

Cisco ACI から SR-MPLS ハンドオフにおける DC-PE ルータ

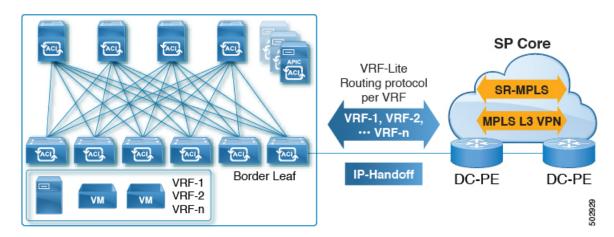
SR-MPLS ハンドオフは、セグメントルーティング(SR) MPLS アンダーレイを使用して Cisco ACI から WAN への相互接続を可能にする相互接続オプションです。

Cisco IOS XE 17.14.1a 以降、Cisco ASR 1000 シリーズ アグリゲーション サービス ルータおよび Cisco Catalyst 8500 シリーズ エッジ プラットフォームは、ACI から SR-MPLS ハンドオフ相 互接続の中間 DC-PE デバイスとして使用できます。

- 前提条件 (1ページ)
- 機能制限 (1ページ)
- ACI から SR-MPLS ハンドオフにおける DC-PE ルータに関する情報 (2ページ)
- サポートされるプラットフォーム (3ページ)
- DC-PE ルータの設定方法 (3ページ)
- DC-PE ルータ設定の確認 (11 ページ)
- トラブルシューティングとデバッギング (14ページ)
- Cisco ACI から SR-MPLS ハンドオフにおける DC-PE ルータの機能情報 (15 ページ)

前提条件

ACIからSR-MPLSハンドオフにおけるDC-PEルータに関する特定の前提条件はありません。


機能制限

- iBGP は、DC-PE とボーダー/リモートリーフ間ではサポートされていません。
- •ルータ ID は、すべての境界リーフスイッチと DC-PE で一意である必要があります。

ACIから SR-MPLS ハンドオフにおける DC-PE ルータに関する情報

SR/MPLS ハンドオフは、セグメントルーティング(SR)MPLS アンダーレイを使用して Cisco ACI ファブリックから WAN への相互接続を可能にする相互接続オプションです。 SR/MPLS は、SPコアでははるかに一般的であるため、他の既知のソリューションよりも優れたソリューションです。このソリューションには、次の利点があります。

- DC と SP 間の統合トランスポートとポリシー
- 複数の VRF の単一コントロール プレーン セッション
- DC から制御される SP コアのトラフィック エンジニアリング

Cisco ACI ファブリックおよび基盤となる ACI から SR-MPLS ハンドオフ相互接続の詳細については、次の資料を参照してください。

- ACI SRMPLS ハンドオフホワイトペーパー
- ACI SRMPLS アーキテクチャ:
- 1. Cisco ACI から SR-MPLS ハンドオフの検証済み設計: 概要
- 2. Cisco ACI から SR-MPLS ハンドオフの検証済み設計: テナント設定
- 3. ACI ファブリック L3Out ホワイトペーパー
- ACI SRMPLS アーキテクチャ/サンプルユースケース

サポートされるプラットフォーム

Cisco IOS XE 17.14.1a 以降、次のルータは、ACI から SR-MPLS ハンドオフ相互接続の DC-PE デバイスとして設定できます。

- Cisco ASR 1000 シリーズ アグリゲーション サービス ルータ
- Cisco Catalyst 8500 シリーズ エッジ プラットフォーム

DC-PE ルータの設定方法

DC-PE ルータで VRF と BGP を設定するには、次の手順を実行します。

DC-PE ルータでの VRF の設定

手順の概要

- 1. enable
- 2. configure terminal
- 3. **vrf definition** *vrf-name*
- **4. rd** *vpn-route-distinguisher*
- 5. address-family ipv4 [multicast | unicast]
- **6. route-target** {**export** | **import** | **both**} *route-target-ext-community*
- 7. route-target {export | import | both} route-target-ext-community stitching
- 8. exit-address-family
- 9. address-family ipv6 [multicast | unicast]
- **10.** route-target {export | import | both} route-target-ext-community
- 11. route-target {export | import | both} route-target-ext-community stitching
- 12. exit-address-family
- **13**. end

