スパニングツリーをPVST+からMSTに移行する ための設定

内容

<u>概要</u> <u>前提条件</u> <u>要件</u> 使用するコンポーネント</u> 表記法 背景説明 設定 <u>ネットワーク図</u> 設定 <u>PVST+の設定</u> <u>MST への移行</u> 確認 トラブルシュート 関連情報

<u>概要</u>

このドキュメントでは、キャンパス ネットワークで PVST+ から Multiple Spanning Tree(MST)へスパニング ツリー モードを移行するための設定例を説明します。

<u>前提条件</u>

<u>要件</u>

MST を設定する前に『<u>Multiple Spanning Tree Protocol(802.1s)の概要</u>』を参照してください 。

次の表に、Catalyst スイッチにおける MST のサポートと、サポートに必要な最低限のソフトウェ アを示します。

Catalyst プラットフ ォーム	RSTP を実装した MST
Catalyst 2900XL お よび 3500XL	利用できません
Catalyst 2950 および 3550	Cisco IOS® 12.1(9)EA1

Catalyst 3560	Cisco IOS 12.1(9)EA1
Catalyst 3750	Cisco IOS 12.1(14)EA1
Catalyst 2955	すべての Cisco IOS のバージョン
Catalyst 2948G-L3 および 4908G-L3	利用できません
Catalyst 4000、 2948G、および 2980G(Catalyst OS(CatOS))	7.1
Catalyst 4000 および 4500(Cisco IOS)	12.1(12c)EW
Catalyst 5000 および 5500	利用できません
Catalyst 6000 および 6500(CatOS)	7.1
Catalyst 6000 および 6500(Cisco IOS)	12.1(11b)EX、12.1(13)E、 12.2(14)SX
Catalyst 8500	利用できません

Catalyst 3550/3560/3750: Cisco IOS リリース 12.2(25)SEC における MST の実装は、IEEE 802.1s 標準に基づいています。それよりも前の Cisco IOS リリースにおける MST の実装は 標準化以前のものです。

 Catalyst 6500 (IOS): Cisco IOS リリース 12.2(18)SXF における MST の実装は、IEEE 802.1s 標準に基づいています。それよりも前の Cisco IOS リリースにおける MST の実装は 標準化以前のものです。

<u>使用するコンポーネント</u>

このドキュメントは、Cisco IOSソフトウェアリリース12.2(25)およびCatOS 8.5(8)で作成された ものですが、この設定は表に記載されている最低限のIOSバージョンに適用されます。

このドキュメントの情報は、特定のラボ環境にあるデバイスに基づいて作成されました。このド キュメントで使用するすべてのデバイスは、初期(デフォルト)設定の状態から起動しています 。対象のネットワークが実稼働中である場合には、どのようなコマンドについても、その潜在的 な影響について確実に理解しておく必要があります。

<u>表記法</u>

ドキュメント表記の詳細については、『<u>シスコ テクニカル ティップスの表記法</u>』を参照してくだ さい。

<u>背景説明</u>

MST 機能は IEEE 802.1s で、802.1Q に対する追補です。MST は、802.1w Rapid Spanning Tree(RST)アルゴリズムを複数のスパニング ツリーに拡張します。この拡張により、VLAN 環 境における高速コンバージェンスとロード バランシングの両方が実現されます。PVST+ と Rapid-PVST+ は、各 VLAN でスパニング ツリー インスタンスを実行します。MST では、複数の VLAN を 1 つのインスタンスにグループ化できます。MST は Bridge Protocol Data Unit(BPDU; ブリッジ プロトコル データ ユニット)バージョン 3 を使用しますが、これは BPDU バージョン 0 を使用する 802.1D STP と下位互換性があります。

MSTP の設定:設定には領域の名前、リビジョン番号、および MST の VLAN からインスタンス への割り当てマップが含まれます。ある領域に対してスイッチを設定するには、spanning-tree mst configuration グローバル設定コマンドを使用します。

