CatalystスイッチネットワークにおけるHSRP問 題のトラブルシューティング

内容
<u>前提条件</u>
<u>要件</u>
<u>使用するコンポーネント</u>
HSRP について
<u>背景説明</u>
基本動作
<u>HSRP の用語</u>
<u>HSRP アドレッシング</u>
<u>HSRP ルータの通信</u>
<u>HSRP スタンバイ IP アドレスによる通信(トークン リングを除くすべてのメディア)</u>
ICMP リダイレクト
<u>HSRP 機能のマトリクス</u>
<u>HSRPの機能</u>
<u>パケットのフォーマット</u>
HSRP 状態
<u>HSRP タイマー</u>
HSRP イベント
<u>HSRP アクション</u>
<u>HSRP 状態テーブル</u>
<u>パケット フロー</u>
<u>ルータ A の設定(アクティブ ルータ)</u>
<u>ルータ B の設定(スタンバイ ルータ)</u>
<u>HSRP のトラブルシューティング事例</u>
<u>ケーススタディ#1:HSRPスタンバイIPアドレスが重複IPアドレスとしてレポートされる</u>
<u>ケーススタディ#2:HSRP状態が継続的に変化する(アクティブ、スタンバイ、スピーク)か、</u> <u>%HSRP-6-STATECHANGE</u>
<u>ケーススタディ#3:HSRPでピアが認識されない</u>
<u>ケーススタディ#4:HSRP状態が変化し、スイッチのsyslogにSYS-4-P2_WARN: 1/Host Is</u> <u>Flapping Between Port and Portがレポート される</u>
<u>ケーススタディ#5:非対称ルーティングとHSRP(HSRPを実行するルータを使用したネットワ</u> <u>ークでのユニキャストトラフィックの過剰なフラッディング)</u>
MSFC1
MSFC2
<u>非对称ルーティンクの結果</u>
<u>ケーススタディ#6:HSRP仮想IPアドレスが異なるIPアドレスとしてレポートされる</u>
<u>ケーススタディ#7:セキュアボートでHSRPによりMAC違反が発生する</u>
<u>ケーススタディ#9: %Interfaceハードウェアは複数のグループをサポートできません</u>
<u>CatalystスイッチにおけるHSRPのトラブルシューティング</u>

<u>A. HSRPルータ設定の確認</u> <u>1. ルータ インターフェイスの一意の IP アドレス確認</u> <u>2. スタンバイ(HSRP) IP アドレスとスタンバイ グループ番号の確認</u> 3. スタンバイ(HSRP) IP アドレスがインターフェイスごとに異なることを確認 4. standy use-bia コマンドを使用するケース 5. アクセス リスト設定の確認 B. Catalyst の Fast EtherChannel 設定とトランキング設定の確認 1. トランキング設定の確認 <u>2. Fast EtherChannel (ポート チャネリング) 設定の確認</u> <u>3. スイッチの MAC アドレス転送テーブルの確認</u> <u>C. 物理層の接続性の確認</u> <u>1. インターフェイスのステータスのチェック</u> <u>2. リンク変更およびポート エラー</u> 3. IP 接続性の確認 <u>4. 単方向リンクのチェック</u> 5. 物理層のトラブルシューティングに関するその他のリファレンス <u>D. レイヤ 3 HSRP デバッグ</u> 1. 標準 HSRP デバッグ 2. 条件付き HSRP デバッグ(スタンバイ グループや VLAN に基づく出力の制限) <u>3. 拡張 HSRP デバッグ</u> <u>E. スパニング ツリーのトラブルシューティング</u> 1. スパニング ツリー設定の確認 <u>2. スパニング ツリー ループ状態</u> <u>3. トポロジ変更通知</u> 4. ブロックされたポートの切断 5. ブロードキャストの抑制 6. コンソールおよび Telnet アクセス 7. スパニングツリーの機能: Portfast、UplinkFast、およびBackboneFast <u>8. BPDU ガード</u> <u>9. VTP プルーニング</u> <u>F.分割攻略方式</u> 既知の問題 <u>Cisco 2620/2621、ファストイーサネットを搭載したCisco 3600使用時のHSRP状態のフラッピ</u> <u>ング/不安定性</u>

<u>関連情報</u>

はじめに

このドキュメントでは、一般的な問題と、ホットスタンバイルータプロトコル(HSRP)の問題のト ラブルシューティング方法について説明します。

前提条件

要件

このドキュメントに関する固有の要件はありません。

使用するコンポーネント

このドキュメントの内容は、特定のソフトウェアやハードウェアのバージョンに限定されるもの ではありません。

このドキュメントの情報は、特定のラボ環境にあるデバイスに基づいて作成されました。このド キュメントで使用するすべてのデバイスは、クリアな(デフォルト)設定で作業を開始していま す。本稼働中のネットワークでは、各コマンドによって起こる可能性がある影響を十分確認して ください。

HSRP について

背景説明

このドキュメントでは、次のような HSRP に関連する最も一般的な問題を取り上げます。

- ルータで重複 HSRP スタンバイ IP アドレスがレポートされる
- HSRP の状態が絶えず変化する(active、standby、speak)
- HSRPピアが存在しない
- ・ HSRP に関連するスイッチのエラー メッセージ
- HSRP 構成への過剰なネットワーク ユニキャストのフラッディング
- 注:このドキュメントでは、Catalystスイッチ環境でのHSRPのトラブルシューティング方法について詳しく説明しています。このドキュメントには、ソフトウェアバージョンやネットワークトポロジ設計の参照事項が多数含まれています。しかし、このドキュメントは、専ら、HSRPのトラブルシューティングを行うエンジニアへの手段の提供とガイドを目的としています。このドキュメントは、設計ガイド、ソフトウェア推奨文書、または最適事例文書として意図されたものではありません。

ミッションクリティカルな通信のためにイントラネット サービスおよびインターネット サービス に依存する企業や消費者は、ネットワークとアプリケーションを常時使用できることを求めてい ます。Cisco IOS® ソフトウェアの HSRP を活用すれば、ほぼ 100 % のネットワークアップタイ ムを実現して、お客様の要求を満たすことができます。HSRP はシスコ プラットフォームに固有 のテクノロジーで、これにより、ネットワーク エッジ デバイスやアクセス回線における第 1 ホ ップでの障害からユーザ トラフィックを即時かつ透過的に復旧させる冗長性が IP ネットワーク に提供されます。

IP アドレスと MAC(レイヤ 2(L2))アドレスを共有すれば、複数のルータを 1 つの仮想ルー タとして動作させられます。ホスト ワークステーションのデフォルト ゲートウェイの冗長化には 、このアドレスが必要です。ほとんどのホスト ワークステーションではルーティング テーブルが 保持されておらず、1 つのネクストホップ IP および MAC アドレスだけが使用されます。このア ドレスがデフォルト ゲートウェイとして認識されます。HSRP では、仮想ルータ グループのメ ンバが絶えずステータス メッセージを交換します。いずれかのルータが、予定された理由または 予定外の理由で使用不能になった場合は、あるルータが他のルータのルーティングを引き継げま す。ホストには 1 つのデフォルト ゲートウェイが設定され、同じ IP および MAC アドレスに IP パケットが継続的に転送されます。エンド ワークステーションでは、ルーティングを行うデバイ スの切り替えは意識されません。

注:Microsoft OSが稼働するホストワークステーションでは、複数のデフォルトゲートウェイ を設定できます。ただし、複数のデフォルトゲートウェイは動的ではありません。OS はー 度に1つのデフォルト ゲートウェイしか使用しません。最初に設定されているデフォルト ゲートウェイが Internet Control Management Protocol (ICMP)によって到達不能と判断さ れた場合に、ブート時に予備で設定されているデフォルト ゲートウェイがシステムで選択 されるだけです。

基本動作

HSRP を実行する一群のルータが連携して動作し、LAN 上のホストに対してあたかも1台のデフ ォルト ゲートウェイ ルータであるかのような錯覚を与えます。この一群のルータのことを、 HSRP グループまたはスタンバイ グループと呼びます。グループから選出された1台のルータが 、ホストから仮想ルータに送信されるパケットを転送します。このルータをアクティブ ルータと 呼びます。別の1台のルータがスタンバイ ルータとして選出されます。アクティブ ルータで障 害が発生すると、スタンバイ ルータがパケット転送の役割を担います。HSRPは任意の数のルー タで実行できますが、仮想ルータのIPアドレスに送信されたパケットを転送するのはアクティブ ルータだけです。

ネットワーク トラフィックを最小限に抑えるため、プロトコルによる選出プロセスが完了した後 は、アクティブ ルータとスタンバイ ルータだけが、定期的に HSRP メッセージを送信します。 HSRP グループ内のそれ以外のルータは Listen 状態のままです。アクティブ ルータで障害が発生す ると、スタンバイ ルータがアクティブ ルータの役割を引き継ぎます。スタンバイ ルータで障害 が発生するか、またはスタンバイ ルータがアクティブ ルータになると、別のルータがスタンバイ ルータとして選出されます。

スタンバイ グループはそれぞれ 1 台の仮想ルータ(デフォルト ゲートウェイ)をエミュレート します。グループごとに、周知の MAC および IP アドレスが 1 つ割り当てられます。LAN 上に は複数のスタンバイ グループが共存したり、部分的に重複することができ、個々のルータは複数 のグループに参加できます。この場合、ルータはグループごとに異なる状態とタイマーを維持し ます。