手順の詳細

手順

	コマンドまたはアクション	目的
ステップ 1		特権 EXEC モードを開始します。パスワードの入
	例:	力を求められたら、入力します。
	Device> enable	

	コマンドまたはアクション	目的
ステップ2	configure terminal 例: Device# configure terminal	グローバル コンフィギュレーション モードを開始 します。
ステップ3	vrf definition vrf-name 例: Device(config)# vrf definition test	指定した VRF インスタンスの VRF コンフィギュレーション モードを開始します。
ステップ 4	rd vpn-route-distinguisher 例: Device(config-vrf)# rd 65000:1	VRFインスタンスのルート識別子を指定します。
ステップ5	address-family ipv4 [multicast unicast] 例: Device(config-vrf)# address-family ipv4	IPv4 アドレス ファミリ コンフィギュレーション モードを開始します。
ステップ6	route-target {export import both} route-target-ext-community 例:	指定した VRF のインポートまたはエクスポート、 あるいはインポートとエクスポートの両方のルート ターゲット コミュニティのリストを作成します。
	Device(config-vrf-af)# route-target import 1:1 例: Device(config-vrf-af)# route-target export 2:2	自律システム番号および任意の数 (xxx:y) 、またはIPアドレスおよび任意の数 (A.B.C.D:y) のいずれかを入力します。
ステップ 7	route-target {export import both} route-target-ext-community stitching 例: Device(config-vrf-af)# route-target import 3:3 stitching 例: Device(config-vrf-af)# route-target export 4:4 stitching	VRFのEVPNルートターゲットコミュニティのインポートまたはエクスポート、あるいはインポートとエクスポートの両方を設定します。
ステップ8	exit-address-family 例: Device(config-vrf-af)# exit-address-family	VRF アドレス ファミリ コンフィギュレーション モードを終了し、VRFコンフィギュレーションモー ドを開始します。
- ステップ 9	address-family ipv6 [multicast unicast] 例: Device(config-vrf)# address-family ipv6	IPv6 アドレス ファミリ コンフィギュレーション モードを開始します。
ステップ 10	route-target {export import both} route-target-ext-community 例:	指定した VRF のインポートまたはエクスポート、 あるいはインポートとエクスポートの両方のルート ターゲット コミュニティのリストを作成します。

	コマンドまたはアクション	目的
	Device(config-vrf-af)# route-target import 1:1 例: Device(config-vrf-af)# route-target export 2:2	自律システム番号および任意の数 (xxx:y) 、またはIPアドレスおよび任意の数 (A.B.C.D:y) のいずれかを入力します。
ステップ11	route-target {export import both} route-target-ext-community stitching 例: Device(config-vrf-af)# route-target import 3:3 stitching 例: Device(config-vrf-af)# route-target export 4:4 stitching	VRFのEVPNルートターゲットコミュニティのインポートまたはエクスポート、あるいはインポートとエクスポートの両方を設定します。
ステップ12	exit-address-family 例: Device(config-vrf-af)# exit-address-family	VRF アドレス ファミリ コンフィギュレーション モードを終了し、VRFコンフィギュレーションモー ドを開始します。
ステップ13	end 例: Device(config-vrf)# end	特権 EXEC モードに戻ります。

例

次に、DC-PE ルータに必要な VRF 設定の例を示します。

```
vrf definition test
rd 65000:1
address-family ipv4
route-target import 1:1
route-target export 2:2
route-target import 3:3 stitching
route-target export 4:4 stitching
exit
address-family ipv6
route-target import 1:1
route-target export 2:2
route-target import 3:3 stitching
route-target export 2:2
route-target import 3:3 stitching
route-target export 4:4 stitching
exit
```