MST 領域:MST 領域は、同じ MST 設定を持つ相互接続されたブリッジから構成されます。ネットワーク内の MST 領域の数には制限がありません。

MST 領域内のスパニング ツリー インスタンス:インスタンスとは spanning-tree mst configuration コマンドでマッピングされた VLAN のグループにすぎません。デフォルトではすべ ての VLAN が IST0 にグループ化され、これは Internal Spanning Tree (IST;内部スパンニングツ リー)と呼ばれます。1~4094 に番号付けされたインスタンスを手動で作成でき、これらのイ ンスタンスには MSTn (nは1~4094)というラベル付けがされますが、領域でサポートできる のは最大で 65 のインスタンスまでです。一部のリリースでは、サポートされるインスタンスは 16 しかありません。スイッチ プラットフォームのソフトウェア設定ガイドを参照してください 。

IST/CST/CIST: IST は、MST ネットワーク内で BPDU を送受信できる唯一のインスタンスです。MSTn インスタンスは領域に対してローカルです。異なる領域の IST は、Common Spanning Tree (CST)を介して相互接続されます。 各 MST 内の IST の集合、および IST を接続している CST は Common and Internal Spanning Tree (CIST)と呼ばれます。

下位互換性:MST は PVST+、Rapid-PVST+、および、標準策定前の MST (MISTP; Multi-Instance Spanning Tree Protocol)と下位互換性があります。MST スイッチは、Common Spanning Tree (CST)により、他の STP (PVST+ および Rapid-PVST+)スイッチに接続され ます。 その他の STP (PVST+ および Rapid-PVST+)スイッチでは、MST 領域が 1 つのスイッ チとして認識されます。標準策定前の MST スイッチを標準の MST スイッチに接続する場合は、 標準の MST スイッチのインターフェイスで spanning-tree mst pre-standard を設定する必要があ ります。

<u>設定</u>

この例には 2 つのセクションがあります。最初のセクションでは、現在の PVST+ の設定を示し ます。第 2 のセクションには PVST+ から MST への移行を行う設定が示されています。

注:このセクションで使用されているコマンドの詳細を調べるには、Command Lookup Tool(登録ユーザ専用)を参照してください。一部ツールについては、ゲスト登録のお客様にはアクセスできない場合がありますことをご了承ください。

<u>ネットワーク図</u>

このドキュメントでは、次のネットワーク セットアップを使用します。

下記の図には次のスイッチが含まれています。

- ・ディストリビューション レイヤにある Distribution1 と Distribution2
- Access1 (IOS) および Access2 (CatOS) という名前の 2 つのアクセス レイヤ スイッチ
- Services1 および Services2 という名前の 2 つのサーバ アグリゲーション スイッチ

VLAN 10、30、100 はデータ トラフィックを伝送します。VLAN 20、40、200 は音声トラフィッ クを伝送します。

<u>設定</u>

このドキュメントでは、次の構成を使用します。

- <u>PVST+ の設定</u>。
- <u>MST への移行</u>。

<u>PVST+の設定</u>

スイッチは、ネットワーク図に従ってデータ トラフィックと音声トラフィックを伝送するように PVST+ で設定されています。次に設定の概要を示します。

- Distribution1 スイッチは Distribution1(config)# spanning-tree vlan 10,30,100 root primary コマンドを使用してデータ VLAN 10、30、および 100 のプライマリ ルート ブリッジになるよう設定されていて、また音声 VLAN 20、40、および 200 のセカンダリ ルート ブリッジにはDistribution1(config)# spanning-tree vlan 20,40,200 root secondary コマンドが使用されています。
- Distribution2 スイッチは Distribution2(config)# spanning-tree vlan 20,40,200 root primary コマンドを使用して音声 VLAN 20、40、および 200 のプライマリ ルート ブリッジになるよう設定されていて、またデータ VLAN 10、30、および 100 のセカンダリ ルート ブリッジにはDistribution2(config)# spanning-tree vlan 10,30,100 root secondary コマンドが使用されています。
- ネットワークで間接的なリンク障害が発生した場合に、より迅速に STP をコンバージするた

め、すべてのスイッチ上で spanning-tree backbonefast コマンドが設定されています。

・直接的なアップリンク障害が発生した場合に、より迅速に STP をコンバージするため、アク

<u>セスレイヤ スイッチ上で spanning-tree uplinkfast コマ</u>ンドが設定されています。

ディストリビューション 1

```
Distribution1#show running-config
Building configuration ...
spanning-tree mode pvst
spanning-tree extend system-id
spanning-tree backbonefast
spanning-tree vlan 10,30,100 priority 24576
spanning-tree vlan 20,40,200 priority 28672
vlan 10,20,30,40,100,200
!
interface FastEthernet1/0/1
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 10,20
1
interface FastEthernet1/0/3
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 30,40
!
interface FastEthernet1/0/5
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 100,200
1
interface FastEthernet1/0/23
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 10,20,30,40,100,200
1
interface FastEthernet1/0/24
switchport trunk encapsulation dotlg
switchport mode trunk
switchport trunk allowed vlan 10,20,30,40,100,200
1
 1
end
```

