begrijp de opdracht van de showbips

Dit zijn de belangrijkste dingen die je in de output kunt vinden:

vEdge-2# show]	bfd session	5									
				SOURCE	TLOC	RE	EMOTE	TLOC			
DST PUBLIC			DST PU	BLIC		DETECI	ſ	TX			
SYSTEM IP	SITE ID	STATE		COLOR		CC	DLOR		SOURCE	E IP	
IP			PORT		ENCAP	MULTIE	PLIER	INTERVAL	(msec)	UPTIME	
TRANSITIONS											
1.1.1.10	10	down		blue		go	old		10.19	.146.2	
203.0.113.225			4501		ipsec	7		1000		NA	7
1.1.1.30	30	up		blue		go	old		10.19.	.146.2	
192.0.2.129			12386		ipsec	7		1000		0:00:00:22	2
1.1.1.40	40	up		blue		go	old		10.19.	.146.2	
203.0.113.226			12386		ipsec	7		1000		0:00:00:22	1
1.1.1.40	40	up	:	mpls		mr	ls				
10.20.67.10			10.20.	67.40				12426	iŗ	psec 7	
1000	0:00:10:11	(D								

- SYSTEEM IP: Het systeem van peers-ip
- TLOC-KLEUR VOOR BRON- EN AFSTANDEN: Dit is handig om te weten wat TLOC je verwacht te ontvangen en te verzenden.
- **BRON IP**: Het is de **privé-**bron-IP. Als u achter een NAT zit, wordt deze informatie hier niet weergegeven (dit kan worden gezien met het gebruik van **toonaangevende controle lokale eigenschappen <wan-interface-list>** die aan het begin van het document wordt uitgelegd).
- OPENBARE IP VAN DST: Het is de bestemming die de vEdge gebruikt om de Data Planetunnel te vormen, ongeacht of deze achter NAT staat of niet. (Voorbeeld: Straalingen die rechtstreeks op internet zijn aangesloten of MPLS-koppelingen (Multi-Protocol Label Switching)
- OPENBARE POORT VAN DST: Openbare NAT-poort die door vEdge wordt gebruikt om de datalunnel naar de externe vEdge te vormen.
- OVERGANG: Aantal keren dat de BFD-sessie zijn status heeft gewijzigd, van NA naar UP en vice versa.

Tunnelstatistieken

De **tonen tunnelstatistieken** kunnen informatie over de gegevensvliegtuigtunnels tonen, kunt u gemakkelijk zien of u pakketten voor een bepaalde IPSEC-tunnel tussen de vRanden verzenden of ontvangt. Dit kan u helpen te begrijpen als pakketten het op elk eind maken, en verbindings kwesties tussen de knopen isoleren.

In het voorbeeld, wanneer u de opdracht meerdere keren uitvoert, kunt u een toename of geen toename in de **belastingpkts** of **rx-pkts** opmerken.

Tip: Als je teller voor de verhoging van de belastingtarieven is, geef je gegevens door naar de peer. Als uw rx-pkts niet verhogen betekent dit dat u geen gegevens van uw peer ontvangt. Controleer in dit geval het andere uiteinde en bevestig of de belastingpekts verhogen.

TCP vEdge2# show tunnel statistics

TUNNEL SOURCE DEST TUNNEL MSS PROTOCOL SOURCE IP DEST IP PORT PORT SYSTEM IP LOCAL COLOR REMOTE COLOR MTU tx-pkts tx-octets rx-pkts rx-octets ADJUST ------

		ips	ec 172.1	6.16.147	10.88.244	.181 12386	12406 1.1.1.10)
public-i	nternet	default	14	41 3828	32 5904	968 38276	6440071 136	51
ipsec	172.16	.16.147	10.152.201.	104 12386	63364	100.1.1.100	public-internet	default
1441	33421	5158814	33416	5623178	1361			
ipsec	172.16	.16.147	10.152.204.	31 12386	5 58851	1.1.1.90	public-internet	public-
internet	: 1441	12746	1975022	12744	2151926	1361		
ipsec	172.24	.90.129	10.88.244.1	81 12426	5 12406	1.1.1.10	biz-internet	default
1441	38293	5906238	38288	6454580	1361			
ipsec	172.24	.90.129	10.152.201.	104 12426	63364	100.1.1.100	biz-internet	default
1441	33415	5157914	33404	5621168	1361			
ipsec	172.24	.90.129	10.152.204.	31 12426	5 58851	1.1.1.90	biz-internet	public-
internet	: 1441	12750	1975622	12747	2152446	1361		

TUNNEL DEST TUNNEL			SOURCE			
PROTOCOL	SOURCE IP	DEST IP	PORT PORT	SYSTEM IP	LOCAL COLOR	REMOTE
COLOR	MTU tx-pkt:	s tx-octets rx	-pkts rx-octe	ts ADJUST		
ipsec	172.16.16.147	10.88.244.181	12386 12406	1.1.1.10	public-internet	
default	1441	39028 602077	9 39022	6566326 136	1	
ipsec	172.16.16.147	10.152.201.104	12386 63364	100.1.1.100	public-internet	
default	1441	34167 527462	5 34162	5749433 136	1	
ipsec	172.16.16.147	10.152.204.31	12386 58851	1.1.1.90	public-internet	public-
internet	1441 13489	2089069 13	487 2276382	1361		
ipsec	172.24.90.129	10.88.244.181	12426 12406	1.1.1.10	biz-internet	
default	1441	39039 602204	9 39034	6580835 136	1	
ipsec	172.24.90.129	10.152.201.104	12426 63364	100.1.1.100	biz-internet	
default	1441	34161 527372	5 34149	5747259 136	1	