DC-PE ルータでの BGP の設定

手順の概要

- 1. enable
- 2. configure terminal

- 3. routerbgpas-number
- 4. neighbor dc-border-leaf-address remote-as number
- 5. neighbor wan-router-address remote-as number
- 6. address-family 12vpn evpn
- 7. import vpnv4 unicast [re-originate]
- 8. import vpnv6 unicast [re-originate]
- 9. neighbor ip-address activate
- **10. neighbor** *ip-address* **send-community** [**both** | **extended** | **standard**]
- 11. exit-address-family
- 12. address-family vpnv4
- 13. import l2vpn evpn [re-originate]
- 14. neighbor ip-address activate
- **15**. **neighbor** *ip-address* **send-community** [**both** | **extended** | **standard**]
- **16.** neighbor {ip-address | peer-group-name} next-hop-self [all]
- 17. exit-address-family
- 18. address-family vpnv6
- 19. import l2vpn evpn [re-originate]
- 20. neighbor ip-address activate
- **21. neighbor** *ip-address* **send-community** [**both** | **extended** | **standard**]
- 22. neighbor {ip-address | peer-group-name} next-hop-self [all]
- 23. exit-address-family
- 24. address-family ipv4 vrf vrf-name
- **25**. **maximum-paths eibgp** *number*
- 26. exit-address-family
- 27. address-family ipv6 vrf vrf-name
- 28. maximum-paths eibgp number
- 29. exit-address-family
- **30**. end

手順の詳細

手順

	コマンドまたはアクション	目的
ステップ 1	enable 例: Device> enable	特権 EXEC モードを有効にします。パスワードを 入力します(要求された場合)。
ステップ 2	configure terminal 例: Device# configure terminal	グローバル コンフィギュレーション モードを開始 します。
ステップ3	routerbgpas-number 例:	BGPルーティングプロセスを設定し、ルータコンフィギュレーションモードを開始します。

	コマンドまたはアクション	目的	
	Device(config)# router bgp 1		
ステップ4	neighbor dc-border-leaf-address remote-as number 例:	EVPN ネットワーク内のマルチプロトコル BGP ネイバーを定義します。	
	Device(config-router) # neighbor 1.1.1.1 remote-as 2	スパインスイッチのIPアドレスをネイバーIPアドレスとして使用します。これにより、スパインスイッチが BGP ネイバーとして設定されます。	
ステップ5	neighbor wan-router-address remote-as number 例: Device(config-router)# neighbor 2.2.2.2 remote-as 1	外部 MPLS ネットワークのマルチプロトコル BGP ネイバーを定義します。 外部 MPLS ネットワークピアの IP アドレスをネイバー IP アドレスとして使用します。これにより、外部 MPLS ネットワークピアが BGP ネイバーとして設定されます。	
ステップ6	address-family l2vpn evpn 例: Device(config-router)# address-family l2vpn evpn	L2VPNアドレスファミリを指定し、アドレスファ ミリコンフィギュレーションモードを開始します。	
ステップ 7	import vpnv4 unicast [re-originate] 例: Device(config-router-af)# import vpnv4 unicast re-originate	外部ピアから EVPN アドレスファミリにインポートされた VPNv4 ルートを EVPN ルートとして再生成し、EVPN ファブリック内で配布します。	
ステップ8	import vpnv6 unicast [re-originate] 例: Device(config-router-af)# import vpnv6 unicast re-originate	外部ピアから EVPN アドレスファミリにインポートされた VPNv6 ルートを EVPN ルートとして再生成し、EVPN ファブリック内で配布します。	
ステップ 9	neighbor ip-address activate 例: Device(config-router-af)# neighbor 1.1.1.1 activate	BGP ネイバーからの情報交換を有効にします。 スパインスイッチの IP アドレスをネイバー IP アドレスとして使用します。	
ステップ 10	neighbor ip-address send-community [both extended standard] 例: Device(config-router-af)# neighbor 1.1.1.1 send-community both	BGP ネイバーに送信したコミュニティ属性を指定します。 スパインスイッチの IP アドレスをネイバー IP アドレスとして使用します。 (注) extended キーワードまたは both キーワードを使用します。standard キーワードを使用しますを使用します。すると、外部接続を確立できません。	

