Nexus 5500 のアダプタ FEX の設定例

内容

概要 <u>前提条件</u> <u>要件</u> 使用するコンポーネント <u>背景説明</u> Adapter-FEX の概要 <u>設定</u> <u>イーサネット vNIC の構成</u> <u>vHBA の構成</u> 確認 トラブルシュート <u>仮想イーサネット インターフェイスが起動しない</u> サーバ側からのアダプタに関するテクニカル サポート情報の収集

概要

このドキュメントでは、Nexus 5500 スイッチのアダプタ ファブリック エクステンダ(FEX)機 能を設定、操作、トラブルシューティングする方法について説明します。

前提条件

要件

このドキュメントに特有の要件はありません。

使用するコンポーネント

このドキュメントの情報は、次のソフトウェアとハードウェアのバージョンに基づいています。

- ・バージョン 5.2(1)N1(4) を実行している Nexus 5548UP
- ファームウェア バージョン 1.4(2) を実行している UCS P81E 仮想インターフェイス カード (VIC)が搭載されたユニファイド コンピューティング システム(UCS)C シリーズ C210 M2 ラック サーバ

このドキュメントの情報は、特定のラボ環境にあるデバイスに基づいて作成されました。このド キュメントで使用するすべてのデバイスは、初期(デフォルト)設定の状態から起動しています 。対象のネットワークが実稼働中である場合には、すべてのコマンドやパケット キャプチャ設定 による潜在的な影響について確実に理解しておく必要があります。

背景説明

Adapter-FEX の概要

この機能により、Nexus 5500スイッチは、サーバのVIC上の仮想インターフェイス(イーサネット 仮想ネットワークインターフェイスコントローラ(vNIC)とファイバチャネル仮想ホストバスアダ プタ(FC vHBA)の両方)を管理できます。これは、サーバ上で実行するすべてのハイパーバイザか ら独立しています。どのような仮想インターフェイスが作成されても、サーバにインストールさ れているメインのオペレーティングシステム(OS)上では表示されます(OS に適切なドライバ があることが前提)。

サポートされるプラットフォームについては、<u>『Cisco Nexus 5000 シリーズ NX-OS アダプタ</u> <u>FEX 操作ガイド、リリース 5.1(3)N1(1)』</u>のこのセクションを参照してください。

アダプタ FEX でサポートされるトポロジについては、<u>『Cisco Nexus 5000 シリーズ NX-OS ア</u> <u>ダプタ FEX 操作ガイド、リリース 5.1(3)N1(1)』</u>のこのセクションを参照してください。

サポートされるトポロジは、次のとおりです。

- Nexus 5500 スイッチにシングルホーム接続されたサーバ
- Straight-Through FEX にシングルホーム接続されたサーバ
- アクティブ/アクティブ FEX にシングルホーム接続されたサーバ
- アクティブ/スタンバイ アップリンク経由で Nexus 5500 スイッチのペアにデュアルホーム接続されたサーバ
- アクティブ/スタンバイ アップリンク経由でバーチャル ポート チャネル(vPC)のアクティブ/アクティブ FEX ペアにデュアルホーム接続されたサーバ

以降の構成セクションでは、次の図に示す、アクティブ/スタンバイ アップリンク経由で Nexus 5500 スイッチのペアにデュアルホーム接続されたサーバについて説明します。

vNIC に対応する仮想イーサネット インターフェイスが Nexus 5000 上にあります。同様に、各 vHBA に対応する仮想ファイバ チャネル(VFC)インターフェイスが Nexus 5000 上にあります 。

設定

注:このセクションで使用されるコマンドの詳細については、<u>Command Lookup Tool(登</u> <u>録ユーザ専用)を使用してください。</u>