ポート Fa1/0/24 は、spanning-tree vlan 20,40,200 port-priority 64 コマンドで設定されます。 Distribution2はVLAN 20、40、および200の設定済みルートです。Distribution2にはDistribution1へ の2つのリンクがあります。Fa1/0/23とFa1/0/24。Distribution2はVLAN 20、40、および200のル ートであるため、両方のポートがVLAN 20、40、および200の指定ポートです。どちらのポート も優先順位は同じ 128(デフォルト)です。 また、これら 2 つのリンクの Distribution1 からのコ ストは同じで、fa1/0/23およびfa1/0/24。Distribution1は、ポートをフォワーディングステートに 設定するために、2つのポートの最小ポート番号を選択します。最も低いポート番号はFa1/0/23で すが、ネットワークダイアグラムに従って、音声VLAN 20、40、および200はFa1/0/24を通過で きます。これは、次の方法で実現できます。

- 1. Distribution1 のポート コストを減らす: Fa1/0/24.
- 2. Distribution2 のポート優先順位を下げる: Fa1/0/24.

この例では、ポートの優先順位を下げて、fa1/0/24 で VLAN 20、40、200 が転送されるようにします。

Distribution2

```
Distribution2#show running-config
Building configuration ...
spanning-tree mode pvst
spanning-tree extend system-id
spanning-tree backbonefast
spanning-tree vlan 10,30,100 priority 28672
spanning-tree vlan 20,40,200 priority 24576
1
vlan 10,20,30,40,100,200
!
interface FastEthernet1/0/2
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 10,20
interface FastEthernet1/0/4
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 30,40
interface FastEthernet1/0/6
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 100,200
1
interface FastEthernet1/0/23
switchport trunk encapsulation dotlg
switchport mode trunk
switchport trunk allowed vlan 10,20,30,40,100,200
interface FastEthernet1/0/24
switchport trunk encapsulation dotlg
switchport mode trunk
spanning-tree vlan 20,40,200 port-priority 64
switchport trunk allowed vlan 10,20,30,40,100,200
end
```

Services1 のポート Fa0/5、および Services2 の Fa0/6 と Fa0/48 の両方にスパニング ツリーのポ ート コストおよびポート プライオリティの設定があることが確認できます。ここでは、 Services1 と Services2 の VLAN 100 および 200 がこれらの間のトランク リンクをパス スルーで きるように、STP を調整します。この設定が適用されていない場合、Services1 と 2 は、それら の間のトランク リンク経由でトラフィックを受け渡すことができません。代わりに、パス スルー Distribution1 と Distribution2 が選択されます。

Services2は、VLAN 100ルート(Distribution1)への2つの等コストパスを認識します。1つは Services1を経由し、もう1つはDistribution2を経由します。STPはベストパス(ルートポート)を 次の順序で選択します。

1. パス コスト

- 2. 転送スイッチのブリッジ ID
- 3. 最も低いポート プライオリティ
- 4. 最も低い内部ポート番号

この例では、両方のパスのコストは同じですが、VLAN 100のDistribution2(24576)のプライオリティはServices1(32768)よりも低いため、Services2はDistribution2を選択します。この例では、

Services1のポートコストはfa0/5は、Services2がServices1を選択できるように低く設定されてい ます。パスコストは、転送スイッチのプライオリティ番号よりも優先されます。

Services1

```
Services1#show running-config
Building configuration...
spanning-tree mode pvst
spanning-tree portfast bpduguard default
spanning-tree extend system-id
spanning-tree backbonefast
!
vlan 100,200
1
interface FastEthernet0/5
switchport trunk encapsulation dotlq
switchport mode trunk
spanning-tree vlan 100 cost 18
switchport trunk allowed vlan 100,200
interface FastEthernet0/47
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 100,200
I
interface FastEthernet0/48
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 100,200
!
!
end
```