HSRP の用語

ターム	定義
アクティブ ルータ	現在、仮想ルータ宛てのパケットを転送しているルータ
スタンバイ ルータ	次に使用されるバックアップ ルータ
スタンバイ グルー	HSRP に参加している一群のルータであり、共同で1つの仮想ルータをエミ
プ	ュレートする
Hello タイム	特定のルータから連続した HSRP hello メッセージが送られる間隔
Hold time	hello メッセージを受信してから送信元ルータが故障していると推測するまで
	の間隔

HSRP アドレッシング

HSRP ルータの通信

HSRP が稼働するルータは、HSRP hello パケットを通じて互いに HSRP 情報をやり取りします 。これらのパケットは、User Datagram Protocol(UDP; ユーザ データグラム プロトコル)ポー ト 1985 の宛先 IP マルチキャスト アドレス 224.0.0.2 に送信されます。IP マルチキャスト アド レス 224.0.0.2 は、すべてのルータと通信を行うための予約済みマルチキャスト アドレスです。 アクティブ ルータが、設定されている IP アドレスと HSRP 仮想 MAC アドレスによる hello パケ ットの送信元となります。スタンバイ ルータは、設定されている IP アドレスとバーンドイン MAC アドレス(BIA)による hello パケットの送信元となります。HSRP ルータが互いを正しく 識別するには、この送信元アドレッシングの使用法が必要です。

ほとんどの場合、ルータを HSRP グループの一部として設定する際に、BIA とともにそのグルー プの HSRP MAC アドレスがルータで受信されます。Cisco 2500、4000、および 4500 ルータに 関しては、この動作での唯一の例外となります。これらのルータに搭載されているイーサネット ハードウェアは、1 つの MAC アドレスしか認識しません。したがって、これらのルータではア クティブ ルータとして活動する場合に HSRP MAC アドレスが使用されます。このルータがスタ ンバイ ルータであるときには BIA が使用されます。

HSRP スタンバイ IP アドレスによる通信(トークン リングを除くすべてのメディア)

ホスト ワークステーションには、デフォルト ゲートウェイとして HSRP スタンバイ IP アドレス が設定されているため、ホストは HSRP スタンバイ IP アドレスに対応付けられた MAC アドレ スを使用して通信する必要があります。この MAC アドレスは、0000.0c07.ac** で構成される仮 想 MAC アドレスです。ここで ** は、各インターフェイスに基づく 16 進数の HSRP グループ番 号です。たとえば、HSRP グループ 1 では、HSRP 仮想 MAC アドレスとして 0000.0c07.ac01 が使用されます。隣接する LAN セグメント上のホストは、通常の Address Resolution Protocol (ARP; アドレス レゾリューション プロトコル)プロセスを使用して、対応する MAC アドレスを解決します。

ICMP リダイレクト

サブネットを保護している HSRP ピア ルータは、ネットワーク内の他のすべてのサブネットへ のアクセスを提供できます。これは HSRP の原則です。したがって、どのルータがアクティブ HSRP ルータになるかは関係ありません。Cisco IOS ソフトウェア リリース 12.1(3)T より前の Cisco IOS ソフトウェア リリースでは、あるインターフェイスで HSRP を使用すると、そのイン ターフェイスでは ICMP リダイレクトが自動的に無効にされます。この設定がないと、ホストが HSRP 仮想 IP アドレスから単ールータのインターフェイス IP および MAC アドレスへリダイレ クトされる可能性があります。つまり、冗長性が失われます。

Cisco IOSソフトウェアでは、HSRPでICMPリダイレクトを許可する方法が導入されています。 この方法により、HSRP 経由の発信 ICMP リダイレクト メッセージがフィルタリングされます。 ネクスト ホップ IP アドレスが HSRP 仮想アドレスに変更されます。発信 ICMP リダイレクト メ ッセージ中のゲートウェイ IP アドレスが、そのネットワーク上に存在する HSRP アクティブ ル ータのリストと比較されます。ゲートウェイ IP アドレスに対応するルータが HSRP グループの アクティブ ルータである場合、ゲートウェイ IP アドレスはそのグループの仮想 IP アドレスに置き換えられます。このソリューションにより、ホストがリモート ネットワークへの最適ルートを 学習できると同時に、HSRP の提供する障害許容力も維持されます。

HSRP 機能のマトリクス

機能と HSRP をサポートする Cisco IOS ソフトウェア リリースについては、『<u>ホットスタンバ</u> <u>イ ルータ プロトコルの特長と機能』の「Cisco IOS のリリースと HSRP 機能のマトリクス」セ</u> <u>クションを参照してください。</u>

HSRP の機能

『<u>ホットスタンバイ ルータ プロトコル(HSRP)の特長と機能』に、HSRP のほとんどの機能に</u> <u>関する情報が記載されています。</u>このドキュメントには、次の HSRP 機能に関する情報が含まれ ています。

- プリエンプション
- ・ インターフェイス トラッキング
- BIA の使用方法
- 複数の HSRP グループ
- 設定可能 MAC アドレス
- Syslog のサポート
- ・ HSRP デバッグ
- 拡張 HSRP デバッグ
- [Authentication]
- IP 冗長性
- SNMP 管理情報ベース(MIB)
- ・ Multiprotocol Label Switching(MPLS; マルチプロトコル ラベル スイッチング)のための HSRP
- ✤ 注:ドキュメント内でこれらのセクションを検索するには、ブラウザの検索機能を使用できます。

パケットのフォーマット

この表は、UDP HSRP フレームのデータ部分のフォーマット示しています。

バージョン Op コード 都道府県 ハロータイム

ホールドタイム	Priority	Group	Reserved
認証データ			
認証データ			
仮想 IP アドレス	·		

この表は、HSRP パケットの各フィールドを説明したものです。

パケット	
のフィー	説明
ルド	
Op	Op コードは、パケットに含まれるメッセージのタイプを示します。可能な値は、0 - hello、1 - coup、および2 - resignです。hello メッセージは、ルータで HSRP を動作し ていて、アクティブ ルータになる能力があることを示すために送信されます。coup メ
クテット)	ッセージは、ルータがアクティブ ルータになることを望んでいるときに送信されます 。resign メッセージは、ルータがアクティブ ルータであることを放棄したいときに送 信されます。
状態(1 オクテッ ト)	スタンバイ グループ内の各ルータには状態マシンが実装されます。状態フィールドに は、メッセージを送信するルータの現在の状態が記述されます。個々の状態の詳細は次 のとおりです。0 – 初期、1 – 学習、2 – リスニング、4 – スピーク、8 – スタンバイ、 16 – アクティブ。
ハロータ イム(1 オクテッ ト)	このフィールドは hello メッセージの場合にのみ意味があります。ルータが hello メッ セージを送信するおおよその間隔が含まれます。単位は秒です。
ホールド タイム (1 オク テット)	このフィールドは hello メッセージの場合にのみ意味があります。ルータが状態変更を 開始する前に hello メッセージを待機する時間の長さが含まれます。
プライオ リティ (1 オク テット)	このフィールドはアクティブ ルータとスタンバイ ルータの選出に使用されます。2 台 のルータのプライオリティを比較して、大きい値を持つルータがアクティブ ルータに なります。プライオリティが同じ場合は、より大きい IP アドレスを持つルータが選出 されます。
グループ (1 オク テット)	このフィールドによってスタンバイ グループが識別されます。
認証デー タ(8 オ クテット)	このフィールドには、8 文字のクリア テキスト パスワードが含まれます。
仮想 IP アドレス (4 オク テット)	ルータに仮想 IP アドレスが設定されていない場合は、アクティブ ルータからの hello メッセージからアドレスを学習できます。アドレスが学習されるのは、HSRP スタンバ イ IP アドレスが設定されておらず、なおかつ hello メッセージが認証される場合だけ です(認証が設定されている場合)。

HSRP 状態

都道府 県	定義
Initial	これは最初の状態です。この状態は、HSRP が動作していないことを示します。設定が 変更された場合、またはインターフェイスが最初に起動したときにこの状態になります 。
Learn	ルータではまだ仮想 IP アドレスが判別されておらず、アクティブ ルータからの認証済 み hello パケットも受信されていません。この状態では、ルータはアクティブ ルータか らパケットが到達するのを待ち続けます。
Listen	ルータは仮想 IP アドレスを認識していますが、ルータはアクティブ ルータでもスタン バイ ルータでもありません。アクティブ ルータまたはスタンバイ ルータからの hello メ ッセージをリスニングしています。
Speak	ルータは定期的に hello メッセージを送信し、アクティブ ルータまたはスタンバイ ルー タの選出に積極的に参加します。ルータは、仮想 IP アドレスがないと、speak 状態になる ことはできません。
スタンバ イ	ルータは次のアクティブ ルータになる可能性があるため、定期的に hello メッセージを 送信している。過渡的な状態を除き、グループ内で最大 1 台のルータが standby 状態にな ります。
アクティブ	現在、ルータはグループの仮想 MAC アドレスに送信されたパケットを転送している。 ルータは、定期的に hello メッセージを送信する。過渡的な状態を除き、グループ内で active 状態のルータは最大 1 台である必要があります。