イーサネット vNIC の構成

両方の Nexus 5000 スイッチ上で、次の手順を実行します。

- 通常、vPC は 2 つの Nexus 5000 スイッチ上で定義され運用されます。vPC ドメインが定 義され、ピア キープアライブとピア リンクがアップ状態であることを確認します。
- 仮想化機能セットを有効にするには、次のコマンドを入力します。
 (config)# install feature-set virtualization
 (config)# feature-set virtualization
- 3. (オプション)対応する vNIC がサーバ上で定義されている場合は、Nexus 5000 が仮想イ ーサネット インターフェイスを自動作成することを許可します。これは、Nexus 5000 上で 手動でのみ定義できる VFC インターフェイスには適用されません。 (config)# vethernet auto-create
- 仮想ネットワーク タグ (VNTag) モードのサーバに接続する Nexus 5000 インターフェイ スを設定します。
 (config)# interface Eth 1/10

(config-if)# switchport mode vntag

(config-if)# no shutdown

5. ポート プロファイルを vNIC に適用するように設定します。ポート プロファイルは、スイッチ インターフェイスによって適用(継承)できる設定テンプレートです。アダプタ FEXの観点から見て、ポート プロファイルは、手動で定義されている仮想イーサネット インターフェイスか、vNIC が UCS C シリーズの Cisco Integrated Management Controller (CIMC)の GUI インターフェイス上で設定されるときに自動的に作成される仮想 イーサネット インターフェイスのいずれかに適用できます。ポート プロファイルは「 vethernet」のタイプになります。サンプルのポート プロファイル設定を次に示します。 (config)# port-profile type vethernet VNIC1 (config-port-prof)# switchport mode access (config-port-prof)# switchport access vlan 10 (config-port-prof)# no shutdown (config-port-prof)# state enabled
UCS C シリーズ サーバ上で次の手順を実行します。

- 1. HTTP 経由で CIMC インターフェイスに接続し、管理者クレデンシャルでログインします。
- 2. [Inventory] > [Network Adapters] > [Modify Adapter Properties] の順に選択します。
- 3. [Enable NIV Mode] チェックボックスをオンにします。
- 4. [Save Changes] をクリックします。
- 5. <u>サーバの電源をオフにしてからオンに戻します</u>。

cisco Cisco Integ	rated Management Controller
Overall Server Status	C & & W O O Adapter Cards 2 CPUs Memory Power Supplies Network Adepters Storage PCI Adepters Adapter Cards
Sensors System Event Log Remote Presence BIOS Power Policies Fault Summary	FCI Slot Product Name Serial Number Frod 1 UCS VTC F81E Q011441 A76E M2XX-A 1 UCS VTC F81E Q011441 A76E M2XX-A Adapter Card 1 Enable FIP Mode: # 4 General VNICs VM FEXs VMBAs Mumber of VM FEX Interfaces: 0 Actions 3 FC1 FC1
	Import Configuration Vendor: Elsco Systems Inc Import Configuration Product Name: UCS VIC P01E Import Configuration Product ID: N2XX-ACPCI01 Install Firmware Serial Rumber: QCI1441A76E Activate Firmware Version ID: V01 Reset To Defaults CIMC Management Enabled: no Configuration Product ID: yes Description: Version ID: Yes

6. サーバが起動したら、vNIC を追加するために、[Inventory] > [Network Adapters] > [vNICs] > [Add] の順に選択します。定義すべき最も重要なフィールドを次に示します。 使用する VIC アップリンク ポート(P81E には 0 および 1 として参照される 2 つのアップリンク ポート があります)。チャネル番号:アダプタ上の vNIC の一意のチャネル ID です。これは、 Nexus 5000 上の仮想イーサネット インターフェイスの bind コマンドで参照されます。チャネル番号の範囲は VNTag 物理リンクに制限されます。チャネルは、スイッチとサーバア ダプタ間の物理リンク上の仮想リンクと見なすことができます。ポート プロファイル:アップストリーム Nexus 5000 上で定義されたポート プロファイルの一覧を選択できます。 Nexus 5000 が vethernet auto-create コマンドで設定される場合は、仮想イーサネット インターフェイスが Nexus 5000 上で自動的に作成されます。仮想イーサネット ポートのプロファイル名(ポート プロファイル設定ではない)のみがサーバに渡されます。この処理は、 VNTag リンク接続が確立され、スイッチとサーバ アダプタ間で最初のハンドシェイクとネ