同じ概念がServices1に適用され、VLAN 200を転送するServices2が選択されます。Services2 fa0/6でVLAN 200のコストを削減した後、Services1はfa0/47を選択してVLAN 200を転送します次 の2つの方法を使用します。

1. Services1 のポート コストを減らす: Fa0/48.

2. Services2 のポート優先順位を下げる: Fa0/48.

この例では、VLAN 200 が fa0/48 で転送されるように、Services2 のポート優先順位を下げています。

Services2
Services2# show running-config
Building configuration
spanning-tree mode pvst
spanning-tree portfast bpduguard default
spanning-tree extend system-id
spanning-tree backbonefast
!
vlan 100,200
!
interface FastEthernet0/6
switchport trunk encapsulation dotlq
switchport mode trunk
spanning-tree vlan 200 cost 18
switchport trunk allowed vlan 100,200
1

```
interface FastEthernet0/47
 switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 100,200
I
interface FastEthernet0/48
switchport trunk encapsulation dotlq
switchport mode trunk
spanning-tree vlan 200 port-priority 64
switchport trunk allowed vlan 100,200
!
 !
end
アクセス1
Access1#show running-config
Building configuration...
1
spanning-tree mode pvst
spanning-tree portfast bpduguard default
spanning-tree extend system-id
spanning-tree uplinkfast
spanning-tree backbonefast
1
vlan 10,20
!
interface FastEthernet0/1
switchport trunk encapsulation dotlq
switchport mode trunk
switchport trunk allowed vlan 10,20
interface FastEthernet0/2
switchport trunk encapsulation dotlg
switchport mode trunk
switchport trunk allowed vlan 10,20
ļ
end
Access2
Access2> (enable) show config all
#mac address reduction
set spantree macreduction enable
!
#stp mode
set spantree mode pvst+
#uplinkfast groups
set spantree uplinkfast enable rate 15 all-protocols off
```

#backbonefast

1

1

set spantree backbonefast enable

#vlan parameters

```
set spantree priority 49152 1
set spantree priority 49152 30
set spantree priority 49152 40
```

#vlan(defaults)

set spantree enable 1,30,40 set spantree fwddelay 15 1,30,40

set	spantre	ee hello	o 2	1,30	0,40
set	spantre	ee maxag	ge 20) 1,30	0,40
!					
#vt	ç				
set	vlan 1	,30,40			
!					
#mod	dule 3	: 48-poi	rt 10/1	L00BaseTX	Ethernet
set	trunk 3	3/3 on	dotlq	30,40	
set	trunk 3	3/4 on	dotlq	30,40	
!					
enc	ł				

<u>MST への移行</u>

企業ネットワークのすべてのスイッチを同時に MST に変更することは困難です。下位互換性に より、この変更は段階的に行うことができます。スパニング ツリーの再設定はトラフィック フロ ーを中断させることがあるため、スケジュールされたメンテナンス時間帯に変更を実施します。 MST を有効にすると、RSTP も有効になります。スパニング ツリーの UplinkFast および BackboneFast 機能は PVST+ の機能であり、これらの機能は RSTP 内部に構築され、MST は RSTP に依存しているため、ユーザが MST を有効にすると無効になります。移行中、IOS では これらのコマンドを削除できます。CatOS の BackboneFast と UplinkFast では、コマンドは設定 から自動的にクリアされますが、PortFast、bpduguard、bpdufilter、ルート ガード、およびルー プ ガードなどの機能の設定は MST モードでも適用されます。これらの機能の使用法は、PVST+ モードと同じです。PVST+ モードですでにこれらの機能を有効にしている場合、MST モードへ の移行の後も、これらの機能はアクティブなままになります。MST を設定する際には、次のガイ ドラインと制限事項に従ってください。