HSRP タイマー

各ルータは HSRP で 3 つのタイマーのみを使用します。タイマーは、hello メッセージの時間を 計ります。障害発生時の HSRP コンバージは、HSRP の hello タイマーと hold タイマーがどのよ うに設定されているかによります。デフォルトでは、これらのタイマーはそれぞれ 3 秒と 10 秒 に設定されており、hello パケットは HSRP スタンバイ グループのデバイス間を 3 秒ごとに送信 され、スタンバイ デバイスでは、hello パケットが 10 秒間受信されないとアクティブになります 。これらのタイマー設定を下げると、フェールオーバーやプリエンプションの速度は上がります が、CPU使用率の増加と不必要なスタンバイ状態のフラッピングを避けるため、helloタイマーを 1秒未満に、またはholdタイマーを4秒未満には設定しないでください。HSRP トラッキング メカ ニズムを使用していて、トラッキング対象のリンクで障害が発生したら、hello タイマーと hold タイマーの状態にかかわらず、即座にフェールオーバーかプリエンプションが実行される点に注 意してください。タイマーが時間切れになると、ルータは、新しい HSRP ステートに移行します 。これらのタイマーは、standby [group-number] timers hellotime holdtimeコマンドで変更できま す。たとえば、standby 1 timers 5 15 のように指定します。

タイマー				
Active timer	このタイマーは、アクティブ ルータを監視するために使用されます。アクティブ ル ータが hello パケットを受信すると、常にこのタイマーが起動します。このタイマー は、HSRP hello メッセージの対応するフィールドに設定されいるホールド タイム値 が経過すると時間切れになります。			
Standby timer	このタイマーは、スタンバイ ルータを監視するために使用されます。スタンバイ ル ータが hello パケットを受信すると、常にこのタイマーが起動します。このタイマー は、各 hello パケットに設定さているホールド タイム値が経過すると時間切れになり			

この表は、これらのタイマーの詳細を示したものです。

HSRP イベント

この表は、HSRP 有限状態マシンでのイベントを示したものです。

+	イベント
1	有効なインターフェイスで HSRP が設定された。
2	インターフェイスで HSRP が無効になったか、またはインターフェイスが無効になった。
3	アクティブ タイマーの時間切れ。アクティブ タイマーは、アクティブ ルータから最後の hello メッセージが到達する際にホールド タイムに設定されている。
4	スタンバイ タイマーの時間切れ。スタンバイ タイマーは、スタンバイ ルータから最後の hello メッセージが到達する際にホールド タイムに設定されている。
5	Hello タイマーの時間切れ。hello メッセージ送信用の定期タイマーが時間切れになった。
6	speak 状態のルータからプライオリティの高い hello メッセージが受信された
7	アクティブ ルータからプライオリティの高い hello メッセージが受信された
8	アクティブ ルータからプライオリティの低い hello メッセージが受信された
9	アクティブ ルータから resign メッセージが受信された
10	プライオリティの高いルータから coup メッセージが受信された
11	スタンバイ ルータからプライオリティの高い hello メッセージが受信された
12	スタンバイ ルータからプライオリティの低い hello メッセージが受信された

HSRP アクション

この表は、状態マシンの一部として実行されるアクションを示しています。

文 字	アクション
A	アクティブタイマーの起動:アクティブルータからの認証済みhelloメッセージが受信された 結果、このアクションが起こった場合、helloメッセージのホールドタイムフィールドの値が アクティブタイマーに設定されます。それ以外の場合、このルータで使用されている現在の ホールド タイム値がアクティブ タイマーに設定されます。続いてアクティブ タイマーが起動 します。
В	スタンバイタイマーの起動:スタンバイルータからの認証済みhelloメッセージが受信された 結果、このアクションが起こった場合、helloメッセージのホールドタイムフィールドの値が スタンバイタイマーに設定されます。それ以外の場合、このルータで使用されている現在の ホールド タイム値がスタンバイ タイマーに設定されます。続いてスタンバイ タイマーが起動 します。
С	アクティブ タイマーの停止:アクティブ タイマーが停止します。
D	スタンバイ タイマーの停止:スタンバイ タイマーが停止します。
Е	パラメータの学習:このアクションは、アクティブ ルータから認証済みメッセージが受信さ

	れたときに実行されます。このグループの仮想 IP アドレスが手動で設定されていない場合は
	│、メッセージから仮想 IP アドレスを学習できます。ルータは、メッセージからハロー タイム
	とホールド タイムの値を学習できます。
F	hello メッセージの送信:ルータは、自身の現在の状態、hello タイム、およびホールド タイ
	ムを含む hello メッセージを送信します。
G	coup メッセージの送信:ルータは、プライオリティのより高いルータが使用可能であること
	をアクティブ ルータに通知するために、coup メッセージを送信します。
Ц	resign メッセージの送信:ルータは、別のルータがアクティブ ルータになれるようにするた
п	めに、resign メッセージを送信します。
I	gratuitous ARP メッセージの送信:ルータは、グループの仮想 IP アドレスと MAC アドレス
	をアドバタイズする ARP 応答パケットをブロードキャストします。このパケットの送信時に
	は、リンク層ヘッダーと ARP パケット内部の送信元 MAC アドレスとして仮想 MAC アドレ
	スが使用されます。

HSRP 状態テーブル

このセクションの図は、HSRP 状態マシンの状態遷移を示しています。イベントが起こるたびに 対応するアクションが実行され、ルータが次の HSRP 状態に移行します。図中では番号がイベン トを示し、文字が対応するアクションを示します。「<u>HSRP イベント」セクションに番号の定義</u> を示す表があります。また、「HSRP アクション」セクションに文字の定義を示す表があります 。この図は参照用としてだけに使用してください。この図は詳細な説明であり、一般的なトラブ ルシューティングには必要ありません。

図の高解像度画像については、「<u>HSRP</u>^[2]<u>状態</u>^[2]<u>動作</u>^[2]」を参照してください。

パケット フロー

Router B

デバイス	MAC アドレス	IP アドレス	サブネット マスク	[Default Gateway]
PC1	0000.0c00.0001	10.1.1.10	255.255.255.0	10.1.1.1
PC2	0000.0c00.1110	10.1.2.10	255.255.255.0	10.1.2.1

ルータ A の設定(アクティブ ルータ)

interface GigabitEthernet 0/0
ip address 10.1.1.2 255.255.255.0
mac-address 4000.0000.0010
standby 1 ip 10.1.1.1
standby 1 priority 200

interface GigabitEthernet 0/1
ip address 10.1.2.2 255.255.255.0
mac-address 4000.0000.0011
standby 1 ip 10.1.2.1
standby 1 priority 200

ルータ B の設定(スタンバイ ルータ)

- interface GigabitEthernet 0/0
 ip address 10.1.1.3 255.255.225.0
 mac-address 4000.0000.0020
 standby 1 ip 10.1.1.1
- interface GigabitEthernet 0/1
 ip address 10.1.2.3 255.255.255.0
 mac-address 4000.0000.0021
 standby 1 ip 10.1.2.1

◇ 注:これらの例では、説明の目的でのみスタティックMACアドレスを設定しています。必要ない限り、スタティック MAC アドレスは設定しないでください。

HSRP問題のトラブルシューティングを行うためにスニファトレースを取得するときは、パケッ トフローの背後にある概念を理解する必要があります。ルータ A にはプライオリティ 200 が設定 されているため、両方のインターフェイスでアクティブ ルータになります。このセクションの例 では、ルータからホスト ワークステーション宛てに送信されるパケットには、送信元 MAC アド レスとしてルータの物理 MAC アドレス(BIA)が含まれます。ホスト マシンから HSRP IP アド レス宛てに送信されるパケットには、宛先 MAC アドレスとして HSRP 仮想 MAC アドレスが含 まれます。ルータとホスト間の各フローで MAC アドレスが異なる点に注意が必要です。

この表は、フローごとの各 MAC アドレスと IP アドレスの情報を示しています。この情報は、ス イッチ X で取得されるスニファ トレースに基づいています。

パケット フロー	送信元 MAC	宛先 MAC	送信元 IP	宛先 IP
PC1 から PC2 宛てのパケット	PC1(0000.0c00.0001)	ルータ A のインターフェイス Ethernet 0 の HSRP 仮想 MAC アドレス(0000.0c07.ac01)	10.1.1.10	10.1.2.10
ルータ A を経由 して戻ってくる 、PC2 から PC1 宛てのパケット	ルータ A の Ethernet 0 の BIA (4000.0000.0010)	PC1(0000.0c00.0001)	10.1.2.10	10.1.1.10
PC1 から HSRP スタンバイ IP ア ドレス宛てのパ ケット(ICMP、 Telnet)	PC1(0000.0c00.0001)	ルータ A のインターフェイス Ethernet 0 の HSRP 仮想 MAC アドレス(0000.0c07.ac01)	10.1.1.10	10.1.1.1
アクティブ ルー タの実際の IP ア ドレス宛てのパ ケット(ICMP、 Telnet)	PC1(0000.0c00.0001)	ルータ A の Ethernet 0 の BIA (4000.0000.0010)	10.1.1.10	10.1.1.2
スタンバイ ルー タの実際の IP ア ドレス宛てのパ ケット(ICMP、 Telnet)	PC1(0000.0c00.0001)	ルータ B の Ethernet 0 の BIA (4000.0000.0020)	10.1.1.10	10.1.1.3

HSRP のトラブルシューティング事例

ケーススタディ#1:HSRPスタンバイIPアドレスが重複IPアドレスとしてレポートされる

次のエラー メッセージが表示される可能性があります。

Oct 12 13:15:41: %STANDBY-3-DUPADDR: Duplicate address 10.25.0.1
 on Vlan25, sourced by 0000.0c07.ac19
Oct 13 16:25:41: %STANDBY-3-DUPADDR: Duplicate address 10.25.0.1
 on Vlan25, sourced by 0000.0c07.ac19
Oct 15 22:31:02: %STANDBY-3-DUPADDR: Duplicate address 10.25.0.1
 on Vlan25, sourced by 0000.0c07.ac19