Een andere nuttige opdracht is **om tunnelstatistieken** te **tonen** die kunnen worden gebruikt om het aantal BFD - pakketten te controleren die binnen specifieke gegevenstunnel worden verzonden en ontvangen:

ipsec 172.24.90.129 10.152.204.31 12426 58851 1.1.1.90 biz-internet public-

internet 1441 13493 2089669 13490 2276902 1361

vEdgel# show tunnel statistics bfd

BFD	BFD	BFD		BFD								
									BFD	BFD		
PMTU	PMTU	PMTU		PMTU								
TUNNEI	_						SOURCE	DEST	ECHO TX	ECHO RX	BFD ECHO	BFD ECHO
TX	RX	TX		RX								
PROTO	COL	SOURCE	ΙP		DEST	IP	PORT	PORT	PKTS	PKTS	TX OCTETS	RX OCTETS

PKTS	PKT	S OCTETS OCTETS							
ipsec		192.168.109.4 192.168.10	9.5 4500	4500	0	0	0	0	0
0	0	0							
ipsec		192.168.109.4 192.168.10	9.5 12346	12366	1112255	1112253	186302716	186302381	
487	487	395939 397783							
ipsec		192.168.109.4 192.168.10	9.7 12346	12346	1112254	1112252	186302552	186302210	
487	487	395939 397783							
ipsec		192.168.109.4 192.168.11	0.5 12346	12366	1112255	1112253	186302716	186302381	
487	487	395939 397783							

Toegangslijst

Een toegangslijst is een nuttige en noodzakelijke stap nadat u de uitvoer van **showsessies** bekijkt. Nu de privé, en openbare IPs en poorten bekend zijn, kunt u een Toegangscontrolelijst (ACL) maken om tegen de SRC_PORT, DST_PORT, SRC_IP, DST_IP aan te passen. Dit kan u helpen bevestigen of u BFD-berichten ontvangt en verstuurt of niet.

Hier vindt u een voorbeeld van een ACL-configuratie:

```
policy
access-list checkbfd-out
 sequence 10
  match
   source-ip 192.168.0.92/32
   destination-ip 198.51.100.187/32
   source-port 12426
   destination-port 12426
   1
   action accept
   count bfd-out-to-dc1-from-br1
   1
  1
default-action accept
1
access-list checkbfd-in sequence 20 match source-ip 198.51.100.187/32 destination-ip
192.168.0.92/32 source-port 12426 destination-port 12426 ! action accept count bfd-in-from-dc1-
to-br1 ! ! default-action accept !
vpn 0
interface ge0/0
access-list checkbfd-in in
access-list checkbfd-out out
1
1
```

In het voorbeeld, gebruikt dit ACL twee sequenties. De sequentie 10 komt overeen met de BFDberichten die van deze vEdge naar de peer worden verzonden. Sequence 20 doet het tegenovergestelde.

Het komt overeen met de bron (**Private**) port en de bestemming (**Public**) poorten. Als de vEdge NAT gebruikt, zorg er dan voor dat u de juiste bron- en doelpoorten controleert.

Om de hits op elke sequentietalom te controleren **toont** de **tellers van de beleidstoegang van de toegangslijst <access-list>**

NAME	COUNTER NAME	PACKETS	BYTES
checkbfd	bfd-out-to-dcl-from-brl	10	2048
	bfd-in-from-dc1-to-br1	0	0

Netwerkadresomzetting

Gebruik van werktuigen vanaf een client om NAT-afbeelding en filtering te detecteren

Als u alle vermelde stappen hebt gedaan en u achter NAT staat, is de volgende stap om het gedrag van UDP NAT Traversal (RFC 4787) in kaart te brengen en te filteren. Dit gereedschap is echt handig om het lokale vEdge externe IP-adres te ontdekken wanneer die vEdge zich achter een NAT-apparaat bevindt. Deze opdracht verkrijgt een poortafbeelding voor het apparaat en ontdekt optioneel eigenschappen over NAT tussen het lokale apparaat en een server (openbare server: voorbeeld google stun server).

Opmerking: Zie voor meer informatie: DOCS Viptela - STUN-client

vEdge1# tools stun-client vpn 0 options "--mode full --localaddr 192.168.12.100 12386 -verbosity 2 stun.l.google.com 19302"
stunclient --mode full --localaddr 192.168.12.100 stun.l.google.com in VPN 0
Binding test: success
Local address: 192.168.12.100:12386
Mapped address: 203.0.113.225:4501
Behavior test: success
Nat behavior: Address Dependent Mapping
Filtering test: success
Nat filtering: Address and Port Dependent Filtering

Op nieuwere versies van software kan de syntaxis iets anders zijn:

```
vEdge1# tools stun-client vpn 0 options "--mode full --localaddr 192.168.12.100 --localport
12386 --verbosity 2 stun.l.google.com 19302"
```

In dit voorbeeld voert u een volledige NAT-detectietest uit met behulp van UDP-bronpoort 12386 naar de Google STUN-server. De uitvoer van deze opdracht geeft u NAT-gedrag en het NAT-filtertype op basis van RFC 4787.

Opmerking: Wanneer u **gereedschappen gebruikt**, vergeet dan de STUN-service toe te staan in de tunnelinterface, anders werkt dat niet. Gebruik **een hogerservice-stut** om de gegevens van de studie door te geven.

```
vEdgel# show running-config vpn 0 interface ge0/0
vpn 0
interface ge0/0
ip address 10.19.145.2/30
!
tunnel-interface
encapsulation ipsec
color gold
```

```
max-control-connections 1
no allow-service bgp
allow-service dhcp
allow-service dns
no allow-service icmp
no allow-service sshd
no allow-service netconf
no allow-service ntp
no allow-service spf
allow-service stun
!
no shutdown
!
```

!

Dit toont het in kaart brengen tussen STUN terminologie (Full-Cone NAT) en RFC 4787 (NAT Behavioral for UDP).