- 802.1s/w への移行の第一段階は、ポイントツーポイントとエッジ ポートを正しく識別することです。急速な遷移が求められるスイッチツースイッチ リンクが、すべて全二重になっていることを確認します。エッジ ポートは、PortFast 機能によって定義されます。
- ネットワーク内のすべてのスイッチで共有する設定名とリビジョン番号を選択します。シスコはシングルエリアには多数のスイッチを配置することを推奨します。別のエリアにネットワークをセグメント化すると便利です。
- スイッチド ネットワークに必要なインスタンスの数を慎重に決定してください。また、イン スタンスが論理トポロジに変換されることに注意してください。インスタンス0にVLANをマ ッピングすることは避けてください。どのVLANをインスタンスにマッピングするかを決定し 、各インスタンスのルートとバックアップルートを慎重に選択してください。
- インスタンスにマップされているすべての VLAN をトランクが伝送するようにするか、この インスタンスの VLAN をまったく伝送しないようにします。
- MST は PVST+ が稼働している従来のブリッジとポート単位で相互対話できます。したがっ て、ブリッジのタイプが混在しても、相互対話が明確に認識されていれば問題ありません。 CST と IST のルートは常に領域の中に置くようにします。トランクを通して PVST+ ブリッ ジと相互対話する場合、MST ブリッジがそのトランク上で許可されているすべての VLAN の ルートになっていることを確認します。PVST ブリッジは CST のルートとしては使用しない でください。
- すべての PVST スパニング ツリー ルート ブリッジが、CST ルート ブリッジよりもプライオ リティが低くなる(数字上は大きくなる)ようにしてください。
- PVST ブリッジの VLAN 上ではスパニング ツリーを無効にしないでください。
- アクセス リンクは VLAN を分割する可能性があるため、スイッチの接続にはアクセス リン クを使用しないでください。
- •現行または新しい論理 VLAN ポートを多数含む MST 設定は、すべてメンテナンス時間帯に

完了する必要があります。これは、インスタンスへの新しい VLAN の追加や、インスタンス にまたがる VLAN の移動などのすべての段階的変更により、MST データベース全体が再初期 化されるためです。

この例では、キャンパスネットワークには、region1という名前の1つのMST領域と、データ VLAN 10、30、および100の2つのインスタンス、およびMST2(音声VLAN 20、40、および 200)があります。MSTでは2つのインスタンスのみが実行されます。Distribution1 は CIST 領域 のルートとして選択されています。これは、Distribution1がIST0のルートであることを意味しま す。図に示すように、ネットワーク内のトラフィックをロードバランシングするために、 Distribution1はMST1(データVLANのインスタンス)のルートとして設定され、MST2は MST2(音声VLANのインスタンス)のルートとして設定されます。

まず移行する必要があるのはコア部分で、続いてアクセス スイッチに移ります。スパニング ツリ ーのモードを変更する前に、スイッチ上で MST の設定を行います。続いて STP の種類を MST に変更します。この例では、移行は次の順序で行われます。

- 1. Distribution1 と Distribution2
- 2. Services1 と Services2
- 3. アクセス1
- 4. Access2

1. Distribution1 と Distribution2の移行:

```
!--- Distribution1 configuration: Distribution1(config)#spanning-tree mst configuration
Distribution1(config-mst)#name region1
Distribution1(config-mst)#revision 10
Distribution1(config-mst)#instance 1 vlan 10, 30, 100
Distribution1(config-mst)#instance 2 vlan 20, 40, 200
Distribution1(config-mst)#exit
Distribution1(config)#spanning-tree mst 0-1 root primary
Distribution1(config)#spanning-tree mst 2 root secondary
!--- Distribution2 configuration: Distribution2(config)#spanning-tree mst configuration
Distribution2(config-mst)#name region1
Distribution2(config-mst)#revision 10
Distribution2(config-mst)#instance 1 vlan 10, 30, 100
Distribution2(config-mst)#instance 2 vlan 20, 40, 200
Distribution2(config-mst)#exit
Distribution2(config)#spanning-tree mst 2 root primary
Distribution2(config)#spanning-tree mst 0-1 root secondary
!--- Make sure that trunks carry all the VLANs that are mapped to an instance.
Distribution1(config)#interface FastEthernet1/0/1
Distribution1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Distribution1(config)#interface FastEthernet1/0/3
Distribution1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
Distribution1(config)#interface FastEthernet1/0/5
Distribution1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Distribution1(config)#interface FastEthernet1/0/23
Distribution1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
Distribution1(config)#interface FastEthernet1/0/24
Distribution1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
```