Oct 15 22:41:01: %STANDBY-3-DUPADDR: Duplicate address 10.25.0.1
 on Vlan25, sourced by 0000.0c07.ac19

これらのエラー メッセージは、必ずしも HSRP の問題を示しているわけではありません。むし ろ、これらのエラー メッセージは、Spanning-Tree Protocol (STP; スパンニング ツリー プロト コル)ループが発生しているか、またはルータ/スイッチに設定の問題がある可能性を示していま す。エラー メッセージは別の問題の症状に過ぎません。

また、これらのエラーメッセージが発生しても、HSRP の通常の動作が妨げられることはありま せん。重複した HSRP パケットは無視されます。これらのエラー メッセージの発生頻度は 30 秒 間隔に抑えられています。ただし、HSRP アドレスの STANDBY-3-DUPADDR エラー メッセージが原因でネッ トワークが不安定になり、結果的にネットワークのパフォーマンスが低下したり、パケット損失が発生したりする可能性がありま す。

これらのメッセージを見ると、VLAN 25 の HSRP IP アドレス(MAC アドレス 0000.0c07.ac19)を発信元とするデータ パケットがルータで受信されていることがわかります。 HSRP MAC アドレスが 0000.0c07.ac19 であるため、問題のルータが自身のパケットを受信した か、または HSRP グループ内の両方のルータが active 状態になっています。ルータは自身のパケット を受信しているため、おそらくルータではなくネットワークに問題があります。この動作の原因 にはさまざまな問題が考えられます。エラー メッセージの原因と考えられるネットワークの問題 には次のものがあります。

- 瞬間的な STP ループ
- EtherChannel の設定の問題
- フレームの重複

これらのエラーメッセージのトラブルシューティングを行う際には、このドキュメントの「 <u>CatalystスイッチのHSRPのトラブルシューティング</u>」セクションでトラブルシューティング手順 を参照してください。このセクションには、設定に関するモジュールを含め、すべてのトラブル シューティングモジュールを適用できます。また、スイッチ ログに記録されたエラーに注意し、 必要に応じて他の事例も参照してください。

アクティブ ルータが自身のマルチキャスト hello パケットを受信しないようにするため、アクセ スリストを使用できます。ただし、これはエラー メッセージの回避策にすぎず、実際には問題の 症状を隠すものです。この回避策は、HSRP インターフェイスに拡張着信アクセス リストを適用 するものです。アクセス リストは、物理 IP アドレスから発信され全ルータ用のマルチキャスト アドレス 224.0.0.2 へ送信されるすべてのトラフィックを遮断します。 access-list 101 permit ip any any

interface GigabitEthernet 0/0
ip address 172.16.12.3 255.255.255.0
standby 1 ip 172.16.12.1
ip access-group 101 in

ケーススタディ#2:HSRP状態が継続的に変化する(アクティブ、スタンバイ、スピ ーク)か、%HSRP-6-STATECHANGE

次のエラー メッセージが表示される可能性があります。

Jan 9 08:00:42.623: %STANDBY-6-STATECHANGE: Standby: 49: Vlan149 state Standby -> Active Jan 9 08:00:56.011: %STANDBY-6-STATECHANGE: Standby: 49: Vlan149 state Active -> Speak Jan 9 08:01:03.011: %STANDBY-6-STATECHANGE: Standby: 49: Vlan149 state Speak -> Standby Jan 9 08:01:29.427: %STANDBY-6-STATECHANGE: Standby: 49: Vlan149 state Standby -> Active Jan 9 08:01:36.808: %STANDBY-6-STATECHANGE: Standby: 49: Vlan149 state Active -> Speak Jan 9 08:01:43.808: %STANDBY-6-STATECHANGE: Standby: 49: Vlan149 state Active -> Speak

Jul 29 14:03:19.441: %HSRP-5-STATECHANGE: Vlan10 Grp 110 state Standby -> Active Jul 29 16:27:04.133: %HSRP-5-STATECHANGE: Vlan10 Grp 110 state Active -> Speak Jul 29 16:31:49.035: %HSRP-5-STATECHANGE: Vlan10 Grp 110 state Speak -> Standby

ピア間で HSRP パケットが失われる原因にはさまざまなものがあります。最も一般的な問題は、 <u>物理層の問題、スパニング ツリーの問題による過剰なネットワーク トラフィック、または各</u> <u>VLAN による過剰なトラフィックです。事例1</u>と同様に、HSRP状態の変化を解決するためすべて のトラブルシューティングモジュールを適用できますが、特に<u>レイヤ3 HSRPデバッグ</u>が有効で す。 ピア間での HSRP パケット損失が、前述の各 VLAN による過剰なトラフィックが原因である場合 は、Selective Packet Discard(SPD; 選択的パケット廃棄)と保留キューのサイズを調整するか 増やして、入力キューの廃棄の問題を解決できます。

Selective Packet Discard(SPD;選択パケット廃棄)のサイズを大きくするには、コンフィギュ レーションモードに移行して、Cat6500スイッチで次のコマンドを実行します。

(config)#ip spd queue max-threshold 600

!--- Hidden Command

(config)#ip spd queue min-threshold 500

!--- Hidden Command

保留キューのサイズを増やすには、VLAN インターフェイスモードに入り、次のコマンドを実行 します。

(config-if)#hold-queue 500 in

SPDと保留キューのサイズを増やした後、clear counter interfaceコマンドを実行するとインター フェイスカウンタをクリアできます。

ケーススタディ#3:HSRPでピアが認識されない

このセクションのルータ出力には、ルータで HSRP が設定されているにもかかわらず、HSRP ピ アが認識されていないことが示されています。これが発生している場合、ルータでは隣接ルータ からの HSRP hello の受信が失敗します。この問題のトラブルシューティングを行う際は、この ドキュメントの「<u>物理層の接続性の確認」セクションおよび「HSRP ルータ設定の確認」セクシ</u> <u>ョンを参照してください。</u>物理層の接続に問題がない場合は、VTP モードのミスマッチを調べま す。

Vlan8 - Group 8 Local state is Active, priority 110, may preempt Hellotime 3 holdtime 10 Next hello sent in 00:00:01.168 Hot standby IP address is 10.1.2.2 configured Active router is local Standby router is unknown expired Standby virtual mac address is 0000.0c07.ac08 5 state changes, last state change 00:05:03 ケーススタディ#4:HSRP状態が変化し、スイッチのsyslogにSYS-4-P2_WARN: 1/Host <mac_address> Is Flapping Between Port <port_1> and Port <port_2>がレポ ートされる

次のエラー メッセージが表示される可能性があります。

2001 Jan 03 14:18:43 %SYS-4-P2_WARN: 1/Host 00:00:0c:14:9d:08 is flapping between port 2/4 and port 2/3

Feb 4 07:17:44 AST: %SW_MATM-4-MACFLAP_NOTIF: Host 0050.56a9.1f28 in vlan 1027 is flapping between port Te1/0/7 and port Te2/0/2

Catalystスイッチでは、ホストのMACアドレスが15秒以内に2回移動すると、スイッチからホストのMACアドレスの移動が報告されます。原因としては、STPループが考えられます。スイッチは、STP ループの影響を最小限に抑えるため、このホストからのパケットをおよそ 15 秒間廃棄します。2 つのポートの間で移動しているとレポートされている MAC アドレスが HSRP 仮想 MAC アドレスの場合、この問題はおそらく両方の HSRP ルータが active 状態になる問題です。

レポートされている MAC アドレスが HSRP 仮想 MAC アドレスでない場合、この問題はネット ワーク内でのループ、重複、またはパケットのリフレクションを示している可能性があります。 この種の状況が、HSRP 問題の原因となる可能性があります。MAC アドレスの移動を引き起こす 最も一般的な原因は、スパニング ツリーの問題または物理層の問題です。

このエラー メッセージのトラブルシューティングを行うには、次の手順を行います。

- ✤ 注:このドキュメントの「<u>CatalystスイッチのHSRPのトラブルシューティング</u>」セクションにある手順も実施してください。
 - 1. ホスト MAC アドレスの正確な発信元(ポート)を特定します。
 - 2. ホストのMACアドレスの発信元にはなれないポートの接続を解除します。
 - 3. VLAN ごとに STP トポロジを明確にして、STP 障害がないかをチェックします。

4. ポート チャネリング設定を確認します。

 ポート チャネル設定が誤っていると、ホスト MAC アドレスによるエラー メッセージ のフラップが発生することがあります。これは、ポート チャネリングのロード バラン シング特性が原因です。

ケーススタディ#5:非対称ルーティングとHSRP(HSRPを実行するルータを使用 したネットワークでのユニキャストトラフィックの過剰なフラッディング) 非対称ルーティングでは、送信パケットと受信パケットは、ホストと通信相手のピア間で異なる パスを使用します。このパケットフローは、HSRPプライオリティに基づいてHSRPルータ間にロ ードバランシングを設定し、HSRPをアクティブまたはスタンバイに設定した結果です。スイッ チング環境でこの種のパケット フローにより、不明なユニキャストのフラッディングが過剰に発 生する場合があります。また、Multilayer Switching (MLS; マルチレイヤ スイッチング) エント リが欠落する場合もあります。不明なユニキャストのフラッディングは、スイッチがすべてのポ ートからユニキャスト パケットをフラッディングした場合に起こります。スイッチは、宛先 MAC アドレスのエントリがないためにパケットをフラッディングします。それでもパケットは転 送されるため、この動作によって接続が断絶することはありません。しかし、この動作によって ホスト ポートによけいなパケットがフラッディングされます。この事例では、非対称ルーティン グの動作と、ユニキャスト フラッディングが起こる理由について検討します。