ゴシエーションの手順が実行されてから行われます。

vNIC Properties	0
PCI Order: 💿 ANY 🎯 🛛 (0 - 17)	
Default VLAN: (1 - 4094) N/A	
VLAN Mode: N/A	
Rate Limit: (1 - 10000 Mbps) N/A	
Enable PXE Boot: 🗹	
Channel Number: 1 (1 - 1000)	
Port Profile:	
Enable Uplink Failover: UPLINK	
Failback Timeout: (0 - 600)	
Ethernet Interrupt	
Interrupt Count: 8 (1 - 514)	
Coalescing Time: 125 (0 - 65535 us)	
Save Changes Reset Values Ca	ancel

7. [Save Changes] をクリックします。

8. サーバの電源をオフにしてから再びオンに戻します。

vHBA の構成

サーバ アダプタ上で vHBA を作成するとき、対応するスイッチ インターフェイスは自動的には 作成されません。代わりに、手動で定義する必要があります。ここでは、スイッチとサーバ側の 手順を次に示します。

スイッチ側で次の手順を実行します。

 サーバの vHBA インターフェイスの VNTag インターフェイスのチャネルにバインドされる 仮想イーサネットトランク インターフェイスを作成します。Fibre Channel over Ethernet (FCoE) VLAN は、ネイティブ VLAN になることはできません。仮想イーサネッ ト番号は、2 つの Nexus 5000 スイッチ間で一意である必要があります。例: (config)# interface veth 10 (config-if)# switchport mode trunk (config-if)# switchport trunk allowed vlan 1,100 (config-if)# bind interface eth1/1 channel 3
(config-if)# no shutdown

- 2. 以前に定義された仮想イーサネット インターフェイスにバインドされる VFC インターフェ イスを作成します。例: (config)# interface vfc10 (config-if)# bind interface veth 10 (config-if)# no shut このインターフェイスの仮想ストレージ エリア ネットワーク(VSAN)のメンバーシップ は、次の VSAN データベースの下で定義されます。 (config)# vsan database (config-vsan-db)# vsan 100 interface vfc10 (config-vsan-db)# vlan 100 (config-vlan)# fcoe vsan 100 (config-vlan)# show vlan fcoe
- サーバ側で次の手順を実行します。
 - 1. vHBA インターフェイスを作成するために、[Inventory] > [Network Adapters] > [vHBAs] の順 に選択します。定義すべき主要なフィールドを次に示します。ポート ワールド ワイド ネー ム(pWWN)/ノード ワールド ワイド ネーム(nWWN)FCoE VLANアップリンクIDチャネル 番号ストレージ エリア ネットワーク(SAN)を使用する場合は、このネットワークから起 動します。
 - 2. サーバの電源を再投入します。

確認

ここでは、設定が正常に機能しているかどうかを確認します。

仮想イーサネット インターフェイスの一覧は、次のコマンドで表示することができます。

n5k1# show interface virtual summary									
Veth	Bound	Channel/	Port	N	Mac	VN	ľ		
Interface	Interface	DV-Port	Profile	1	Address	Na	ame		
Veth32770	Eth1/2	1	UPLINK						
Total 1 Veth Interfaces									
n5k1#									
n5k1 # show interface virtual status									
Interface V	VIF-index H	Bound If	Chan	Vlan	Status	Mode	Vntag		
Veth32770 V	VIF-17 H	Sth1/2	1	10	aU	Active	2		

Total 1 Veth Interfaces

自動的に作成された仮想イーサネット インターフェイスが実行コンフィギュレーションに表示され、copy run start が実行されるとスタートアップ コンフィギュレーションに保存されます。

n5k1# show run int ve32770

!Command: show running-config interface Vethernet32770
!Time: Thu Apr 10 12:56:23 2014

version 5.2(1)N1(4)

interface Vethernet32770
inherit port-profile UPLINK
bind interface Ethernet1/2 channel 1

Vethernet	VLAN	Type Mode	Status	Reason	Speed
Veth32770 n5k1#	10	virt access	up	none	auto