	コマンドまたはアクション	目的
ステップ11	exit-address-family 例: Device(config-router-af)# exit-address-family	アドレスファミリ コンフィギュレーションモード を終了し、ルータ コンフィギュレーション モード に戻ります。
ステップ 12	address-family vpnv4 例: Device(config-router)# address-family vpnv4	VPNv4アドレスファミリを指定し、アドレスファミリコンフィギュレーションモードを開始します。
ステップ 13	import l2vpn evpn [re-originate] 例: Device(config-router-af)# import l2vpn evpn re-originate stitching-rt	EVPN ファブリックから VPNv4 アドレスファミリ にインポートされた EVPN ルートを VPNv4 ルート として再生成し、それらを外部ネットワークに配布 します。
ステップ14	neighbor ip-address activate 例: Device(config-router-af)# neighbor 2.2.2.2 active	BGP ネイバーからの情報交換を有効にします。 外部 MPLS ネットワークルータの IP アドレスをネ イバー IP アドレスとして使用します。
ステップ 15	neighbor ip-address send-community [both extended standard] 例: Device(config-router-af)# neighbor 2.2.2.2 send-community both	BGP ネイバーに送信したコミュニティ属性を指定します。 外部 MPLS ネットワークルータの IP アドレスをネイバー IP アドレスとして使用します。 (注) extended キーワードまたは both キーワードを使用します。 standard キーワードを使用しますと、外部接続を確立できません。
ステップ 16	neighbor {ip-address peer-group-name} next-hop-self [all] 例: Device(config-router-af)# neighbor 2.2.2.2 next-hop-self all	ルータをBGPスピーキングネイバーまたはピアグループのネクストホップとして設定します。 all キーワードは、EVPNファブリックとMPLSネットワークが同じBGP自律システム番号にある、iBGPを介した外部接続を実装する場合に必須です。 EVPNファブリックとMPLSネットワークが異なるBGP自律システム番号にある、eBGPを介した外部接続を実装する場合は、allキーワードは任意です。
ステップ 17	exit-address-family 例: Device(config-router-af)# exit-address-family	アドレスファミリ コンフィギュレーションモード を終了し、ルータ コンフィギュレーション モード に戻ります。
ステップ18	address-family vpnv6 例: Device(config-router)# address-family vpnv6	VPNv6アドレスファミリを指定し、アドレスファミリコンフィギュレーションモードを開始します。

	コマンドまたはアクション	目的	
ステップ 19	import l2vpn evpn [re-originate] 例: Device(config-router-af)# import l2vpn evpn re-originate stitching-rt	EVPN ファブリックから VPNv6 アドレスファミリ にインポートされた EVPN ルートを VPNv6 ルート として再生成し、それらを外部ネットワークに配布 します。	
ステップ 20			
	例: Device(config-router-af)# neighbor 2.2.2.2 active	スパインスイッチのIPアドレスをネイバーIPアドレスとして使用します。	
ステップ 21	neighbor <i>ip-address</i> send-community [both extended standard]	BGP ネイバーに送信したコミュニティ属性を指定します。	
	例: Device(config-router-af)# neighbor 2.2.2.2 send-community both	スパインスイッチのIPアドレスをネイバーIPアドレスとして使用します。	
		(注) extended キーワードまたは both キーワードを使用します。standard キーワードを使用すると、外部接続を確立できません。	
ステップ 22	$\begin{tabular}{ll} neighbor \{ip-address \mid peer-group-name\} next-hop-self \\ [all] \end{tabular}$	ルータを BGP スピーキングネイバーまたはピアグ ループのネクストホップとして設定します。	
	例: Device(config-router-af)# neighbor 2.2.2.2 next-hop-self all	all キーワードは、EVPNファブリックとMPLSネットワークが同じ BGP 自律システム番号にある、iBGPを介した外部接続を実装する場合に必須です。	
		EVPNファブリックとMPLSネットワークが異なる BGP 自律システム番号にある、eBGPを介した外部 接続を実装する場合は、allキーワードは任意です。	
ステップ 23	exit-address-family 例: Device(config-router-af)# exit-address-family	アドレスファミリコンフィギュレーションモード を終了し、ルータコンフィギュレーションモード に戻ります。	
ステップ 24	address-family ipv4 vrf vrf-name 例:	ルータをアドレス ファミリ コンフィギュレーシン モードにします。	
	Device(config-router)# address-family ipv4 vrf test	別々の VRF マルチパス設定は、固有ルート識別子によって分離されます。	
ステップ 25	maximum-paths eibgp number 例: Device(config-router-af)# maximum-paths eibgp 16	ルーティング テーブルにインストールできるパラ レルの iBGP ルートおよび eBGP ルートの数を設定 します。	
		(注) maximum-paths eibgp コマンドは、IPv4 VRFアドレスファミリコンフィギュレーションモードでのみ設定できます。	