非対称ルーティングの症状には次のものがあります。

- ユニキャスト パケットの過剰なフラッディング
- フローで使用される MLS エントリの欠落
- ホスト ポート上のパケットがホスト宛てでないことを示すスニファ トレース
- サーバ ロード バランサ、Web キャッシュ デバイス、ネットワーク アプライアンスなど、 L2 ベースのパケット リライト エンジンを使用した場合の、ネットワーク遅延の増加

(例: Cisco LocalDirector、Cisco Cache Engine)

- ユニキャスト フラッディング トラフィックの負荷の増加を処理できない接続先ホストおよびワークステーションでの、パケットの廃棄
- ◇ 注:ルータでのARPキャッシュのデフォルトのエージングタイムは4時間です。スイッチの content-addressable memory (CAM; 連想メモリ)エントリのデフォルトのエージング タイ ムは5分です。ここでは、ホスト ワークステーションの ARP のエージング タイムは重要 ではありませんが、例では ARP のエージング タイムは4時間に設定されています。

次の図に、この問題を示します。このトポロジ例のスイッチはどちらも、Multilayer Switch Feature Card (MSFC; マルチレイヤ スイッチ フィーチャ カード)を搭載した Catalyst 6500 で す。この例では MSFC を使用していますが、MSFC の代わりに任意のルータを使用することもで きます。たとえば、使用できるルータには Route Switch Module (RSM; ルート スイッチ モジュ ール)、Gigabit Switch Router (GSR; ギガビット スイッチ ルータ)、および Cisco 7500 があり ます。ホストはスイッチのポートに直接接続されています。スイッチは、VLAN 1 と VLAN 2 の トラフィックを伝送するトランクを通じて相互接続されています。

この出力は、各 MSF の show standby コマンド コンフィギュレーションから抜粋したものです。

MSFC1

```
interface Vlan 1
mac-address 0003.6bf1.2a01
 ip address 10.1.1.2 255.255.255.0
no ip redirects
 standby 1 ip 10.1.1.1
standby 1 priority 110
interface Vlan 2
mac-address 0003.6bf1.2a01
ip address 10.1.2.2 255.255.255.0
no ip redirects
standby 2 ip 10.1.2.1
MSFC1#show standby
Vlan1 - Group 1
Local state is Active, priority 110
Hellotime 3 holdtime 10
Next hello sent in 00:00:00.696
Hot standby IP address is 10.1.1.1 configured
Active router is local
Standby router is 10.1.1.3 expires in 00:00:07
Standby virtual mac address is 0000.0c07.ac01
2 state changes, last state change 00:20:40
Vlan2 - Group 2
Local state is Standby, priority 100
Hellotime 3 holdtime 10
Next hello sent in 00:00:00.776
Hot standby IP address is 10.1.2.1 configured
Active router is 10.1.2.3 expires in 00:00:09, priority 110
Standby router is local
```

4 state changes, last state change 00:00:51 MSFC1#exit Console> (enable)

MSFC2

interface Vlan 1 mac-address 0003.6bf1.2a02 ip address 10.1.1.3 255.255.255.0 no ip redirects standby 1 ip 10.1.1.1 interface Vlan 2 mac-address 0003.6bf1.2a02 ip address 10.1.2.3 255.255.255.0 no ip redirects standby 2 ip 10.1.2.1 standby 2 priority 110 MSFC2#show standby Vlan1 - Group 1 Local state is Standby, priority 100 Hellotime 3 holdtime 10 Next hello sent in 00:00:01.242 Hot standby IP address is 10.1.1.1 configured Active router is 10.1.1.2 expires in 00:00:09, priority 110 Standby router is local 7 state changes, last state change 00:01:17 Vlan2 - Group 2 Local state is Active, priority 110 Hellotime 3 holdtime 10 Next hello sent in 00:00:00.924 Hot standby IP address is 10.1.2.1 configured Active router is local Standby router is 10.1.2.2 expires in 00:00:09 Standby virtual mac address is 0000.0c07.ac02 2 state changes, last state change 00:40:08 MSFC2#exit

💊 注:MSFC1では、VLAN 1はHSRP active状態で、VLAN 2はHSRP standby状態です。MSFC2 では、VLAN 2 は HSRP active 状態で、VLAN 1 は HSRP standby 状態です。各ホストのデフォル ト ゲートウェイはそれぞれのスタンバイ IP アドレスです。

1. 最初はどのキャッシュにも何も入っていません。ホスト A はデフォルト ゲートウェイとし て MSFC1 を使用します。ホスト B は MSFC2 を使用します。

ARP および MAC アドレス テーブル:ping を発行する前

ホストA	スイッチ1の MAC アド	MSFC1	MSFC2	スイッチ 2 の MAC アド	ホスト B
の ARP	レス テーブル MAC	ARP テー	ARP テー	レス テーブル MAC	の ARP
テーブル	VLAN ポート	ブル	ブル	VLAN ポート	テーブル

0003.6bf1.2a01 1 15/1	0003.6bf1.2a02 1 15/1
0003.6bf1.2a01 2 15/1	0003.6bf1.2a02 2 15/1
0000.0c07.ac01 1 15/1	0000.0c07.ac01 1 1/1
0000.0c07.ac02 2 1/1	0000.0c07.ac02 2 15/1
0003.6bf1.2a02 1 1/1	0003.6bf1.2a01 1 1/1
0003.6bf1.2a02 2 1/1	0003.6bf1.2a01 2 1/1

- Ջ注:簡略化するため、スイッチ1のルータHSRP用MACアドレスとMACアドレスは、 このセクションに記載されている他の表には含まれていません。
- ホストAはホストBに ping を行います。つまりホストAは ICMP エコー パケットを送信 します。ホストはそれぞれ別の VLAN にあるため、ホストAはホストB宛てのパケットを デフォルト ゲートウェイに転送します。このプロセスが行われるためには、ホストAはデ フォルト ゲートウェイの MAC アドレス、10.1.1.1 を解決するため ARP を送信する必要が あります。

ARP および MAC アドレス テーブル:ホスト A がデフォルト ゲートウェイに ARP を送信 した後

ホスト A の ARP テーブル	スイッチ 1 の MAC ア ドレス テーブル MAC VLAN ポート	MSFC1 ARP テ ーブル	MSFC2 ARP テー ブル	スイッチ 2 の MAC アドレ ス テーブル MAC VLAN ポート	ホスト Bの ARP テ ーブル
10.1.1.1: 0000.0c07.ac01	0000.0c00.0001 1 2/1	10.1.1.10 : 0000.0c00.0001			

 MSFC1はパケットを受信し、パケットを書き換えて、ホストBに転送します。パケットを書 き換えるために、MSFC1はホストBに対するARP要求を送信します。これは、ホストBが、 直接接続されたインターフェイス上にないためです。このフローで、MSFC2 はまだパケッ トを1つも受信していません。MSFC1 がホスト B からの ARP 応答を受信すると、どちら のスイッチもホスト B に関連づけられているソース ポートを学習します。

ARP および MAC アドレス テーブル:ホスト A がデフォルト ゲートウェイにパケットを送 信し、MSFC1 がホスト B に対する ARP を送信した後

ホストAの ARP テーブル	スイッチ 1 の MAC アドレス テーブル MAC VLAN ポート	MSFC1 ARP テーブル	MSFC2 ARP テ ーブル	スイッチ2の MAC アドレス テーブル MAC VLAN ポート	ホスト B の ARP テーブル
10.1.1.1 :	0000.0c00.0001	10.1.1.10 :		0000.0c00.0002	10.1.2.2 :
0000.0c07.ac01	1 2/1	0000.0c00.0001		2 2/1	0003.6bf1.2a0
	0000.0c00.0002 2 1/1	10.1.2.10:0000.0c00.0002			

4. ホスト B は、MSFC1 を通じてホスト A からのエコー パケットを受信します。ホスト B は ホスト A に対してエコー応答を送信する必要があります。ホスト A は異なる VLAN 上に存 在するため、ホスト B はデフォルト ゲートウェイ MSFC2 を通じて応答を転送します。 MSFC2 を通じてパケットを転送するために、ホスト B はデフォルト ゲートウェイの IP ア ドレス、10.1.2.1 の ARP を送信する必要があります。

ARP および MAC アドレス テーブル:ホスト B がそのデフォルト ゲートウェイに ARP を 送信した後

ホストAの ARP テーブル	スイッチ 1 の MAC アドレス テーブル MAC VLAN ポート	MSFC1 ARP テーブル	MSFC2 ARP テ ーブル	スイッチ2の MAC アドレス テーブル MAC VLAN ポート	ホス
10.1.1.1 :	0000.0c00.0001	10.1.1.10 :	10.1.2.10	0000.0c00.0002	10 1 2
0000.0c07.ac01	1 2/1	0000.0c00.0001	0000.0c00.0002	2 2/1	10.1.2
	0000.0c00.0002 2 1/1	10.1.2.10:0000.0c00.0001			10.1.2

5. ホスト B はここで MSFC2 にエコー応答パケットを転送します。MSFC2 は、ホスト A が VLAN 1 に直接接続されているため、ホスト A に対する ARP 要求を送信します。スイッチ 2 の MAC アドレス テーブルには、ホスト B の MAC アドレスが格納されます。

ARP および MAC アドレス テーブル:ホスト A でエコー パケットが受信された後

					-
	スイッチ1の			スイッチ2の	
ホストAの	MAC アドレス		MSFC2 ARP テ	MAC アドレス	+7
ARP テーブル	テーブル MAC		ーブル	テーブル MAC	^/ /
	VLAN ポート			VLAN ポート	
10.1.1.1 :	0000.0c00.0001	10.1.1.10 :	10.1.2.10	0000.0c00.0002	10.1
0000.0c07.ac01	1 2/1	0000.0c00.0001	0000.0c00.0002	2 2/1	10.1.
10.1.1.3 :	0000.0c00.0002		10.1.1.10	0000.0c00.00001	10.1
0003.6bf1.2a0	2 1/1		0000.0c00.0001	1 1/1	10.1.

