Nexus 7000 M シリーズ モジュールの ELAM 手 順

内容

<u>概要</u> <u>トポロジ</u> <u>入力フォワーディング エンジンの決定</u> <u>トリガーの設定</u> <u>キャプチャの開始</u> <u>結果の解釈</u> <u>その他の検証</u>

概要

このドキュメントでは、Cisco Nexus 7000(N7K)M シリーズ モジュールで ELAN を実行する ために使用する手順、最も重要な出力、結果の解釈方法について説明します。

ヒント: ELAM の概要については、「ELAM の概要」を参照してください。

トポロジ

この例では、VLAN 2500(10.0.5.101)上のホスト(ポートEth4/1)が、VLAN 55(10.0.3.101)上のホスト(ポートEth3/5)にインターネット制御メッセージプロトコル(ICMP要求)をを送信します ELAMは、10.0.5.101 ~ 10.0.3.101の単一パケットをキャプチャするために使用されます。 ELAMでは単一フレームをキャプチャできます。

N7K で ELAM を実行するには、最初に適切なモジュールに接続する必要があります(このためネットワーク管理者権限が必要です)。

N7K# attach module 4 Attaching to module 4 ... To exit type 'exit', to abort type '\$.' module-4#

入力フォワーディング エンジンの決定

トラフィックはポートEth4/1のスイッチに入ることが想定されます。システム内のモジュールを 確認すると、モジュール4がMシリーズモジュールであることがわかります。N7K は完全分散型 であり、データプレーン トラフィックの転送に関する決定はスーパーバイザではなくモジュール が行うことに留意してください。

N7K# show module Mod Ports Module-Type Model Status ____ ____ 3 32 10 Gbps Ethernet Module N7K-M132XP-12 ok 4 48 10/100/1000 Mbps Ethernet Module N7K-M148GT-11 ok Supervisor module-1X N7K-SUP1 5 active * 0 Supervisor module-1X 0 N7K-SUP1 6 ha-standby

M シリーズ モジュールの場合、Eureka という内部コード名が設定されたレイヤ 2(L2)フォワ ーディング エンジン(FE)で ELAN を実行します。L2 FE データ バス(DBUS)に、L2 および レイヤ 3(L3)ルックアップ前の元のヘッダー情報が含まれており、結果バス(RBUS)に L3 お よび L2 の両方のルックアップ後の結果が含まれていることに注意してください。L3 ルックアッ プは、Lamira という内部コード名が設定された L3/レイヤ 4(L4)FE によって行われます。この プロセスは、Supervisor Engine 2T を実行する Cisco Catalyst 6500 シリーズ スイッチ プラット フォームで使用されるプロセスと同じです。

N7K Mシリーズモジュールでは、各モジュールに複数のFEを使用できるため、ポート**Eth4/1の** FEに使用されるEureka ASICを決定する必要があります。これを確認するには、次のコマンドを 入力します。

module-4# show hardware internal dev-port-map (some output omitted) ------------CARD_TYPE: 48 port 1G >Front Panel ports:48 _____ Dev role Abbr num inst: Device name _____ DEV_LAYER_2_LOOKUP >Eureka **l2lkp** 1 +-----+----+++FRONT PANEL PORT TO ASIC INSTANCE MAP+++-----+-----FP port PHYS SECUR MAC_0 RWR_0 L3LKP QUEUE SWICHF **1** 0 0 0 0 **0** 0 0 0 0 0 0 0 0 0 0 0

コマンドの出力を見ると、ポート Eth4/1 は Eureka(L2LKP)インスタンス 0 上にあることがわ かります。

注:Mシリーズモジュールの場合、ELAM構文では1を基準とした値を使用するため、インスタンス0は、ELANを設定するときにはインスタンス1になります。このことは、Fシリーズモジュールには当てはまりません。

トリガーの設定

Eureka ASIC は、IPv4、IPv6、およびその他の ELAM トリガーをサポートします。ELAM トリガ ーは、フレーム タイプに対応している必要があります。フレームがIPv4フレームの場合、トリガ ーもIPv4である必要があります。IPv4フレームは他のトリガーではキャプチャさ*れま*せん。IPv6 にも同じ論理が適用されます。

Nexus オペレーティング システム(NX-OS)では、ELAM トリガーの区切り文字として疑問符を 使用できます。

module-4(eureka-elam)# trigger dbus dbi ingress ipv4 if ?

(some output omitted)		
destination-flood	Destination Flood	
destination-index	Destination Index	
destination-ipv4-address	Destination IP Address	
destination-mac-address	Destination MAC Address	
ip-tos	IP TOS	
ip-total-len	IP Total Length	
ip-ttl	IP TTL	
source-mac-address	Source MAC Address	
vlan-id	Vlan ID Number	

送信元 IPv4 アドレスと宛先 IPv4 アドレスに応じてフレームをキャプチャするため、上記の例で は送信元 IPv4 アドレスと宛先 IPv4 アドレスの値だけが指定されています。

Eureka では、DBUS および RBUS に対してトリガーが設定されることを要件としています。 RBUS データを入れられるパケット バッファ(PB)には、2 つのタイプがあります。どちらのタ イプの PB インスタンスが適切であるかは、モジュール タイプと入力ポートによって決まります 。一般に、最初に PB1 を設定し、それで RBUS が起動しない場合は PB2 を使用して設定を繰り 返すことを推奨します。