	コマンドまたはアクション	目的	
ステップ 26	exit-address-family 例: Device(config-router-af)# exit-address-family	アドレスファミリ コンフィギュレーションモード を終了し、ルータ コンフィギュレーション モード に戻ります。	
ステップ 27	address-family ipv6 vrf vrf-name 例: Device(config-router)# address-family ipv6 vrf test	ルータをアドレス ファミリ コンフィギュレーション モードにします。 別々の VRF マルチパス設定は、固有ルート識別子によって分離されます。	
ステップ 28	maximum-paths eibgp number 例: Device(config-router-af)# maximum-paths eibgp 16	ルーティング テーブルにインストールできるパラレルの iBGP ルートおよび eBGP ルートの数を設定します。 (注) maximum-paths eibgp コマンドは、IPv6 VRFアドレスファミリコンフィギュレーション モードでのみ設定できます。	
ステップ 29	exit-address-family 例: Device(config-vrf-af)# exit-address-family	VRF アドレス ファミリ コンフィギュレーション モードを終了し、VRFコンフィギュレーションモー ドに戻ります。	
ステップ30	end 例: Device(config-vrf)# end	特権 EXEC モードに戻ります。	

例

次に、DC-PE ルータに必要な VRF 設定の例を示します。

```
router bgp 1
     neighbor 1.1.1.1 remote-as 2
     neighbor 2.2.2.2 remote-as 1
     address-family 12vpn evpn
               import vpnv4 unicast re-originate
                import vpnv6 unicast re-originate
               neighbor 1.1.1.1 active
               neighbor 1.1.1.1 send-community both
     exit
     address-family vpnv4
                import 12vpn evpn re-originate stitching-rt
                neighbor 2.2.2.2 active
               neighbor 2.2.2.2 send-community both
               neighbor 2.2.2.2 next-hop-self all
     exit
     address-family vpnv6
               import 12vpn evpn re-originate stitching-rt
                neighbor 2.2.2.2 active
                neighbor 2.2.2.2 send-community both
```

```
neighbor 2.2.2.2 next-hop-self all exit address-family ipv4 vrf test maximum-paths eibgp 16 exit address-family ipv6 vrf test maximum-paths eibgp 16 exit.
```