6. エコー応答がホストAに到達し、フローが完了します。

非対称ルーティングの結果

ホスト A がホスト B に対して連続的に ping を発行する場合について考えます。ホスト A はエコ ー パケットを MSFC1 に送信し、ホスト B はエコー応答を MSFC2 に送信することを考えると、 これは非対称ルーティングの状態です。スイッチ 1 がホスト B の送信元 MAC を学習できるのは 、ホスト B が MSFC1 からの ARP 要求に応答するときだけです。これは、ホスト B が MSFC2 をデフォルト ゲートウェイとして使用しており、パケットを MSFC1 へ(結果的にスイッチ 1 へ)送信していないためです。ARP タイムアウトはデフォルトでは 4 時間なので、スイッチ 1 はデ フォルトで 5 分後にホスト B の MAC アドレスをエージングします。スイッチ2は5分後にホスト Aをエージングします。その結果、スイッチ 1 はホスト B の MAC 宛てのパケットをすべて不明 のユニキャストとして処理する必要があります。スイッチ 1 は、ホスト A からホスト B 宛てに送 信されるパケットを、すべてのポートからフラッディングします。また、スイッチ 1 にホスト B の MAC アドレス エントリがないため、同様に MLS エントリもありません。

ARP および MAC アドレス テーブル:ホスト A がホスト B に対し連続的に ping を発行し始めて

から5分後

ホスト A の ARP テーブル	スイッチ 1 の MAC アドレス テーブル MAC VLAN ポート	MSFC1 ARP テーブル	MSFC2 ARP テ ーブル	スイッチ 2 の MAC アドレス テーブル MAC VLAN ポート	ホスト B ARP テーフ
10.1.1.1 :	0000.0c00.0001	10.1.1.10 :	10.1.2.10	0000.0c00.0002	10.1.2.2 :
0000.0c07.ac01	1 2/1	0000.0c00.0001	0000.0c00.0002	2 2/1	0003.6bf1.2
10.1.1.3 :		10 1 2 10:0000 0-00 0001	10.1.1.10		10.1.2.1 :
0003.6bf1.2a0		10.1.2.10:0000.0C00.0001	0000.0c00.0001		0000.0c07.a

ホスト B から送信されるエコー応答パケットは、スイッチ 2 でホスト A の MAC アドレス エン トリがエージングした後、同じ問題に遭遇します。ホスト B はエコー応答を MSFC2 に転送し、 MSFC2 はこのパケットをルーティングして VLAN 1 上に送出します。スイッチの MAC アドレス テーブルにはホスト A のエントリがないため、VLAN 1 上のすべてのポートからパケットがフラ ッディングされます。

非対称ルーティングの問題によって接続が失われることはありません。しかし、非対称ルーティ ングが行われると過剰なユニキャスト フラッディングが発生し、MLS エントリが欠落する場合 があります。この状況に対処するには、次の 3 通りの設定変更が考えられます。

- 各スイッチの MAC エージング タイムを 14,400 秒(4 時間)以上に調整する。
- ルータの ARP タイムアウトを5分(300秒)に変更する。
- MAC エージング タイムと ARP タイムアウトを同じタイムアウト値に変更する。

最適な方法は、MAC エージング タイムを 14,400 秒に変更することです。設定のガイドラインを 次に示します。

・ Cisco IOS ソフトウェア:

mac address-table aging-time <seconds> vlan <vlan_id>

ケーススタディ#6:HSRP仮想IPアドレスが異なるIPアドレスとしてレポートされる

スイッチでのブリッジング ループが原因で VLAN 間漏出があると、STANDBY-3-DIFFVIP1 エラーメッ セージが表示されます。

このメッセージが表示されて、スイッチ内にブリッジング ループによる VLAN 間漏出がある場合 、次の手順でエラーを解決します。

1. エンドノード間でパケットが辿るパスを特定します。

そのパス上にルータがある場合は、次の手順を実行します。

a. 最初のスイッチからルータまでのパスのトラブルシューティングを行う。

b. ルータから 2 番目のスイッチまでのパスのトラブルシューティングを行う。

2. パス上の各スイッチを接続して、エンド ノード間のパスで使用されているポートの状態を調べる。

ケーススタディ#7:セキュアポートでHSRPによりMAC違反が発生する

HSRP が有効になっているルータに接続されたスイッチ ポートにポート セキュリティが設定さ れている場合、複数のインターフェイスに同じセキュア MAC アドレスを付けることはできない ため、MAC 違反になります。次のいずれかの場合に、セキュア ポートでセキュリティ違反が発 生します。

- アドレス テーブルにはセキュア MAC アドレスが最大数入っている状態で、MAC アドレス がアドレス テーブルに登録されていないステーションがインターフェイスにアクセスしよ うとした。
- あるセキュア インターフェイスで学習または設定されたアドレスが、同じ VLAN 内の別の セキュア インターフェイスで検出された場合。

デフォルトでは、ポート セキュリティ違反により、スイッチのインターフェイスは error-disable の状態になり、即座にシャットダウンされます。これにより、ルータ間の HSRP 状態のメッセー ジはブロックされます。

回避策

- ルータで、standby use-bia コマンドを発行します。これにより、ルータでは、仮想 MAC アドレスではなく、HSRP 用のバーンドイン アドレスが使用されるようになります。
- HSRP が有効にされているルータに接続されたスイッチのポートで、ポート セキュリティ を無効にします。

ケーススタディ#9: %Interfaceハードウェアは複数のグループをサポートできません

インターフェイスに複数の HSRP グループが作成されている場合は、次のエラー メッセージが 表示されます。

%Interface hardware cannot support multiple groups

このエラー メッセージが表示される理由は、一部のルータやスイッチでのハードウェアの制限で す。ソフトウェアでこの制限を克服することはできません。インターフェイスで各 HSRP グルー プが 1 つの追加 MAC アドレスを使用しているため、イーサネット MAC チップでは、複数の HSRP グループを有効にするために複数のプログラマブル MAC アドレスをサポートする必要が あることが、問題点です。

standby use-bia インターフェイス コンフィギュレーション コマンドの使用が解決策で、その場合、事前に割り当てられた MAC アドレスではなく、仮想 MAC アドレスとしてのインターフェイ

スのバーンドイン アドレス (BIA) が使用されます。

CatalystスイッチにおけるHSRPのトラブルシューティング

A. HSRPルータ設定の確認

1. ルータ インターフェイスの一意の IP アドレス確認

各 HSRP ルータで、サブネットごとに一意の IP アドレスが設定されていることをインターフェ イス単位で確認します。また、各インターフェイスの回線プロトコルが up であることも確認しま す。各インターフェイスの現在の状態を簡単に確認するには、show ip interface brief コマンドを 発行します。ランダム データの例は次のとおりです。

Router_1#show	ip interface brie	ef	
Interface	IP-Address	OK? Method Status	Protocol
Vlan1	192.168.1.1	YES manual up	up
Vlan10	192.168.10.1	YES manual up	up
Vlan11	192.168.11.1	YES manual up	up
Router_2#show i	ip interface brie	ef	
Interface	IP-Address	OK? Method Status	Protocol
Vlan1	192.168.1.2	YES manual up	up
Vlan10	192.168.10.2	YES manual up	up
Vlan11	192.168.11.2	YES manual up up	

2. スタンバイ(HSRP) IP アドレスとスタンバイ グループ番号の確認

設定されているスタンバイ(HSRP)IP アドレスとスタンバイ グループ番号が、HSRP に参加す る各ルータ間で一致していることを確認します。スタンバイ グループまたは HSRP スタンバイ アドレスが一致していないと、HSRP に問題が生じるおそれがあります。各インターフェイスの スタンバイ グループとスタンバイ IP アドレスの設定の詳細を表示するには、show standby コマ ンドを発行します。ランダム データの例は次のとおりです。

Router_1#show standby Vlan10 - Group 110 State is Active 2 state changes, last state change 00:01:34 Virtual IP address is 192.168.10.100 Active virtual MAC address is 0000.0c07.ac6e (MAC In Use) Local virtual MAC address is 0000.0c07.ac6e (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 0.144 secs Preemption enabled Active router is local Standby router is 192.168.10.2, priority 109 (expires in 10.784 sec) Priority 110 (configured 110) Group name is "hsrp-V110-110" (default)