NAT Traversal Mapping Between used Viptela Terminologies							
STUN RFC 3489 Terminology	RFC 4787 Terminology						
	Mapping Behavior	Filtering Behavior					
Full-cone NAT	Endpoint-Independent Mapping	Endpoint-Independent Filtering					
Restricted Cone NAT	Endpoint-Independent Mapping	Address-Dependent Filtering					
Port-Restricted Cone NAT	Endpoint-Independent Mapping	Address and Port-Dependent Filtering					
Symmetric NAT	Address and (ar) Port Dependent Manning	Address-Dependent Filtering					
Symmetric NAT	Address-and(or) Fort-Dependent Mapping	Address and Port-Dependent Filtering					

Ondersteunde NAT-typen voor datacentertunnels

In de meeste gevallen kunnen je openbare kleuren als biz-internet of publiek-internet rechtstreeks op het internet worden aangesloten. In andere gevallen zal er een NAT-apparaat achter de vEdge WAN-interface en de huidige Internet Service Provider zijn, zodat de vEdge een privé-IP kan hebben en het andere apparaat (router, firewall, enzovoort) kan het apparaat zijn met de openbare naar IP-adressen.

Als u een onjuist NAT-type heeft, kan dit een van de meest voorkomende redenen zijn die de vorming van tunnels in het datacenter niet toestaan. Dit zijn de ondersteunde NAT-typen.

NAT Traversal Support							
Source	Destination	Supported (YES/NO)					
Full-Cone NAT	Full-cone NAT	Yes					
Full-Cone NAT	Restricted Cone NAT	Yes					
Full-Cone NAT	Port-Restricted Cone NAT	Yes					
Full-Cone NAT	Symmetric NAT	Yes					
Restricted Cone NAT	Full-cone NAT	Yes					
Restricted Cone NAT	Restricted Cone NAT	Yes					
Restricted Cone NAT	Port-Restricted Cone NAT	Yes					
Restricted Cone NAT	Symmetric NAT	Yes					
Port-Restricted Cone NAT	Full-cone NAT	Yes					
Port-Restricted Cone NAT	Restricted Cone NAT	Yes					
Port-Restricted Cone NAT	Port-Restricted Cone NAT	Yes					
Port-Restricted Cone NAT	Symmetric NAT	No					
Symmetric NAT	Full-cone NAT	Yes					
Symmetric NAT	Restricted Cone NAT	yes					
Symmetric NAT	Port-Restricted Cone NAT	No					
Symmetric NAT	Symmetric NAT	No					

Firewalls

Als u al NAT en zijn niet in de niet-ondersteunde bron- en doeltypen hebt gecontroleerd, is het mogelijk dat een firewall de poorten blokkeert die gebruikt worden om de datacommunicatie te vormen.

Zorg ervoor dat deze poorten open zijn in de Firewall voor de verbindingen van het datacenter: vEdge naar vEdge-datacenter:

UDP 12346 tot 13156

Voor besturingsverbindingen van vEdge naar controllers:

UDP 12346 tot 13156

TCP 23456 tot 24156

Zorg ervoor dat u deze poorten opent om een succesvolle verbinding van de tunnels van het datacentrum te bereiken.

Wanneer u de bron en de bestemming havens controleert die voor gegevensvliegtuigtunnels worden gebruikt, kunt u **tunnelstatistieken** gebruiken of **schrijfsessies tonen | tab**, maar **toon geen ronde sessies.** Er worden geen bronpoorten weergegeven, alleen doelpoorten zoals u kunt zien:

vEdgel# show bfd	sess	ions									
					SOURCE	E TLOC	REMOTE	TLOC			
DST PUBLIC				DST	PUBLIC		DETECT	TX			
SYSTEM IP	SITE	ID	STATE		COLOR		COLOR		SOURCI	E IP	
IP				PORT	Г	ENCAP	MULTIPLIER	INTERVAL	(msec)	UPTIME	
TRANSITIONS											

192.168.30.105	50	up	bi	z-inter	net	biz-internet	192.	168.109.181	
192.168.109.182		1	2346	ips	ec 7	1000		1:21:28:05	10
192.168.30.105	50	up	pr	ivatel		privatel	192.	168.110.181	
192.168.110.182		1	2346	ips	ec 7	1000		1:21:26:13	2
vEdgel# show bf	d session:	s tab							
				SRC	DST		SITE		
DETECT TX									
SRC IP	DST IP		PROTO	PORT	PORT	SYSTEM IP	ID	LOCAL COLOR	COLOR
STATE MULTIPLI	ER INTER	VAL UPTI	ME	TRANSI	TIONS				
192.168.109.181	192.168	.109.182	ipsec	12346	12346	192.168.30.105	50	biz-internet	biz-
internet up	7	1000	1	:21:28:	05 10				
192.168.110.181	192.168	.110.182	ipsec	12346	12346	192.168.30.105	50	privatel	
privatel u	p 7		1000	1:21	:26:13	2			

Opmerking: U vindt hier meer informatie over de SD-WAN firewallpoorten.

Security

Als u ziet dat uw ACL teller binnen en uitgaande toeneemt, controleer dan meerdere iteraties tonen systeemstatistieken diff en zorg ervoor dat er geen druppels zijn.

vEdge1# show policy access-list-counters

NAME COUNTER NAME PACKETS BYTES

checkbfd bfd-out-to-dc1-from-br1 55 9405 bfd-in-from-dc1-to-br1 54 8478

In deze output wordt **rx_replay_integer_drops** verhoogd met elke iteratie van de **show system statistics** opdracht.

vEdgel#show system statistics diff

```
rx_pkts : 5741427
ip_fwd : 5952166
ip_fwd_arp : 3
ip_fwd_to_egress : 2965437
ip_fwd_null_mcast_group : 26
ip_fwd_null_nhop : 86846
ip_fwd_to_cpu : 1413393
ip_fwd_from_cpu_non_local : 15
ip_fwd_rx_ipsec : 1586149
ip_fwd_mcast_pkts : 26
rx_bcast : 23957
rx_mcast : 304
rx_mcast_link_local : 240
rx_implicit_acl_drops : 12832
rx_ipsec_decap : 21
rx_spi_ipsec_drops : 16
rx_replay_integrity_drops : 1586035
port_disabled_rx : 2
rx_invalid_qtags : 212700
rx_non_ip_drops : 1038073
```