トラブルシュート

ここでは、設定のトラブルシューティングに使用できる情報を示します。

仮想イーサネット インターフェイスが起動しない

スイッチの VNTag インターフェイスに関する Data Center Bridging Capabilities Exchange Protocol (DCBX)の情報を次のコマンドで検証します。

show system internal dcbx info interface ethernet <> 以下を確認します。

- Data Center Bridging Exchange (DCX) プロトコルは、コンバージド イーサネット (CEE)である
- CEE ネットワーク IO 仮想化(NIV) 拡張が有効になっている
- NIV タイプ/長さ/値(TLV)が存在する

次にハイライトされるとおりです。

n5k1# show sys int dcbx info interface e1/2 Interface info for if_index: 0x1a001000(Eth1/2) tx_enabled: TRUE rx_enabled: TRUE dcbx_enabled: TRUE DCX Protocol: CEE <<<<<< DCX CEE NIV extension: enabled <<<<<< <output omitted> Feature type NIV (7) <<<<<< feature type 7(DCX CEE-NIV)sub_type 0 Feature State Variables: oper_version 0 error 0 local error 0 oper_mode 1 feature_seq_no 0 remote_feature_tlv_present 1 remote_tlv_aged_out 0 remote_tlv_not_present_notification_sent 0 Feature Register Params: max_version 0, enable 1, willing 0 advertise 1 disruptive_error 0 mts_addr_node 0x2201 mts_addr_sap 0x193 Other server mts_addr_node 0x2301, mts_addr_sap 0x193 Desired config cfg length: 8 data bytes:9f ff 68 ef bd f7 4f сб Operating config cfg length: 8 data bytes:9f ff 68 ef bd f7 4f сб Peer config cfg length: 8 data bytes:10 00 00 22 bd d6 66 f8 一般的な問題として、次のようなものがあります。

- DCX プロトコルが CIN になっている
- 次のような L1 問題がないかチェックします。ケーブル、SFP、ポートの起動、アダプタ。ス イッチの設定をチェックします。機能セット、スイッチポート VNTag、Link Layer Discovery Protocol(LLDP)/DCBX の有効化。
- NIV TLV が存在しない NIV モードがアダプタ設定の下で有効になっていることを確認します。 。VNIC インターフェイス(VIC)の通信の設定が完了し、ポート プロファイル情報が交換済 みであることを確認します。現在の仮想インターフェイス マネージャ(VIM)のイベントの 状態が VIM_NIV_PHY_FSM_ST_UP_OPENED_PP であることを確認します。