DC-PE ルータ設定の確認

ここでは、DC-PE ルータの設定を確認するために使用できる show コマンドについて説明します。

ACI からの IPv4 および IPv6 ルートの確認

次のコマンドを使用して、ACIからの IPv4 ルートを確認します。

```
Router#show bgp 12vpn evpn route-type 5 0 99.1.2.0 24
BGP routing table entry for [5][2:2][0][24][99.1.2.0]/17, version 2
Paths: (1 available, best #1, table EVPN-BGP-Table)
  Not advertised to any peer
  Refresh Epoch 1
  65000 65001
   2.2.2.2 (via default) from 5.5.5.5 (5.5.5.5)
   Origin incomplete, localpref 100, valid, external, best
   EVPN ESI: 0000000000000000000000, Gateway Address: 0.0.0.0, VNI Label 0, MPLS VPN
Label 19
    Extended Community: RT:2:2 Color:10
    rx pathid: 0, tx pathid: 0x0
    Updated on Feb 27 2024 15:46:31 PST
Router#show bgp vpnv4 uni all 99.1.2.0
BGP routing table entry for 6:6:99.1.2.0/24, version 2
Paths: (1 available, best #1, table red)
  Advertised to update-groups:
  1
  Refresh Epoch 1
  65000 65001, imported path from [5][2:2][0][24][99.1.2.0]/17
                                                                  (global)
    2.2.2.2 (via default) from 5.5.5.5 (5.5.5.5)
     Origin incomplete, localpref 100, valid, external, best
     Extended Community: RT:2:2 Color:10
     mpls labels in/out IPv4 VRF Aggr:19/19
     rx pathid: 0, tx pathid: 0x0
     Updated on Feb 27 2024 15:46:31 PST
Router#show ip route vrf red 99.1.2.0
Routing Table: red
Routing entry for 99.1.2.0/24
Known via "bgp 65100", distance 20, metric 0
Tag 65000, type external
Last update from 2.2.2.2 00:07:23 ago
Routing Descriptor Blocks:
* 2.2.2.2 (default), from 5.5.5.5, 00:07:23 ago
opaque ptr 0x7F055237F160
Route metric is 0, traffic share count is 1
```

```
AS Hops 2
Route tag 65000
MPLS label: 19
次のコマンドを使用して、ACIからの IPv6 ルートを確認します。
Router#show bgp 12vpn evpn route-type 5 0 2001::99:1:2:0 112
BGP routing table entry for [5][2:2][0][112][2001::99:1:2:0]/29, version 4
Paths: (1 available, best #1, table EVPN-BGP-Table)
  Not advertised to any peer
  Refresh Epoch 1
  65000 65001
   2.2.2.2 (via default) from 5.5.5.5 (5.5.5.5)
    Origin incomplete, localpref 100, valid, external, best
   EVPN ESI: 0000000000000000000000, Gateway Address:::, VNI Label 0, MPLS VPN Label 21
   Extended Community: RT:2:2 Color:10
    rx pathid: 0, tx pathid: 0x0
   Updated on Feb 27 2024 15:46:31 PST
Router#show bgp vpnv6 uni all 2001::99:1:2:0/112
BGP routing table entry for [6:6]2001::99:1:2:0/112, version 2
Paths: (1 available, best #1, table red)
  Advertised to update-groups:
  1
  Refresh Epoch 1
  65000 65001, imported path from [5][2:2][0][112][2001::99:1:2:0]/29 (global)
  ::FFFF:2.2.2.2 (via default) from 5.5.5.5 (5.5.5.5)
    Origin incomplete, localpref 100, valid, external, best
    Extended Community: RT:2:2 Color:10
    mpls labels in/out IPv6 VRF Aggr:20/21
     rx pathid: 0, tx pathid: 0x0
     Updated on Feb 27 2024 15:46:31 PST
Router#show ipv6 route vrf red 2001::99:1:2:0/112
Routing entry for 2001::99:1:2:0/112
Known via "bgp 65100", distance 20, metric 0
Tag 65000, type external
Route count is 1/1, share count 0
Routing paths:
2.2.2%default indirectly connected
Route metric is 0, traffic share count is 1
MPLS label: 21
From ::FFFF:5.5.5.5
opaque ptr 0x7F05523C42C8
Last updated 00:10:33 ago
```