pko_wred_drops : 3 bfd_tx_record_changed : 23 rx_arp_non_local_drops : 19893 rx_arp_reqs : 294 rx_arp_replies : 34330 arp_add_fail : 263 tx_pkts : 4565384 tx_mcast : 34406 port_disabled_tx : 3 tx_ipsec_pkts : 1553753 tx_ipsec_encap : 1553753 tx_pre_ipsec_pkts : 1553753 tx_pre_ipsec_encap : 1553753 tx_arp_replies : 377 tx_arp_reqs : 34337 tx_arp_req_fail : 2 bfd_tx_pkts : 1553675 bfd_rx_pkts : 21 bfd_tx_octets : 264373160 bfd_rx_octets : 3600 bfd_pmtu_tx_pkts : 78 bfd_pmtu_tx_octets : 53052 rx_icmp_echo_requests : 48 rx_icmp_network_unreach : 75465 rx_icmp_other_types : 47 tx_icmp_echo_requests : 49655 tx_icmp_echo_replies : 48 tx_icmp_network_unreach : 86849 tx_icmp_other_types : 7 vEdge1# show system statistics diff rx_pkts : 151 ip_fwd : 157 ip_fwd_to_egress : 75 ip_fwd_null_nhop : 3 ip_fwd_to_cpu : 43 ip_fwd_rx_ipsec : 41 rx_bcast : 1 rx_replay_integrity_drops : 41 rx_invalid_qtags : 7 rx_non_ip_drops : 21 rx_arp_non_local_drops : 2 tx_pkts : 114 tx_ipsec_pkts : 40 tx_ipsec_encap : 40 tx_pre_ipsec_pkts : 40 tx_pre_ipsec_encap : 40 tx_arp_reqs : 1 bfd_tx_pkts : 40 bfd_tx_octets : 6800 tx_icmp_echo_requests : 1 vEdge1# show system statistics diff rx_pkts : 126 ip_fwd : 125 ip_fwd_to_egress : 58 ip_fwd_null_nhop : 3 ip_fwd_to_cpu : 33 ip_fwd_rx_ipsec : 36 rx_bcast : 1 rx_implicit_acl_drops : 1 rx_replay_integrity_drops : 35 rx_invalid_qtags : 6 rx_non_ip_drops : 22

rx_arp_replies : 1 tx_pkts : 97 tx_mcast : 1 tx_ipsec_pkts : 31 tx_ipsec_encap : 31 tx_pre_ipsec_pkts : 31 tx_pre_ipsec_encap : 31 bfd_tx_pkts : 32 bfd_tx_octets : 5442 rx_icmp_network_unreach : 3 tx_icmp_echo_requests : 1 tx_icmp_network_unreach : 3 vEdge1# show system statistics diff rx_pkts : 82 ip_fwd : 89 ip_fwd_to_egress : 45 ip_fwd_null_nhop : 3 ip_fwd_to_cpu : 24 ip_fwd_rx_ipsec : 22 rx_bcast : 1 rx_implicit_acl_drops : 1 rx_replay_integrity_drops : 24 rx_invalid_qtags : 2 rx_non_ip_drops : 14 rx_arp_replies : 1 tx_pkts : 62 tx_mcast : 1 tx_ipsec_pkts : 24 tx_ipsec_encap : 24 tx_pre_ipsec_pkts : 24 tx_pre_ipsec_encap : 24 tx_arp_reqs : 1 bfd_tx_pkts : 23 bfd_tx_octets : 3908 rx_icmp_network_unreach : 3 tx_icmp_echo_requests : 1 tx_icmp_network_unreach : 3 vEdge1# show system statistics diff rx_pkts : 80 ip_fwd : 84 ip_fwd_to_egress : 39 ip_fwd_to_cpu : 20 ip_fwd_rx_ipsec : 24 rx_replay_integrity_drops : 22 rx_invalid_qtags : 3 rx_non_ip_drops : 12 tx_pkts : 66 tx_ipsec_pkts : 21 tx_ipsec_encap : 21 tx_pre_ipsec_pkts : 21 tx_pre_ipsec_encap : 21 bfd_tx_pkts : 21 bfd_tx_octets : 3571

Voer eerst een **verzoek om beveiliging** uit op **ipsec**-rekey op de vEdge. Vervolgens, ga door verschillende iteraties van **show system statistics diff** en zie of u nog **rx_replay_integer_drops** ziet. Kijk in de beveiligingsconfiguratie.

```
vEdgel# show running-config security
security
ipsec
authentication-type shal-hmac ah-shal-hmac
!
!
```

Als u de bovengenoemde configuratie hebt, probeer dan **ah-no-id** aan het authenticatietype onder ipsec toe te voegen.

```
vEdgel# show running-config security
security
ipsec
authentication-type shal-hmac ah-shal-hmac ah-no-id
!
!
```

Tip: ah-no-id maakt een aangepaste versie mogelijk van AH-SHA1 HMAC en ESP HMAC-SHA1, waarmee het ID-veld in de buitenste IP-header van het pakket wordt genegeerd. Deze optie past een aantal niet-Viptela apparaten aan, die de Apple AirPort Express NAT omvatten, die een bug heeft die ervoor zorgt dat het ID veld in de IP-header, een nietveranderbaar veld, wordt aangepast. Configureer de optie ah-no-id in de lijst met authenticatietypen om de Viptela AH-software het ID-veld in de IP-header te laten negeren, zodat de Viptela-software kan werken in combinatie met deze apparaten

ISP-problemen met DSCP gemarkeerd verkeer

Standaard reist alle controle- en beheerverkeer van de vEdge-router naar de controllers via DTLSof TLS-verbindingen en gemarkeerd met een DSCP-waarde van CS6 (48 decimalen). Voor verkeer van datastuntunnels gebruiken vEdge-routers IPsec of GRE-insluiting om gegevensverkeer naar elkaar te verzenden. Voor de detectie en meting van gegevensvlakken verzenden routers elkaar periodiek BFD-pakketten. Deze BFD-pakketten worden ook gemarkeerd met een DSCP-waarde van CS6 (48 decimalen).