次に DBUS トリガーを示します。

module-4(eureka-elam)# trigger dbus dbi ingress ipv4 if source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101 rbi-corelate 次に RBUS トリガーを示します。

module-4(eureka-elam) # trigger rbus rbi pb1 ip if cap2 1

注:DBUS トリガーの末尾にある rbi-correlate キーワードは、RBUS を cap2 ビットで正し く起動させるために必要です。

キャプチャの開始

入力 FE が選択され、トリガーを設定したら、キャプチャを開始できます。

module-4(eureka-elam)# start ELAM のステータスを確認するには、status コマンドを入力します。

module-4(eureka-elam)# status Instance: 1 EU-DBUS: Armed trigger dbus dbi ingress ipv4 if source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101 rbi-corelate EU-RBUS: Armed trigger rbus rbi pb1 ip if cap2 1 LM-DBUS: Dis-Armed No configuration LM-RBUS: Dis-Armed No configuration トリガーに一致するフレームを FE が受信すると、ELM ステータスは Triggered と示されます。

module-4(eureka-elam)# status
Instance: 1
EU-DBUS: Triggered
trigger dbus dbi ingress ipv4 if source-ipv4-address 10.0.5.101
 destination-ipv4-address 10.0.3.101 rbi-corelate
EU-RBUS: Triggered
trigger rbus rbi pb1 ip if cap2 1
LM-DBUS: Dis-Armed
No configuration
LM-RBUS: Dis-Armed
No configuration

結果の解釈

ELAM の結果を表示するには、show dbus コマンドと show rbus コマンドを入力します。同じト リガーに大量のトラフィックが一致する場合、DBUS と RBUS が異なるフレームで起動する可能 性があります。したがって、DBUS データと RBUS データで内部シーケンス番号を調べて、番号 が一致することを確認することが重要となります。

module-4 (eureka-elam) # show dbus | i seq seq = 0x05 module-4 (eureka-elam) # show rbus | i seq seq = 0x05 次に、この例に最も関連性のある ELAM データ出力部分の抜粋を示します(一部の出力は省略さ れています)。

module-4(eureka-elam)# show dbus seq = 0x05 vlan = 2500 source_index = 0x00a21 l3_protocol = 0x0 (0:IPv4, 6:IPv6) l3_protocol_type = 0x01, (1:ICMP, 2:IGMP, 4:IP, 6:TCP, 17:UDP) dmac = 00.00.0c.07.ac.65 smac = d0.d0.fd.b7.3d.c2 ip_ttl = 0xff ip_source = 010.000.005.101 ip_destination = 010.000.003.101 d0d0.fdb7.3dc2、宛先MACアドレス0000.0c07.ac65であることを確認できます10.0.5.101を送信 元とし、10.0.3.101を宛先とするV4フレーム。

ヒント:この出力に示されていない有用なその他のフィールド(タイプ オブ サービス (ToS)値、IP フラグ、IP 長、L2 フレーム長など)があります。

フレームが受信されるポートを確認するには、SRC_INDEXコマンド(ソースのLocal Target Logic(LTL))を入力します。次のコマンドを入力して、LTLをN7Kのポートまたはポートグループ にマップします。

N7K# show system internal pixm info ltl 0xa21 Member info ------Type LTL

PHY_PORTEth4/1FLOOD_W_FPOE0x8014

この出力は、0xa21のSRC_INDEXがポートEth4/1にマップされていることを示しています。これ により、フレームがポートEth4/1で受信されたことを確認できます。

RBUS データで、フレームが VLAN 55 にルーティングされていること、TTL が DBUS データで の 0xff から RBUS データでの 0xfe に減少していることを確認できます。送信元および宛先 MAC アドレスが、それぞれ 8478.ac0e.4741 と 0005.73a9.5541 に書き換えられていることも確認でき ます。さらに、DEST_INDEX(宛先 LTL)からの出力ポートも確認できます。

この出力は、0x9edのDEST_INDEXがポートEth3/5にマッピングされていることを示しています。これにより、フレームがポートEth3/5から送信されたことを確認できます。

その他の検証

スイッチにより LTL プールがどのように割り当てられているかを検証するには、show system internal pixm info ltl-region コマンドを入力します。このコマンドの出力は、LTL が物理ポートに 一致しない場合に LTL の目的を理解する上で役立ちます。Drop LTL がその良い例です。

N7K# show system internal pixm info ltl 0x11a0

0x11a0 is not configured

N7K# show system internal pixm info ltl-region

LTL POOL TYPE	SIZE	RANGE
	===========	
DCE/FC Pool	1024	0x0000 to 0x03ff
SUP Inband LTL	32	0x0400 to 0x041f
MD Flood LTL	1	0x0420
Central R/W	1	0x0421
UCAST Pool	1536	0x0422 to 0x0a21
PC Pool	1720	0x0a22 to 0x10d9
LC CPU Pool	32	0x1152 to 0x1171
EARL Pool	72	0x10da to 0x1121
SPAN Pool	48	0x1122 to 0x1151
UCAST VDC Use Pool	16	0x1172 to 0x1181
UCAST Generic Pool	30	0x1182 to 0x119f
LISP Pool	4	0x1198 to 0x119b
Invalid SI	1	0x119c to 0x119c
ESPAN SI	1	0x119d to 0x119d
Recirc SI	1	0x119e to 0x119e
Drop DI	2	0x119f to 0x11a0
UCAST (L3_SVI_SI) Region	31	0x11a1 to 0x11bf
UCAST (Fex/GPC/SVI-ES) 3648	0x11c0 to	Ox1fff
UCAST Reserved for Future Use Region	2048	0x2000 to 0x27ff
======================================	UNDARY <====	
VDC OMF Pool	32	0x2800 to 0x281f