n5k1# show sys int vim event-history interface e1/2

>>>>FSM: <Ethernet1/2> has 18 logged transitions<<<<<

- 1) FSM:<Ethernet1/2> Transition at 327178 usecs after Thu Apr 10 12:22:27 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_WAIT_DCBX]
 Triggered event: [VIM_NIV_PHY_FSM_EV_PHY_DOWN]
 Next state: [VIM_NIV_PHY_FSM_ST_WAIT_DCBX]
- 2) FSM:<Ethernet1/2> Transition at 327331 usecs after Thu Apr 10 12:22:27 2014 Previous state: [VIM_NIV_PHY_FSM_ST_WAIT_DCBX] Triggered event: [VIM_NIV_PHY_FSM_EV_DOWN_DONE] Next state: [VIM_NIV_PHY_FSM_ST_WAIT_DCBX]
- 3) FSM:<Ethernet1/2> Transition at 255216 usecs after Thu Apr 10 12:26:15 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_WAIT_DCBX]
 Triggered event: [VIM_NIV_PHY_FSM_EV_RX_DCBX_CC_NUM]
 Next state: [VIM_NIV_PHY_FSM_ST_WAIT_3SEC]
- 4) FSM:<Ethernet1/2> Transition at 250133 usecs after Thu Apr 10 12:26:18 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_WAIT_3SEC]
 Triggered event: [VIM_NIV_PHY_FSM_EV_DCX_3SEC_EXP]
 Next state: [VIM_NIV_PHY_FSM_ST_WAIT_ENCAP]
- 5) FSM:<Ethernet1/2> Transition at 262008 usecs after Thu Apr 10 12:26:18 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_WAIT_ENCAP]
 Triggered event: [VIM_NIV_PHY_FSM_EV_VIC_OPEN_RECEIVED]
 Next state: [FSM_ST_NO_CHANGE]
- 6) FSM:<Ethernet1/2> Transition at 60944 usecs after Thu Apr 10 12:26:19 2014 Previous state: [VIM_NIV_PHY_FSM_ST_WAIT_ENCAP] Triggered event: [VIM_NIV_PHY_FSM_EV_ENCAP_RESP] Next state: [VIM_NIV_PHY_FSM_ST_UP]
- 7) FSM:<Ethernet1/2> Transition at 62553 usecs after Thu Apr 10 12:26:19 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_UP]
 Triggered event: [VIM_NIV_PHY_FSM_EV_VIC_OPEN_ACKD]
 Next state: [FSM_ST_NO_CHANGE]
- 8) FSM:<Ethernet1/2> Transition at 62605 usecs after Thu Apr 10 12:26:19 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_UP]
 Triggered event: [VIM_NIV_PHY_FSM_EV_VIC_OPEN_DONE]
 Next state: [VIM_NIV_PHY_FSM_ST_UP_OPENED]
- 9) FSM:<Ethernet1/2> Transition at 62726 usecs after Thu Apr 10 12:26:19 2014 Previous state: [VIM_NIV_PHY_FSM_ST_UP_OPENED] Triggered event: [VIM_NIV_PHY_FSM_EV_PP_SEND] Next state: [VIM_NIV_PHY_FSM_ST_UP_OPENED_PP]
- 10) FSM:<Ethernet1/2> Transition at 475253 usecs after Thu Apr 10 12:51:45 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_UP_OPENED_PP]

Triggered event: [VIM_NIV_PHY_FSM_EV_PHY_DOWN] Next state: [VIM_NIV_PHY_FSM_ST_WAIT_VETH_DN]

- 11) FSM:<Ethernet1/2> Transition at 475328 usecs after Thu Apr 10 12:51:45 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_WAIT_VETH_DN]
 Triggered event: [VIM_NIV_PHY_FSM_EV_DOWN_DONE]
 Next state: [VIM_NIV_PHY_FSM_ST_WAIT_DCBX]
- 12) FSM:<Ethernet1/2> Transition at 983154 usecs after Thu Apr 10 12:53:06 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_WAIT_DCBX]
 Triggered event: [VIM_NIV_PHY_FSM_EV_RX_DCBX_CC_NUM]
 Next state: [VIM_NIV_PHY_FSM_ST_WAIT_3SEC]
- 13) FSM:<Ethernet1/2> Transition at 992590 usecs after Thu Apr 10 12:53:09 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_WAIT_3SEC]
 Triggered event: [VIM_NIV_PHY_FSM_EV_DCX_3SEC_EXP]
 Next state: [VIM_NIV_PHY_FSM_ST_WAIT_ENCAP]
- 14) FSM:<Ethernet1/2> Transition at 802877 usecs after Thu Apr 10 12:53:10 2014 Previous state: [VIM_NIV_PHY_FSM_ST_WAIT_ENCAP] Triggered event: [VIM_NIV_PHY_FSM_EV_ENCAP_RESP] Next state: [VIM_NIV_PHY_FSM_ST_UP]
- 15) FSM:<Ethernet1/2> Transition at 804263 usecs after Thu Apr 10 12:53:10 2014 Previous state: [VIM_NIV_PHY_FSM_ST_UP] Triggered event: [VIM_NIV_PHY_FSM_EV_VIC_OPEN_ACKD] Next state: [FSM_ST_NO_CHANGE]
- 16) FSM:<Ethernet1/2> Transition at 992390 usecs after Thu Apr 10 12:53:11 2014 Previous state: [VIM_NIV_PHY_FSM_ST_UP] Triggered event: [VIM_NIV_PHY_FSM_EV_VIC_OPEN_RECEIVED] Next state: [FSM_ST_NO_CHANGE]
- 17) FSM:<Ethernet1/2> Transition at 992450 usecs after Thu Apr 10 12:53:11 2014
 Previous state: [VIM_NIV_PHY_FSM_ST_UP]
 Triggered event: [VIM_NIV_PHY_FSM_EV_VIC_OPEN_DONE]
 Next state: [VIM_NIV_PHY_FSM_ST_UP_OPENED]
- 18) FSM:<Ethernet1/2> Transition at 992676 usecs after Thu Apr 10 12:53:11 2014 Previous state: [VIM_NIV_PHY_FSM_ST_UP_OPENED] Triggered event: [VIM_NIV_PHY_FSM_EV_PP_SEND] Next state: [VIM_NIV_PHY_FSM_ST_UP_OPENED_PP]