Vanuit het perspectief van ISP, zal dat type verkeer gezien worden als UDP-verkeer met DSCP waarde CS6, ook omdat vEdge-routers en SD-WAN controllers DSCP kopiëren die standaard naar de buitenste IP-header markeren.

Hier is hoe het eruit zou kunnen zien als tcPDump op router van doorvoerISP loopt:

Zoals hier te zien is, worden alle pakketten gemarkeerd met TOS byte 0xc0 ook bekend als DS veld (dat is gelijk aan decimale 192, of 110 000 00 in binair getal. Eerste 6 hoge bestelbits komen overeen met DSCP bits waarde 48 in decimale volgorde of CS6).

Eerst 2 pakketten in de uitvoer komen overeen met een besturingsplanetunnel en de 2 die overblijven met een tunnelverkeer. Op basis van de pakketlengte en de TOS-markering kan deze met groot vertrouwen concluderen dat het BFD-pakketten waren (RX- en TX-instructies). Deze pakketten worden ook gemarkeerd met CS6.

Soms kunnen sommige serviceproviders en vooral MPLS L3 VPN/MPLS L2 VPNserviceprovidersverschillende SLA's met de klant en kunnen een andere klasse van verkeer op basis van DSCP-markering van de klant anders verwerken. U kunt bijvoorbeeld hoogwaardige service hebben om prioriteit te geven aan DSCP EF- en CS6-spraak- en signaleringsverkeer. Aangezien prioriteitsverkeer vrijwel altijd wordt gecontroleerd, zelfs als de totale bandbreedte van een uplink niet wordt overschreden, kan voor dit type verkeerspakketverlies worden gezien en kunnen BFD-sessies ook worden geflappeld.

In sommige gevallen werd gezien dat als de gewijde prioriteitswachtrij op serviceprovider-router is uitgehongerd, er geen druppels voor normaal verkeer zichtbaar zijn (bijvoorbeeld **ping** van vEdgerouter uitvoeren) omdat dat verkeer wordt gemarkeerd met de standaard DSCP-waarde 0, zoals hier (TOS-byte) kan worden gezien:

15:49:22.268044 IP (tos 0x0, ttl 62, id 0, offset 0, flags [DF], proto UDP (17), length 142)
192.168.110.5.12366 > 192.168.109.7.12346: [no cksum] UDP, length 114
15:49:22.272919 IP (tos 0x0, ttl 62, id 0, offset 0, flags [DF], proto UDP (17), length 142)
192.168.110.5.12366 > 192.168.109.7.12346: [no cksum] UDP, length 114
15:49:22.277660 IP (tos 0x0, ttl 62, id 0, offset 0, flags [DF], proto UDP (17), length 142)
192.168.110.5.12366 > 192.168.109.7.12346: [no cksum] UDP, length 114
15:49:22.314821 IP (tos 0x0, ttl 62, id 0, offset 0, flags [DF], proto UDP (17), length 142)
192.168.110.5.12366 > 192.168.109.7.12346: [no cksum] UDP, length 114

Maar tegelijkertijd flauwvallen van uw BFD-sessies:

show	bfd	history	
		_	

					DST PUBLIC	DST PUBLIC		
RX	TX							
SYSTEM I	IP	SITE ID	COLOR	STATE	IP	PORT	ENCAP	TIME
PKTS	PKTS I	DEL						
192.168	.30.4	13	public-internet	up	192.168.109.4	12346	ipsec	2019-
05-01T0	3:54:23+02	200 127	135 0					
192.168	.30.4	13	public-internet	up	192.168.109.4	12346	ipsec	2019-
05-01T0	3:54:23+02	200 127	135 0					
192.168	.30.4	13	public-internet	down	192.168.109.4	12346	ipsec	2019-
05-01T0	3:55:28+02	200 140	159 0					
192.168	.30.4	13	public-internet	down	192.168.109.4	12346	ipsec	2019-
05-01T0	3:55:28+02	200 140	159 0					
192.168	.30.4	13	public-internet	up	192.168.109.4	12346	ipsec	2019-
05-01T0	3:55:40+02	200 361	388 0					
192.168	.30.4	13	public-internet	up	192.168.109.4	12346	ipsec	2019-
05-01T0	3:55:40+02	200 361	388 0					
192.168	.30.4	13	public-internet	down	192.168.109.4	12346	ipsec	2019-
05-01T0	3:57:38+02	200 368	421 0					
192.168	.30.4	13	public-internet	down	192.168.109.4	12346	ipsec	2019-
05-01T0	3:57:38+02	200 368	421 0					
192.168	.30.4	13	public-internet	up	192.168.109.4	12346	ipsec	2019-
05-01T0	3:58:05+02	200 415	470 0					
192.168	.30.6	13	public-internet	up	192.168.109.4	12346	ipsec	2019-
05-01T0	3:58:05+02	200 415	470 0					
192.168	.30.6	13	public-internet	down	192.168.109.4	12346	ipsec	2019-
05-01T0	3:58:25+02	200 46406	3 464412 0					

En hier **komt Nping** handig om het oplossen te regelen:

vedge2# tools nping vpn 0 options "--tos 0x0c --icmp --icmp-type echo --delay 200ms -c 100 -q" 192.168.109.7 Nping in VPN 0

Starting Nping 0.6.47 (http://nmap.org/nping) at 2019-05-07 15:58 CEST
Max rtt: 200.305ms | Min rtt: 0.024ms | Avg rtt: 151.524ms
Raw packets sent: 100 (2.800KB) | Rcvd: 99 (4.554KB) | Lost: 1 (1.00%)
Nping done: 1 IP address pinged in 19.83 seconds