WAN からの IPv4 および IPv6 ルートの確認

次のコマンドを使用して、WAN からの IPv4 ルートを確認します。

```
Router#show bgp vpnv4 uni vrf red 13.13.13.13
BGP routing table entry for 6:6:13.13.13.13/32, version 19
Paths: (1 available, best #1, table red)
Flag: 0x100
Not advertised to any peer
Refresh Epoch 1
65013, imported path from 12:12:13.13.13.13/32 (global)
12.12.12.12 (metric 30) (via default) from 7.7.7.7 (7.7.7.7)
Origin incomplete, metric 0, localpref 100, valid, internal, best
```

```
Extended Community: RT:12:12 Color:10
    Originator: 12.12.12.12, Cluster list: 7.7.7.7
    mpls labels in/out nolabel/18
    binding SID: 22 (color - 10) (state - UP)
     rx pathid: 0, tx pathid: 0x0
     Updated on Feb 27 2024 15:46:32 PST
Router#show bgp 12vpn evpn route-type 5 0 13.13.13.13 32
BGP routing table entry for [5][6:6][0][32][13.13.13.13]/17, version 18
Paths: (1 available, best #1, table EVPN-BGP-Table)
Advertised to update-groups:
  Refresh Epoch 1
  65013, imported path from base
  12.12.12.12 (metric 30) (via default) from 7.7.7.7 (7.7.7.7)
  Origin incomplete, metric 0, localpref 100, valid, internal, best
  EVPN ESI: 000000000000000000000, Gateway Address: 0.0.0.0, local vtep: 0.0.0.0, VNI
 Label 0, MPLS VPN Label 18, MPLS VPN Local Label 19
  Extended Community: RT:2:2 RT:4:4 Color:10
  Originator: 12.12.12.12, Cluster list: 7.7.7.7
  rx pathid: 0, tx pathid: 0x0
  Updated on Feb 27 2024 15:46:32 PST
Router#show ip route vrf red 13.13.13.13
Routing Table: red
Routing entry for 13.13.13.13/32
Known via "bgp 65100", distance 200, metric 0
Tag 65013, type internal
Routing Descriptor Blocks:
* Binding Label: 22, from 7.7.7.7, 00:07:48 ago
opaque ptr 0x7F055237ED70
Route metric is 0, traffic share count is 1
AS Hops 1
Route tag 65013
MPLS label: 18
MPLS Flags: MPLS Required
次のコマンドを使用して、WAN からの IPv6 ルートを確認します。
Router#show bgp vpnv6 uni vrf red 2001::13:13:13:13/128
BGP routing table entry for [6:6]2001::13:13:13:13/128, version 19
Paths: (1 available, best #1, table red)
Flag: 0x100
 Not advertised to any peer
 Refresh Epoch 1
 65013, imported path from [12:12]2001::13:13:13:13/128 (global)
  ::FFFF:12.12.12.12 (metric 30) (via default) from 7.7.7.7 (7.7.7.7)
  Origin incomplete, metric 0, localpref 100, valid, internal, best
   Extended Community: RT:12:12 Color:10
  Originator: 12.12.12.12, Cluster list: 7.7.7.7
  mpls labels in/out nolabel/20
  binding SID: 22 (color - 10) (state - UP)
  rx pathid: 0, tx pathid: 0x0
   Updated on Feb 27 2024 15:46:32 PST
BGP routing table entry for [5][6:6][0][128][2001::13:13:13:13]/29, version 12
Paths: (1 available, best #1, table EVPN-BGP-Table)
  Advertised to update-groups:
    1
  Refresh Epoch 1
   65013, imported path from base
```

```
::FFFF:12.12.12.12 (metric 30) (via default) from 7.7.7.7 (7.7.7.7)
     Origin incomplete, metric 0, localpref 100, valid, internal, best
    EVPN ESI: 000000000000000000000, Gateway Address: ::, local vtep: 0.0.0.0, VNI Label
 0, MPLS VPN Label 20, MPLS VPN Local Label 20
    Extended Community: RT:2:2 RT:4:4 Color:10
     Originator: 12.12.12.12, Cluster list: 7.7.7.7
     rx pathid: 0, tx pathid: 0x0
     Updated on Feb 27 2024 15:46:32 PST
Router#show ipv6 route vrf red 2001::13:13:13:13/128
Routing entry for 2001::13:13:13:13/128
Known via "bgp 65100", distance 200, metric 0
Tag 65013, type internal
Route count is 1/1, share count 0
Routing paths:
Bind Label: 22 indirectly connected
Route metric is 0, traffic share count is 1
MPLS label: 20
From ::FFFF:7.7.7.7
opaque ptr 0x7F05523C3ED8
Last updated 00:10:03 ago
```

トラブルシューティングとデバッギング

次のデバッグコマンドを使用すると、BGP ラベルマネージャのデバッグに必要なデバッグを有効にできます。

```
debug bgp lmm address-family vpnv4 debug bgp lmm address-family vpnv6
```