Distribution2(config)#interface FastEthernet1/0/2 Distribution2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200

```
!
Distribution2(config)#interface FastEthernet1/0/4
Distribution2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
Distribution2(config)#interface FastEthernet1/0/6
Distribution2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!
Distribution2(config)#interface FastEthernet1/0/23
Distribution2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Distribution2(config)#interface FastEthernet1/0/24
Distribution2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!--- STP mode conversion. Distribution1(config)#spanning-tree mode mst
Distribution2(config)#spanning-tree mode mst
!--- MST tuning - to load balance data and voice VLAN traffic.
Distribution2(config)#interface FastEthernet1/0/24
Distribution2(config-if)#spanning-tree mst 2 port-priority 64
!--- PVST+ cleanup. Distribution1(config)#no spanning-tree backbonefast
Distribution2(config)#no spanning-tree backbonefast
Distribution2(config)#interface FastEthernet1/0/24
```

Distribution2(config-if)#no spanning-tree vlan 20,40,200 port-priority 64

注:MST0ルートを手動で設定することをお勧めします。この例では、Distribution1 が MST0 のルートとして選択されているため、Distribution1 が CIST のルートになります。現 時点でネットワークは混合設定状態になっています。ネットワークは次の図のように表示で きます。

stribution1 と Distribution2 は MST region1 内にあり、PVST+ スイッチでは region1 が 1 つ のブリッジとして認識されます。再収束後のトラフィックフローを図2に示します。 PVST+(スパニングツリーVLAN Xコスト)スイッチを調整して、図1に従ってデータと音 声のトラフィックをロードバランスできます。他のすべてのスイッチを手順2 ~ 4に従って 移行すると、図1に従って最終的ななスパニングツリートポロジがです。

2. Services1 と Services2 の移行:

```
!--- Services1 configuration: Services1(config)#spanning-tree mst configuration
Services1(config-mst)#name region1
Services1(config-mst)#revision 10
Services1(config-mst)#instance 1 vlan 10, 30, 100
Services1(config-mst)#instance 2 vlan 20, 40, 200
Services1(config-mst)#exit
!--- Services2 configuration: Services2(config)#spanning-tree mst configuration
Services2(config-mst)#name region1
Services2(config-mst)#revision 10
Services2(config-mst)#instance 1 vlan 10, 30, 100
Services2(config-mst)#instance 2 vlan 20, 40, 200
Services2(config-mst)#exit
!--- Make sure that trunks carry all the !--- VLANs that are mapped to an instance.
Services1(config)#interface FastEthernet0/5
Services1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Services1(config)#interface FastEthernet0/47
Services1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Services1(config)#interface FastEthernet0/48
Services1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!
Services2(config)#interface FastEthernet0/6
Services2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
Services2(config)#interface FastEthernet0/47
Services2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
1
Services2(config)#interface FastEthernet0/48
Services2(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!--- STP Mode conversion: Services1(config)#spanning-tree mode mst
Services2(config)#spanning-tree mode mst
!--- MST tuning - to load balance data and voice VLAN traffic: Services1(config)#interface
fastEthernet 0/46
Services1(config-if)#spanning-tree mst 2 cost 200000
Services1(config-if)#exit
Services1(config)#interface fastEthernet 0/47
Services1(config-if)#spanning-tree mst 2 cost 100000
Services1(config-if)#exit
Services2(config)#interface FastEthernet 0/6
Services2(config-if)#spanning-tree mst 1 cost 500000
Services2(config-if)#exit
```

```
!--- PVST+ cleanup: Services1(config)#no spanning-tree uplinkfast
Services1(config)#no spanning-tree backbonefast
Services1(config)#interface FastEthernet0/5
Services1(config-if)#no spanning-tree vlan 100 cost 18
Services1(config-if)#exit
```

```
Services2(config)#no spanning-tree uplinkfast
Services2(config)#no spanning-tree backbonefast
Services2(config)#interface FastEthernet0/6
Services2(config-if)#no spanning-tree vlan 200 cost 18
Services2(config-if)#exit
Services2(config)#interface FastEthernet0/48
Services2(config-if)#no spanning-tree vlan 200 port-priority 64
Services2(config-if)#exit
```

3. Access1 の移行:

!--- Access1 configuration: Access1(config)#spanning-tree mst configuration
Access1(config-mst)#name region1
Access1(config-mst)#instance 1 vlan 10, 30, 100
Access1(config-mst)#instance 2 vlan 20, 40, 200
Access1(config-mst)#exit

!--- Make sure that trunks carry all the VLANs that are mapped to an instance.
Access1(config)#interface FastEthernet0/1
Access1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!
Access1(config)#interface FastEthernet0/2
Access1(config-if)#switchport trunk allowed vlan 10,20,30,40,100,200
!--- STP mode conversion: Access1(config)#spanning-tree mode mst