Debug BFD

Soms, als het diepere onderzoek wordt vereist, zou u het zuiveren van BFD op de vEdge router kunnen willen uitvoeren. Forwarding Traffic Manager (FTM) is verantwoordelijk voor BFDbewerkingen op vEdge-routers en daarom moet u **ftm-bfd deken** herstellen. Alle debugoutput wordt opgeslagen in **/var/log/tmplog/vdebug** bestand en als u die berichten op de console wilt hebben (gelijk aan Cisco IOS® **terminal monitor** gedrag) kunt u

monitorstart/var/log/log/stamlog/vdebug gebruiken. Om de houtkap te stoppen, kunt u **monitorstop** /var/log/tmplog/vdebug gebruiken. Hier is hoe de output er uit zal zien als voor BFD-sessie die afneemt vanwege de tijdelijke versie (afstandsbediening met IP-adres 192.168.110.6 is niet meer bereikbaar):

```
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_update_state[1008]: BFD-
session TNL 192.168.110.5:12366->192.168.110.6:12346,1-tloc(32771)->r-tloc(32772),TLOC
192.168.30.5:biz-internet->192.168.30.6:public-internet IPSEC: BFD Session STATE update,
New State :- DOWN, Reason :- LOCAL TIMEOUT DETECT Observed latency :- 7924, bfd record index :-
8, Hello timer :- 1000, Detect Multiplier :- 7
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_proc_tunnel_public_tloc_msg[252]:
tun_rec_index 13 tloc_index 32772 public tloc 0.0.0.0/0
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_increment_wanif_bfd_flap[2427]: BFD-
session TNL 192.168.110.5:12366->192.168.110.6:12346, : Increment the WAN interface counters by
1
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_update_state[1119]: BFD-
session TNL 192.168.110.5:12366->192.168.110.6:12346,1-tloc(32771)->r-tloc(32772),TLOC
192.168.30.5:biz-internet->192.168.30.6:public-internet IPSEC BFD session history update, old
state 3 new state 1 current flap count 1 prev_index 1 current 2
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_tloc_add[1140]: Attempting to add TLOC :
from_ttm 0 origin remote tloc-index 32772 pub 192.168.110.6:12346 pub v6 :::0 system_ip
192.168.30.6 color 5 spi 333
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_set_del_marker_internal[852]:
(32771:32772) proto 50 src 192.168.110.5:12366 dst 192.168.110.6:12346 ref_count 1
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_set_del_marker_internal[852]:
(32770:32772) proto 50 src 192.168.109.5:12366 dst 192.168.110.6:12346 ref_count 1
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_create[238]: Attempting BFD
session creation. Remote-tloc: tloc-index 32772, system-ip 192.168.30.6, color 5 encap 2from
local WAN Interface ge0_0
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_clear_delete_marker[828]:
(32771:32772) proto 50 src 192.168.110.5:12366 dst 192.168.110.6:12346 ref_count 1
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_create[238]: Attempting BFD
session creation. Remote-tloc: tloc-index 32772, system-ip 192.168.30.6, color 5 encap 2from
local WAN Interface ge0_1
log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_clear_delete_marker[828]:
```

(32770:32772) proto 50 src 192.168.109.5:12366 dst 192.168.110.6:12346 ref_count 1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_update_sa[1207]: BFD-session TNL 192.168.110.5:12366->192.168.110.6:12346,l-tloc(32771)->r-tloc(32772),TLOC 192.168.30.5:bizinternet->192.168.30.6:public-internet IPSEC: session sa index changed from 484 to 484 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_tloc_add[1653]: BFD (32771:32772) src 192.168.110.5:12366 dst 192.168.110.6:12346 record index 8 ref-count 1 sa-idx 484 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_update_sa[1207]: BFD-session TNL 192.168.109.5:12366->192.168.110.6:12346,1-tloc(32770)->r-tloc(32772),TLOC 192.168.30.5:public-internet->192.168.30.6:public-internet IPSEC: session sa index changed from 485 to 485 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_tloc_add[1653]: BFD (32770:32772) src 192.168.109.5:12366 dst 192.168.110.6:12346 record index 9 ref-count 1 sa-idx 485 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_update_state[1008]: BFDsession TNL 192.168.109.5:12366->192.168.110.6:12346,1-tloc(32770)->r-tloc(32772),TLOC 192.168.30.5:public-internet->192.168.30.6:public-internet IPSEC: BFD Session STATE update, New_State :- DOWN, Reason :- LOCAL_TIMEOUT_DETECT Observed latency :- 7924, bfd_record_index :-9, Hello timer :- 1000, Detect Multiplier :- 7 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_proc_tunnel_public_tloc_msg[252]: tun_rec_index 14 tloc_index 32772 public tloc 0.0.0/0 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_increment_wanif_bfd_flap[2427]: BFDsession TNL 192.168.109.5:12366->192.168.110.6:12346, : Increment the WAN interface counters by 1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_update_state[1119]: BFDsession TNL 192.168.109.5:12366->192.168.110.6:12346,1-tloc(32770)->r-tloc(32772),TLOC 192.168.30.5:public-internet->192.168.30.6:public-internet IPSEC BFD session history update, old state 3 new state 1 current flap count 1 prev_index 1 current 2 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_tloc_add[1140]: Attempting to add TLOC : from_ttm 0 origin remote tloc-index 32772 pub 192.168.110.6:12346 pub v6 :::0 system_ip 192.168.30.6 color 5 spi 333 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_set_del_marker_internal[852]: (32771:32772) proto 50 src 192.168.110.5:12366 dst 192.168.110.6:12346 ref_count 1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_set_del_marker_internal[852]: (32770:32772) proto 50 src 192.168.109.5:12366 dst 192.168.110.6:12346 ref_count 1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_create[238]: Attempting BFD session creation. Remote-tloc: tloc-index 32772, system-ip 192.168.30.6, color 5 encap 2from local WAN Interface ge0_0 loq:local7.debuq: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr session_clear_delete_marker[828]: (32771:32772) proto 50 src 192.168.110.5:12366 dst 192.168.110.6:12346 ref_count 1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_create[238]: Attempting BFD session creation. Remote-tloc: tloc-index 32772, system-ip 192.168.30.6, color 5 encap 2from local WAN Interface ge0_1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_clear_delete_marker[828]: (32770:32772) proto 50 src 192.168.109.5:12366 dst 192.168.110.6:12346 ref_count 1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_update_sa[1207]: BFD-session TNL 192.168.110.5:12366->192.168.110.6:12346,l-tloc(32771)->r-tloc(32772),TLoC 192.168.30.5:bizinternet->192.168.30.6:public-internet IPSEC: session sa index changed from 484 to 484 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_tloc_add[1653]: BFD (32771:32772) src 192.168.110.5:12366 dst 192.168.110.6:12346 record index 8 ref-count 1 sa-idx 484 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_update_sa[1207]: BFD-session TNL 192.168.109.5:12366->192.168.110.6:12346,1-tloc(32770)->r-tloc(32772),TLOC 192.168.30.5:public-internet->192.168.30.6:public-internet IPSEC: session sa index changed from 485 to 485 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_tloc_add[1653]: BFD (32770:32772) src 192.168.109.5:12366 dst 192.168.110.6:12346 record index 9 ref-count 1 sa-idx 485 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_send_bfd_msg[499]: Sending BFD notification Down notification to TLOC id 32772 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_tloc_add[1140]: Attempting to add TLOC : from_ttm 1 origin remote tloc-index 32772 pub 192.168.110.6:12346 pub v6 :::0 system_ip 192.168.30.6 color 5 spi 333 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_set_del_marker_internal[852]: (32771:32772) proto 50 src 192.168.110.5:12366 dst 192.168.110.6:12346 ref_count 1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_set_del_marker_internal[852]: (32770:32772) proto 50 src 192.168.109.5:12366 dst 192.168.110.6:12346 ref_count 1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_tloc_add[1285]: UPDATE local tloc