次に、debug bgp lmm address-family vpnv4/6 コマンドの出力例を示します。

```
*Jul 18 21:32:09.835: BGP_LMM (VPNv4): Add update info for 1:1:3.3.3.0/24, neighbor 1.1.1.3, NH unchanged (no), topology neighbor labeled (yes)

*Jul 18 21:34:48.577: BGP_LMM (VPNv6): Add update info for [1:1]3333::/120, neighbor 1.1.1.3, NH unchanged (no), topology neighbor labeled (yes)

*Jul 18 21:32:09.835: BGP_LMM (VPNv4): Allocated and installed a per VRF aggregate label 10 for vrf red, address family ipv4"

*Jul 18 21:32:09.835: BGP_LMM (VPNv4): Allocated and installed a per VRF aggregate label 11 for vrf red, address family ipv6"
```

次の debug コマンドを使用して、BGP EVPN から L3VPN へのインポート/再発信をデバッグできます。

```
debug bgp all import updates
debug bgp all import events
```

次に、debug bp all import コマンドの出力例を示します。

- *Jul 21 14:31:22.693: BGP VPN-IMP: red:VPNv4 Unicast:base 1:1:3.3.3.0/24 Exporting doing PATHS.
- *Jul 21 14:31:22.693: BGP VPN-IMP: VPNv4 Unicast:base Building ETL from VPN
- *Jul 21 14:31:22.693: BGP VPN-IMP: VPNv4 Unicast:base GBL Building ETL.
- *Jul 21 14:31:22.693: BGP VPN-IMP: VPNv4 Unicast:base -> global:IPv4 Unicast:base Creating Import Topo.

- *Jul 21 14:31:22.693: BGP VPN-IMP: VPNv4 Unicast:base -> global:IPv4 Unicast:base GBL Adding topology IPv4 Unicast to ETL.
- *Jul 21 14:31:22.693: BGP VPN-IMP: VPNv4 Unicast:base -> global:IPv4 Multicast:base Creating Import Topo.
- *Jul 21 14:31:22.693: BGP VPN-IMP: VPNv4 Unicast:base -> global:IPv4 Multicast:base GBL Adding to ETL.
- *Jul 21 14:31:22.693: BGP VPN-IMP: VPNv4 Unicast:base Building GBL ETL done.
- *Jul 21 14:31:22.693: BGP VPN-IMP: VPNv4 Unicast:base L2VPN E-VPN AF PRIV Building ETL.

Cisco ACI から SR-MPLS ハンドオフにおける DC-PE ルータの機能情報

次の表に、このモジュールで説明した機能に関するリリース情報を示します。この表は、ソフトウェア リリーストレインで各機能のサポートが導入されたときのソフトウェア リリースだけを示しています。その機能は、特に断りがない限り、それ以降の一連のソフトウェアリリースでもサポートされます。

プラットフォームのサポートおよびシスコソフトウェアイメージのサポートに関する情報を検索するには、Cisco Feature Navigator を使用します。Cisco Feature Navigator にアクセスするには、www.cisco.com/go/cfn に移動します。Cisco.com のアカウントは必要ありません。

表 1: Cisco ACI から SR-MPLS ハンドオフにおける DC-PE ルータの機能情報

機能名	リリース	機能情報
Cisco ACI から SR-MPLS ハンドオフにおける DC-PE ルータ		Cisco IOS XE 17.14.1a 以降、Cisco ASR 1000 シリーズ アグリゲーションサービスルータおよび Cisco Catalyst 8500 シリーズエッジプラットフォームは、Cisco ACI から SR-MPLSハンドオフ相互接続の中間DC-PE デバイスとして使用できます。SR-MPLSハンドオフは、セグメントルーティング(SR)MPLS アンダーレイを使用して Cisco ACI から WAN
		への相互接続を可能にする相 互接続オプションです。

Cisco ACI から SR-MPLS ハンドオフにおける DC-PE ルータの機能情報

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容については米国サイトのドキュメントを参照ください。