Curr state: [VIM_NIV_PHY_FSM_ST_UP_OPENED_PP] <<<<<<< no.pdf)
n5k1#
仮想イーサネット インターフェイスが固定仮想イーサネットである場合は、VIC_CREATE がこ
のコマンドで表示されるかどうかを確認してください。

show system internal vim info niv msg logs fixed interface e 1/16 ch 1
Eth1/16(Chan: 1) VIF Index: 605
REQ MsgId: 56630, Type: VIC ENABLE, CC: SUCCESS
RSP MsgId: 56630, Type: VIC ENABLE, CC: SUCCESS
REQ MsgId: 4267, Type: VIC SET, CC: SUCCESS
REQ MsgId: 4267, Type: VIC SET, CC: SUCCESS
REQ MsgId: 62725, Type: VIC CREATE, CC: SUCCESS
REQ MsgId: 62725, Type: VIC CREATE, CC: SUCCESS
REQ MsgId: 62789, Type: VIC ENABLE, CC: SUCCESS
RSP MsgId: 62789, Type: VIC ENABLE, CC: SUCCESS
REQ MsgId: 62789, Type: VIC ENABLE, CC: SUCCESS
REQ MsgId: 21735, Type: VIC SET, CC: SUCCESS
RSP MsgId: 21735, Type: VIC SET, CC: SUCCESS

固定仮想イーサネット インターフェイスとは、物理インターフェイス間の移行をサポートしない 仮想インターフェイスです。アダプタ FEX は単一の(つまり、仮想化されていない)OS による ネットワーク仮想化の使用を参照するため、アダプタ FEX についての説明範囲は常に固定仮想イ ーサネットに関することになります。

VIC_CREATE が表示されない場合:

- アダプタが Cisco NIV アダプタである場合は、アダプタ側で VNIC 設定(チャネル ID、正し いアップリンク UIF ポート、保留中のコミット(いかなる設定の変更もサーバの再起動が必 要))を確認します。vHBA は、AA FEX トポロジ内の両方のスイッチ上で仮想イーサネッ トを起動しません。vHBA 固定仮想イーサネットには、これを起動するための OS ドライバ が必要です(OS がドライバをロードし、完全に起動するまで待ちます)。
- 2. アダプタが Broadcom NIV アダプタである場合は、インターフェイスが OS 側から起動して いるかどうかを確認してください(たとえば、Linux では、インターフェイス「ifconfig eth2 up」を起動します)。
- VIC_CREATE は表示されるものの、スイッチが ERR_INTERNAL で応答する場合: スイッ チ側とアダプタ側の両方でポート プロファイルを確認します。ポート プロファイル文字列 の不一致がないかどうかを確認します。ダイナミックな固定仮想イーサネットについては、 「veth auto-create」設定をチェックします。
- 4. それでも問題が解決しない場合は、次に示す出力を収集し、Cisco Technical Assistance Center(TAC)にお問い合わせください。

show system internal vim log

- # attach fex <number>
- # test vic_proxy dump trace

サーバ側からのアダプタに関するテクニカル サポート情報の収集

- 1. ブラウザから CIMC にログインします。
- 2. [Admin] タブをクリックします。
- 3. [Utilities]をクリックします。
- 4. [Export Technical Support Data to TFTP]または [Generate Technical Support Data for Local Download] をクリックします。