log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_create[238]: Attempting BFD session creation. Remote-tloc: tloc-index 32772, system-ip 192.168.30.6, color 5 encap 2from local WAN Interface ge0_0 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_clear_delete_marker[828]: (32771:32772) proto 50 src 192.168.110.5:12366 dst 192.168.110.6:12346 ref_count 1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_create[238]: Attempting BFD session creation. Remote-tloc: tloc-index 32772, system-ip 192.168.30.6, color 5 encap 2from local WAN Interface ge0_1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_clear_delete_marker[828]: (32770:32772) proto 50 src 192.168.109.5:12366 dst 192.168.110.6:12346 ref_count 1 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_update_sa[1207]: BFD-session TNL 192.168.110.5:12366->192.168.110.6:12346,l-tloc(32771)->r-tloc(32772),TLOC 192.168.30.5:bizinternet->192.168.30.6:public-internet IPSEC: session sa index changed from 484 to 484 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_tloc_add[1653]: BFD (32771:32772) src 192.168.110.5:12366 dst 192.168.110.6:12346 record index 8 ref-count 1 sa-idx 484 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: bfdmgr_session_update_sa[1207]: BFD-session TNL 192.168.109.5:12366->192.168.110.6:12346,1-tloc(32770)->r-tloc(32772),TLOC 192.168.30.5:public-internet->192.168.30.6:public-internet IPSEC: session sa index changed from 485 to 485 log:local7.debug: May 7 16:23:09 vedge2 FTMD[674]: ftm_tloc_add[1653]: BFD (32770:32772) src 192.168.109.5:12366 dst 192.168.110.6:12346 record index 9 ref-count 1 sa-idx 485 log:local7.info: May 7 16:23:09 vedge2 FTMD[674]: %Viptela-vedge2-ftmd-6-INFO-1400002: Notification: 5/7/2019 14:23:9 bfd-state-change severity-level:major host-name:"vedge2" systemip:192.168.30.5 src-ip:192.168.110.5 dst-ip:192.168.110.6 proto:ipsec src-port:12366 dstport:12346 local-system-ip:192.168.30.5 local-color:"biz-internet" remote-system-ip:192.168.30.6 remote-color: "public-internet" new-state: down deleted: false flap-reason: timeout log:local7.info: May 7 16:23:09 vedge2 FTMD[674]: %Viptela-vedge2-ftmd-6-INFO-1400002: Notification: 5/7/2019 14:23:9 bfd-state-change severity-level:major host-name:"vedge2" systemip:192.168.30.5 src-ip:192.168.109.5 dst-ip:192.168.110.6 proto:ipsec src-port:12366 dstport:12346 local-system-ip:192.168.30.5 local-color:"public-internet" remote-systemip:192.168.30.6 remote-color:"public-internet" new-state:down deleted:false flap-reason:timeout

Een ander waardevol debug om te stoppen zijn TTM-gebeurtenissen (Tunnel Traffic Manager) het **debug** van **ATM-gebeurtenissen**. Zo ziet BFD DOWN er uit vanuit het perspectief van TTM:

log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[194]: Received TTM Msg LINK_BFD, Client: ftmd, AF: LINK log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[413]: Remote-TLOC: 192.168.30.6 : public-internet : ipsec, Local-TLOC: 192.168.30.5 : biz-internet : ipsec, Status: DOWN, Rec Idx: 13 MTU: 1441, Loss: 77, Latency: 0, Jitter: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[194]: Received TTM Msg LINK_BFD, Client: ftmd, AF: LINK log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[413]: Remote-TLOC: 192.168.30.6 : public-internet : ipsec, Local-TLOC: 192.168.30.5 : public-internet : ipsec, Status: DOWN, Rec Idx: 14 MTU: 1441, Loss: 77, Latency: 0, Jitter: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[194]: Received TTM Msg BFD, Client: ftmd, AF: TLOC-IPV4 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[402]: TLOC: 192.168.30.6 : public-internet : ipsec, Status: DOWN log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_af_tloc_db_bfd_status[234]: BFD message: I SAY WHAT WHAT tloc 192.168.30.6 : public-internet : ipsec status is 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[194]: Sent TTM Msg TLOC_ADD, Client: ompd, AF: TLOC-IPV4 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[213]: TLOC: 192.168.30.6 : public-internet : ipsec, Index: 32772, Origin: REMOTE, Status: DOWN, LR enabled: 0, LR hold time: 0 loq:local7.debuq: May 7 16:58:19 vedge2 TTMD[683]: ttm_debuq_announcement[217]: Attributes: GROUP PREF WEIGHT GEN-ID VERSION TLOCV4-PUB TLOCV4-PRI TLOCV6-PUB TLOCV6-PRI SITE-ID CARRIER ENCAP RESTRICT log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[220]: Preference: 0