FLAGS: 0/1 Vlan11 - Group 111 State is Active 2 state changes, last state change 00:00:27 Virtual IP address is 192.168.11.100 Active virtual MAC address is 0000.0c07.ac6f (MAC In Use) Local virtual MAC address is 0000.0c07.ac6f (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 2.096 secs Preemption enabled Active router is local Standby router is 192.168.11.2, priority 109 (expires in 8.944 sec) Priority 110 (configured 110) Group name is "hsrp-Vl11-111" (default) FLAGS: 0/1 Router_2#show standby Vlan10 - Group 110 State is Standby 1 state change, last state change 00:03:15 Virtual IP address is 192.168.10.100 Active virtual MAC address is 0000.0c07.ac6e (MAC Not In Use) Local virtual MAC address is 0000.0c07.ac6e (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 1.088 secs Preemption disabled Active router is 192.168.10.1, priority 110 (expires in 11.584 sec) Standby router is local Priority 109 (configured 109) Group name is "hsrp-Vl10-110" (default) FLAGS: 0/1 Vlan11 - Group 111 State is Standby 1 state change, last state change 00:02:53 Virtual IP address is 192.168.11.100 Active virtual MAC address is 0000.0c07.ac6f (MAC Not In Use) Local virtual MAC address is 0000.0c07.ac6f (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 2.352 secs Preemption disabled Active router is 192.168.11.1, priority 110 (expires in 9.120 sec) Standby router is local Priority 109 (configured 109) Group name is "hsrp-Vl11-111" (default) FLAGS: 0/1

3. スタンバイ(HSRP) IP アドレスがインターフェイスごとに異なることを確認

スタンバイ(HSRP)IP アドレスが、インターフェイス単位で設定されている IP アドレスで一意 であることを確認します。この情報を簡単に表示するには、show standby コマンドを発行します 。ランダム データの例は次のとおりです。 Vlan10 - Group 110 State is Active 2 state changes, last state change 00:01:34 Virtual IP address is 192.168.10.100 Active virtual MAC address is 0000.0c07.ac6e (MAC In Use) Local virtual MAC address is 0000.0c07.ac6e (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 0.144 secs Preemption enabled Active router is local Standby router is 192.168.10.2, priority 109 (expires in 10.784 sec) Priority 110 (configured 110) Group name is "hsrp-Vl10-110" (default) FLAGS: 0/1 Vlan11 - Group 111 State is Active 2 state changes, last state change 00:00:27 Virtual IP address is 192.168.11.100 Active virtual MAC address is 0000.0c07.ac6f (MAC In Use) Local virtual MAC address is 0000.0c07.ac6f (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 2.096 secs Preemption enabled Active router is local Standby router is 192.168.11.2, priority 109 (expires in 8.944 sec) Priority 110 (configured 110) Group name is "hsrp-Vl11-111" (default) FLAGS: 0/1 Router_2#show standby Vlan10 - Group 110 State is Standby 1 state change, last state change 00:03:15 Virtual IP address is 192.168.10.100 Active virtual MAC address is 0000.0c07.ac6e (MAC Not In Use) Local virtual MAC address is 0000.0c07.ac6e (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 1.088 secs Preemption disabled Active router is 192.168.10.1, priority 110 (expires in 11.584 sec) Standby router is local Priority 109 (configured 109) Group name is "hsrp-V110-110" (default) FLAGS: 0/1 Vlan11 - Group 111 State is Standby 1 state change, last state change 00:02:53 Virtual IP address is 192.168.11.100 Active virtual MAC address is 0000.0c07.ac6f (MAC Not In Use) Local virtual MAC address is 0000.0c07.ac6f (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 2.352 secs Preemption disabled Active router is 192.168.11.1, priority 110 (expires in 9.120 sec) Standby router is local Priority 109 (configured 109) Group name is "hsrp-Vl11-111" (default) FLAGS: 0/1

4. standy use-bia コマンドを使用するケース

トークン リング インターフェイスで HSRP が設定されている場合を除き、standby use-bia コマ ンドを使用するのは、特別な状況でだけです。このコマンドはルータに対して、HSRP グループ の仮想 HSRP MAC アドレスではなくルータの BIA を使用するように指示します。トークン リン グネットワークでは、ソースルート ブリッジング(SRB)を使用している場合、standby usebia コマンドにより、新しいアクティブ ルータで gratuitous ARP を使用してホストのルーティン グ情報フィールド(RIF)のキャッシュを更新できます。ただし、すべてのホストの実装で gratuitous ARP が正しく処理されるとは限りません。standby use-bia コマンドに関するもう 1 つ の注意はプロキシ ARP に関係するものです。スタンバイ ルータは、故障したアクティブ ルータ のプロキシ ARP データベースが失われた場合、それを補うことができません。

5. アクセス リスト設定の確認

すべての HSRP ピアに設定されているアクセス リストにより、各ピアのインターフェイスに設 定されているどの HSRP アドレスもフィルタリングされていないことを確認します。特に、サブ ネット上のすべてのルータにトラフィックを送信するためのマルチキャスト アドレス (224.0.0.2)を確認してください。さらに、HSRP ポート 1985 宛ての UDP トラフィックがフ ィルタリングされていないことも確認します。HSRP では、このアドレスとポートを使用して、 ピア間で hello パケットを送信します。ルータで設定されているアクセス リストを簡単に参照す るには、show access-lists コマンドを発行します。ランダム データの例は次のとおりです。

Router_1#show access-lists Standard IP access list 77 deny 10.19.0.0, wildcard bits 0.0.255.255 permit any Extended IP access list 144 deny pim 238.0.10.0 0.0.0.255 any permit ip any any (58 matches)

B. Catalyst の Fast EtherChannel 設定とトランキング設定の確認

1. トランキング設定の確認

HSRP ルータの接続にトランクを使用している場合は、ルータとスイッチのトランキング設定を 確認します。設定可能なトランキング モードは 5 種類あります。

- on
- ・ 望ましい
- 自動

- ・オフ
- nonegotiate

設定されているトランキング モードによって、必要なトランキング方式が提供されることを確認 します。

HSRP 問題のトラブルシューティングを行う際、スイッチ間の接続では desirable 設定を使用してく ださい。このように設定すると、スイッチ ポートで正常にトランクを確立できない問題を切り分け ることができます。ルータとスイッチ間の設定では、ほとんどの Cisco IOS ルータがトランクの ネゴシエートをサポートしていないため nonegotiate に設定します。

IEEE 802.1Q(dot1q)トランキングモードの場合は、トランクの両側が同じネイティブVLANとカ プセル化を使用するように設定されていることを確認します。シスコ製品はデフォルトではネイ ティブ VLAN にタグ付けしないため、ネイティブ VLAN 設定が一致していないと、それらの VLAN 上で接続できません。最後に、ルータで設定されている VLAN を伝送するようにトランク が設定されていることと、その VLAN がプルーニングされておらず、ルータ接続ポートで STP 状態にあることを確認します。この情報を簡単に参照するには、show interfaces <interface> trunkコマンドを発行します。ランダム データの例は次のとおりです。

L2Switch_1#show interfaces gigabitEthernet1/0/13 trunk Port Mode Encapsulation Status Native vlan Gi1/0/13 on 802.1q trunking 1 Port Vlans allowed o Router_1#show interfaces gigabitEthernet1/0/1 trunk Port Mode Encapsulation Status Native vlan Gi1/0/1 on 802.1q trunking 1 Port Vlans allowed on trur

2. Fast EtherChannel (ポート チャネリング) 設定の確認

HSRP ルータの接続にポート チャネルを使用している場合は、ルータとスイッチ両方の EtherChannel 設定を確認します。スイッチ間のポート チャネルでは、少なくとも一方を desirable に設定します。もう一方は、次のモードのいずれかに設定できます。

- on
- 望ましい
- 自動

ただし、この例では、インターフェイスはポートチャネルのメンバではありません。

Router_1#show etherchannel summary Flags: D - down P - bundled in port-channel I - stand-alone s - suspended H - Hot-standby (LACP only)

- R Layer3 S Layer2
- U in use f failed to allocate aggregator

M - not in use, minimum links not met

u - unsuitable for bundling

w - waiting to be aggregated

d - default port

A - formed by Auto LAG

Number of channel-groups in use: 0 Number of aggregators: 0

Group Port-channel Protocol Ports

Router_1#

Router_2#show etherchannel summary Flags: D - down P - bundled in port-channel I - stand-alone s - suspended H - Hot-standby (LACP only) R - Layer3 S - Layer2 U - in use f - failed to allocate aggregator M - not in use, minimum links not met u - unsuitable for bundling

w - waiting to be aggregated

d - default port

A - formed by Auto LAG

Number of channel-groups in use: 0 Number of aggregators: 0

Group Port-channel Protocol Ports

Router_2#

3. スイッチの MAC アドレス転送テーブルの確認

HSRP ルータのスイッチの MAC アドレス テーブルに、HSRP の仮想 MAC アドレスおよび物理 BIA のエントリが存在することを確認します。ルータ上で show standby コマンドを発行すると仮 想 MAC アドレスが表示されます。show interface コマンドを発行すると物理 BIA が表示されま す。次に出力例を示します。

Router_1#show standby Vlan10 - Group 110 State is Active 2 state changes, last state change 00:37:03 Virtual IP address is 192.168.10.100 Active virtual MAC address is 0000.0c07.ac6e (MAC In Use) Local virtual MAC address is 0000.0c07.ac6e (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 0.768 secs Preemption enabled