!--- PVST+ cleanup: Access1(config)#no spanning-tree uplinkfast
Access1(config)#no spanning-tree backbonefast

4. Access2 の移行:

!--- Access2 configuration: Access2> (enable) set spantree mst config name region1 revision
10
Edit Buffer modified.
Use 'set spantree mst config commit' to apply the changes

Access2> (enable) **set spantree mst 1 vlan 10,30,100** Edit Buffer modified. Use 'set spantree mst config commit' to apply the changes

Access2> (enable) **set spantree mst 2 vlan 20,40,200** Edit Buffer modified. Use 'set spantree mst config commit' to apply the changes

Access2> (enable) set spantree mst config commit

!--- Ensure that trunks carry all the VLANs that are mapped to an instance: Access2>
(enable)set trunk 3/3 on dot1q 10,20,30,40,100,200
Access2> (enable)set trunk 3/4 on dot1q 10,20,30,40,100,200

STP mode conversion

Access2> (enable) **set spantree mode mst** PVST+ database cleaned up. Spantree mode set to MST.

!--- Backbonefast and uplinkfast configurations are cleaned up automatically.

設定を変更するたびに、スパニング ツリーのトポロジを検証することをお勧めします。

Distribution1 スイッチがデータ VLAN 10、30、および 100 のルート ブリッジであり、スパニン グ ツリーの転送パスが図のパスのように一致することを確認してください。

Distribution1# show spanning-tree mst 0

##### MST0	vlans mapped: 1	-9,11-19,21-29	,31-39,41-99,101-19	99,201-4094
Bridge	address 0015.63f6	.b700 priorit	y 24576 (24576	5 sysid 0)
Root	this switch for the	he CIST		
Operational	hello time 2 , for	rward delay 15	, max age 20, txho	ldcount 6
Configured	hello time 2 , for	rward delay 15	, max age 20, max h	nops 20
Interface	Role Sts Cost	Prio.Nbr	Туре	
Fa1/0/1	Desg FWD 20000	0 128.1	P2p	
Fa1/0/3	Desg FWD 20000	0 128.3	P2p	
Fa1/0/5	Desg FWD 20000	0 128.5	P2p	
Fa1/0/23	Desg FWD 20000	0 128.23	P2p	
Fa1/0/24	Desg FWD 20000	0 128.24	P2p	

Distribution1#show spanning-tree mst 1

##### MST1 Bridge Root	vlans mapped: 10,30 address 0015.63f6.b70 this switch for MST1),100)0 priority	24577 (24576 sysid 1)
Interface	Role Sts Cost	Prio.Nbr Type	
Fa1/0/1	Desg FWD 200000	128.1 P2p	
Fa1/0/3	Desg FWD 200000	128.3 P2p	
Fa1/0/5	Desg FWD 200000	128.5 P2p	
Fa1/0/23	Desg FWD 200000	128.23 P2p	
Fa1/0/24	Desg FWD 200000	128.24 P2p	

Distribution1#show spanning-tree mst 2

##### MST2 Bridge Root	vlans ma address address port	pped: 20,40, 0015.63f6.b700 0015.c6c1.3000 Gi1/0/24	200 priorit priorit cost	су У	28674 (2 24578 (2 200000	8672 sysid 4576 sysid rem hops	2) 2) 4
Interface	Role	Sts Cost	Prio.Nbr	Туре			
Gi1/0/1 Gi1/0/3 Gi1/0/23 Gi1/0/24	Desg Desg Altn Root	FWD 200000 FWD 200000 BLK 200000 FWD 200000	128.1 128.3 128.23 128.24	P2p P2p P2p P2p			

Distribution2#show spanning-tree mst 0

##### MST0	vlans ma	apped: 1-9,	11-19,21-29,31-39	9,41-99,1	101-199,201-4	1094
Bridge	address	0015.c6c1.30	00 priority	28672	(28672 sysid	0)
Root	address	0015.63f6.b7	00 priority	24576	(24576 sysid	0)
	port	Fa1/0/23	path cost	0		
Regional Root	address	0015.63f6.b7	00 priority	24576	(24576 sysid	0)
			internal cost	200000	rem hops	19
Operational	hello ti	lme 2 , forwa	rd delay 15, max	age 20,	txholdcount	6
Configured	hello ti	lme 2 , forwa	rd delay 15, max	age 20,	max hops	20