log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[223]: Weight: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[226]: Gen-ID: 2147483661 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[229]: Version: 2 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[232]: Site-TD: 13 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[235]: Carrier: 4 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[241]: Restrict: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[249]: Group: Count: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[262]: Groups: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[269]: TLOCv4-Public: 192.168.110.6:12346 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[273]: TLOCv4-Private: 192.168.110.6:12346 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[277]: TLOCv6-Public: :::0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[281]: TLOCv6-Private: :::0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[285]: TLOC-Encap: ipsec-tunnel log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm debug_announcement[295]: Authentication: unknown(0x98) Encryption: aes256(0xc) SPI 334 Proto ESP log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[312]: SPI 334, Flags 0x1e Integrity: 1, encrypt-keys: 1 auth-keys: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[317]: Number of protocols 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[328]: Number of encrypt types: 2 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[333]: Encrypt type[0] AES256-GCM log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[333]: Encrypt type[1] AES256-CBC log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[339]: Number of integrity types: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[344]: integrity type[0] HMAC_SHA1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[349]: **#Paths:** 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[194]: Sent TTM Msg TLOC_ADD, Client: ftmd, AF: TLOC-IPV4 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[213]: TLOC: 192.168.30.6 : public-internet : ipsec, Index: 32772, Origin: REMOTE, Status: DOWN, LR enabled: 0, LR hold time: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[217]: Attributes: GROUP PREF WEIGHT GEN-ID VERSION TLOCV4-PUB TLOCV4-PRI TLOCV6-PUB TLOCV6-PRI SITE-ID CARRIER ENCAP RESTRICT log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[220]: Preference: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[223]: Weight: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[226]: Gen-ID: 2147483661 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[229]: Version: 2 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[232]: Site-ID: 13 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[235]: Carrier: 4 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[241]:

Restrict: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[249]: Group: Count: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[262]: Groups: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[269]: TLOCv4-Public: 192.168.110.6:12346 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm debug announcement[273]: TLOCv4-Private: 192.168.110.6:12346 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[277]: TLOCv6-Public: :::0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[281]: TLOCv6-Private: :::0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[285]: TLOC-Encap: ipsec-tunnel log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[295]: Authentication: unknown(0x98) Encryption: aes256(0xc) SPI 334 Proto ESP log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[312]: SPI 334, Flags 0x1e Integrity: 1, encrypt-keys: 1 auth-keys: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[317]: Number of protocols 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[328]: Number of encrypt types: 2 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[333]: Encrypt type[0] AES256-GCM log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[333]: Encrypt type[1] AES256-CBC log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[339]: Number of integrity types: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[344]: integrity type[0] HMAC_SHA1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[349]: #Paths: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[194]: Sent TTM Msg TLOC_ADD, Client: fpmd, AF: TLOC-IPV4 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[213]: TLOC: 192.168.30.6 : public-internet : ipsec, Index: 32772, Origin: REMOTE, Status: DOWN, LR enabled: 0, LR hold time: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[217]: Attributes: GROUP PREF WEIGHT GEN-ID VERSION TLOCv4-PUB TLOCv4-PRI TLOCv6-PUB TLOCv6-PRI SITE-ID CARRIER ENCAP RESTRICT log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[220]: Preference: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[223]: Weight: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[226]: Gen-ID: 2147483661 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[229]: Version: 2 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[232]: Site-ID: 13 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[235]: Carrier: 4 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[241]: Restrict: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[249]: Group: Count: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[262]: Groups: log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[269]: TLOCv4-Public: 192.168.110.6:12346 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[273]: TLOCv4-Private: 192.168.110.6:12346 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[277]: TLOCv6-Public: :::0

log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[281]: TLOCv6-Private: :::0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[285]: TLOC-Encap: ipsec-tunnel log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[295]: Authentication: unknown(0x98) Encryption: aes256(0xc) SPI 334 Proto ESP log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[312]: SPI 334, Flags 0x1e Integrity: 1, encrypt-keys: 1 auth-keys: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[317]: Number of protocols 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[328]: Number of encrypt types: 2 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[333]: Encrypt type[0] AES256-GCM log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[333]: Encrypt type[1] AES256-CBC log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[339]: Number of integrity types: 1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[344]: integrity type[0] HMAC_SHA1 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[349]: #Paths: 0 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[194]: Sent TTM Msg DATA_DEVICE_ADD, Client: pimd, AF: DATA-DEVICE-IPV4 log:local7.debug: May 7 16:58:19 vedge2 TTMD[683]: ttm_debug_announcement[431]: Device: 192.168.30.6, Status: 2 log:local7.info: May 7 16:58:19 vedge2 FTMD[674]: %Viptela-vedge2-ftmd-6-INFO-1400002: Notification: 5/7/2019 14:58:19 bfd-state-change severity-level:major host-name:"vedge2" systemip:192.168.30.5 src-ip:192.168.110.5 dst-ip:192.168.110.6 proto:ipsec src-port:12366 dstport:12346 local-system-ip:192.168.30.5 local-color:"biz-internet" remote-system-ip:192.168.30.6 remote-color:"public-internet" new-state:down deleted:false flap-reason:timeout log:local7.info: May 7 16:58:20 vedge2 FTMD[674]: %Viptela-vedge2-ftmd-6-INFO-1400002: Notification: 5/7/2019 14:58:19 bfd-state-change severity-level:major host-name:"vedge2" systemip:192.168.30.5 src-ip:192.168.109.5 dst-ip:192.168.110.6 proto:ipsec src-port:12366 dstport:12346 local-system-ip:192.168.30.5 local-color:"public-internet" remote-systemip:192.168.30.6 remote-color: "public-internet" new-state:down deleted:false flap-reason:timeout

Gerelateerde informatie

- SDWAN-productdocumentatie
- Anatomie: Een blik in netwerkadresomzetting
- <u>Technische ondersteuning en documentatie Cisco Systems</u>