Interface	Role S	Sts	Cost	Prio.Nbr	Туре
Fa1/0/2	Desg 1	FWD	200000	128.54	P2p
Fa1/0/4	Desg 1	FWD	200000	128.56	P2p
Fa1/0/6	Desg 1	FWD	200000	128.58	P2p
Fa1/0/23	Root 1	FWD	200000	128.75	P2p
Fa1/0/24	Altn 1	BLK	200000	128.76	P2p

!--- CIST root is Distribution1. All the !--- switches are in the same region "region1". !--Hence in all the switches in the region1 you can see the path cost as 0. Distribution2#show
spanning-tree mst 1

##### MST1	vlans map	ped: 10,30	,100		
Bridge	address (015.c6c1.300	0 priori	ty	28673 (28672 sysid 1)
Root	address (015.63f6.b70	0 priori	ty	24577 (24576 sysid 1)
	port G	5i2/0/23	cost		200000 rem hops 1
Interface	Role S	ts Cost	Prio.Nbr	Туре	
Gi2/0/2	Desg F	WD 200000	128.54	P2p	
Gi2/0/4	Desg F	WD 200000	128.56	P2p	
Gi2/0/23	Root F	WD 200000	128.75	P2p	
Gi2/0/24	Altn E	BLK 200000	128.76	P2p	
Distribution2	#show spar	ning-tree ms	st 2		
##### MST2	vlans map	ped: 20,40	,200		
Bridge	address (015.c6c1.300	00 priori	ty	24578 (24576 sysid 2)
Root	this swit	ch for MST2			
Interface	Role S	ts Cost	Prio.Nbr	Туре	
Gi2/0/2	Desg F	WD 200000	128.54	P2p	
Gi2/0/4	Desg F	WD 200000	128.56	P2p	
Gi2/0/6	Desg F	WD 200000	128.58	P2p	
Gi2/0/23	Desg F	WD 200000	128.75	P2p	
Gi2/0/24	Desg F	WD 200000	64.76	P2p	
Access2> (ena	ble) show	spantree mst	: 1		
Spanning tree	mode	MST			
Instance		1			
VLANs Mapped:		10,30,1	.00		
Designated Ro	ot	00-15-6	53-f6-b7-0	0	
Designated Ro	ot Priorit	y 24577	(root pri	ority:	24576, sys ID ext: 1)
Designated Ro	ot Cost	200000	Remai	ning Ho	ops 19
Designated Ro	ot Port	3/3			
Bridge ID MAC	ADDR	00-d0-0	0-50-30-0	0	
Bridge ID Pri	ority	32769	(bridge p	riority	: 32768, sys ID ext: 1)
Port		State	Role	Cost	Prio Type
3/3		forwarding	ROOT	2000	00 32 P2P

Access2>	(enable)	show	spantree	mst 2	2				
3/4			blockin	ng	ALTR	2000	00 32	2 P2P	
5/5			LOT WAL	aring	1001	2000	00 5.	5 626	

Spanning tree mode	MST
Instance	2
VLANs Mapped:	20,40,200
Designated Root	00-15-c6-c1-30-00
Designated Root Priority	24578 (root priority: 24576, sys ID ext: 2)
Designated Root Cost	200000 Remaining Hops 19

Designated Root Port	3/4						
Bridge ID MAC ADDR Bridge ID Priority	00-d0-00-50 32770 (br:)-30-00 idge prio	ority: 3	2768,	sys	ID ext:	2)
Port	State	Role Cos	t 	Prio	Туре		
3/3 3/4	blocking forwarding	ALTR ROOT	200000 200000	32 32	P2P P2P		
トラブルシュー							

現在、この設定に関する特定のトラブルシューティング情報はありません。

<u>関連情報</u>

- <u>マルチ スパニング ツリー プロトコル (802.1s) について</u>
- •<u>高速スパニングツリー プロトコル (802.1w) について</u>
- スパニング ツリー プロトコルの問題点と設計上の考慮事項
- <u>スパニングツリー プロトコル ルート ガード拡張機能</u>
- <u>スイッチ製品に関するサポート ページ</u>
- LAN スイッチング テクノロジーに関するサポート ページ
- <u>テクニカル サポートとドキュメント Cisco Systems</u>