Active router is local Standby router is 192.168.10.2, priority 109 (expires in 10.368 sec) Priority 110 (configured 110) Group name is "hsrp-V110-110" (default) FLAGS: 0/1 Vlan11 - Group 111 State is Active 2 state changes, last state change 00:35:56 Virtual IP address is 192.168.11.100 Active virtual MAC address is 0000.0c07.ac6f (MAC In Use) Local virtual MAC address is 0000.0c07.ac6f (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 1.472 secs Preemption enabled Active router is local Standby router is 192.168.11.2, priority 109 (expires in 8.336 sec) Priority 110 (configured 110) Group name is "hsrp-Vl11-111" (default) FLAGS: 0/1 Router_1#show interfaces vlan 10 Vlan10 is up, line protocol is up, Autostate Enabled Hardware is Ethernet SVI, address is d4e8.801f.4846 (bia d4e8.801f.4846) Internet address is 192.168.10.1/24 MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive not supported ARP type: ARPA, ARP Timeout 04:00:00 Last input 00:00:00, output 00:00:01, output hang never Last clearing of "show interface" counters never Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 9258 packets input, 803066 bytes, 0 no buffer Received 0 broadcasts (0 IP multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 3034 packets output, 368908 bytes, 0 underruns Output 0 broadcasts (0 IP multicasts) 0 output errors, 2 interface resets 0 unknown protocol drops 0 output buffer failures, 0 output buffers swapped out L2Switch_1#show mac address-table address 0000.0c07.ac6e Mac Address Table _____

Vlan Mac Address Type Ports

10 0000.0c07.ac6e DYNAMIC Gi1/0/13 Total Mac Addresses for this criterion: 1

----- -----

L2Switch_1#show mac address-table address 0000.0c07.ac6f Mac Address Table Vlan Mac Address Type Ports

---- ------

11 0000.0c07.ac6f DYNAMIC Gi1/0/13 Total Mac Addresses for this criterion: 1

エントリがどれくらいの時間でエージングされるかを確認するために、CAM エージング タイム をチェックしてください。この時間が、STP 転送遅延に設定されている値、つまりデフォルトで 15 秒と同じである場合は、ネットワーク内に STP ループが発生している可能性が高くなります 。コマンド出力例を挙げます。

L2Switch_1#show mac address-table aging-time vlan 11 Global Aging Time: 300 Vlan Aging Time

11 300

C. 物理層の接続性の確認

HSRP グループ内で複数のルータがアクティブになった場合、これらのルータでは他の HSRP ピ アからの hello パケットを定常的には受信しなくなります。物理層の問題によって、ピア間のト ラフィックの定常的なパスが妨げられ、このシナリオが発生する場合があります。HSRP のトラ ブルシューティングを行う際には、HSRP ピア間の物理的な接続性と IP の接続性を確認してくだ さい。接続性を確認するには、show standby コマンドを発行します。ランダム データの例は次 のとおりです。

Router_1#show standby Vlan10 - Group 110 State is Active 2 state changes, last state change 00:54:03 Virtual IP address is 192.168.10.100 Active virtual MAC address is 0000.0c07.ac6e (MAC In Use) Local virtual MAC address is 0000.0c07.ac6e (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 0.848 secs Preemption enabled Active router is local Standby router is unknown Priority 110 (configured 110) Group name is "hsrp-Vl10-110" (default) FLAGS: 0/1 Vlan11 - Group 111 State is Active

2 state changes, last state change 00:52:56 Virtual IP address is 192.168.11.100 Active virtual MAC address is 0000.0c07.ac6f (MAC In Use) Local virtual MAC address is 0000.0c07.ac6f (v1 default) Hello time 3 sec, hold time 10 sec Next hello sent in 0.512 secs Preemption enabled Active router is local Standby router is unknown Priority 110 (configured 110) Group name is "hsrp-Vl11-111" (default) FLAGS: 0/1 Router_2#show standby Vlan10 - Group 110 State is Init (interface down) 2 state changes, last state change 00:00:42 Virtual IP address is 192.168.10.100 Active virtual MAC address is unknown (MAC Not In Use) Local virtual MAC address is 0000.0c07.ac6e (v1 default) Hello time 3 sec, hold time 10 sec Preemption disabled Active router is unknown Standby router is unknown Priority 109 (configured 109) Group name is "hsrp-Vl10-110" (default) FLAGS: 0/1 Vlan11 - Group 111 State is Init (interface down) 2 state changes, last state change 00:00:36 Virtual IP address is 192.168.11.100 Active virtual MAC address is unknown (MAC Not In Use) Local virtual MAC address is 0000.0c07.ac6f (v1 default) Hello time 3 sec, hold time 10 sec Preemption disabled Active router is unknown Standby router is unknown Priority 109 (configured 109) Group name is "hsrp-Vl11-111" (default) FLAGS: 0/1

1. インターフェイスのステータスのチェック

インターフェイスを確認します。次の例のように、HSRP が設定されているインターフェイスが すべて up/up であることを確認します。

Router_1#show ip interface brief				
Interface	IP-Address	OK? Method Status	Protocol	
Vlan1	192.168.1.1	YES manual up	up	
Vlan10	192.168.10.1	YES manual up	up	
Vlan11	192.168.11.1	YES manual up	up	

Router_2#show ip interface brief				
Interface	IP-Address	OK? Method Status	Protocol	

Vlan1192.168.1.2YES manual upupVlan10192.168.10.2YES manual administratively down downVlan11192.168.11.2YES manual administratively down down

インターフェイスのいずれかが管理上 down/down となっている場合は、そのルータで設定モード に入り、インターフェイス固有のコマンド no shutdown を発行します。ランダム データの例は次 のとおりです。

Router_2#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router_2(config)#interface vlan 10 Router_2(config-if)#no shutdown Router_2(config-if)#end

Router_2#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router_2(config)#interface vlan 11 Router_2(config-if)#no shutdown Router_2(config-if)#end

Router_2#show ip interface brief

Interface	IP-Address	OK? Method Status	Protocol
Vlan1	192.168.1.2	YES manual up	up
Vlan10	192.168.10.2	YES manual up	down
Vlan11	192.168.11.2	YES manual up	up

インターフェイスのいずれかが down/down または up/down の場合は、何らかのインターフェイス変 更通知を示すログを確認します。Cisco IOS ソフトウェア ベースのスイッチでは、リンクが up/down 状態になると次のメッセージが表示されます。

%LINK-3-UPDOWN: Interface "interface", changed state to up %LINK-3-UPDOWN: Interface "interface", changed state to down

Router_1#show log 3d04h: %STANDBY-6-STATECHANGE: Standby: 0: Vlan10 state Active-> Speak 3d04h: %LINK-5-CHANGED: Interface Vlan10, changed state to down 3d04h: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan10, changed state to down

HSRP ピア間にある、ポート、ケーブル、トランシーバやその他のデバイスを検査します。取り 外されていたり、接続が緩んだりしているものはないか。繰り返しリンクが失われるインターフ ェイスはないか。適切なタイプのケーブルが使用されているか。この例のように、インターフェ イスにエラーがないかチェックします。 Internet address is 192.168.10.2/24 MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive not supported ARP type: ARPA, ARP Timeout 04:00:00 Last input 00:00:10, output 00:00:08, output hang never Last clearing of "show interface" counters never Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 1243 packets input, 87214 bytes, 0 no buffer Received 0 broadcasts (0 IP multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 23 packets output, 1628 bytes, 0 underruns Output 0 broadcasts (0 IP multicasts) 0 output errors, 2 interface resets 0 unknown protocol drops 0 output buffer failures, 0 output buffers swapped out

2. リンク変更およびポート エラー

スイッチ ポートでのリンク変更やその他のエラーが発生していないかをチェックします。次のコ マンドを発行し、出力を確認します。

- show logging
- show interfaces <インターフェイス> counters
- show interfaces <interface>ステータス

これらのコマンドは、スイッチと他のデバイスの間の接続性に問題がないかを確認するのに役立 ちます。

リンクが up/down 状態では、次のメッセージは正常です。

L2Switch_1#show logging Syslog logging: enabled (0 messages dropped, 5 messages rate-limited, 0 flushes, 0 overruns, xml disabled, filtering disabled)

No Active Message Discriminator.

No Inactive Message Discriminator.

Console logging: level informational, 319 messages logged, xml disabled, filtering disabled

Monitor logging: level debugging, 0 messages logged, xml disabled,

filtering disabled Buffer logging: level debugging, 467 messages logged, xml disabled, filtering disabled Exception Logging: size (4096 bytes) Count and timestamp logging messages: disabled File logging: disabled Persistent logging: disabled

No active filter modules.

Trap logging: level informational, 327 message lines logged Logging Source-Interface: VRF Name:

Log Buffer (10000 bytes):

*Jul 26 17:52:07.526: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/13, changed state to up
*Jul 26 17:52:09.747: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/13, changed state to down
*Jul 26 17:57:11.716: %SPANTREE-7-RECV_1Q_NON_TRUNK: Received 802.1Q BPDU on non trunk GigabitEthernet1/0/16 VLAN307.
*Jul 26 17:57:11.716: %SPANTREE-7-BLOCK_PORT_TYPE: Blocking GigabitEthernet1/0/16 on VLAN0307. Inconsistent port type.
*Jul 26 17:57:13.583: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/16, changed state to up
*Jul 26 17:57:16.237: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/16, changed state to down
*Jul 26 18:02:16.481: %SPANTREE-7-RECV_1Q_NON_TRUNK: Received 802.1Q BPDU on non trunk GigabitEthernet1/0/16 VLAN307.
*Jul 26 18:02:16.481: %SPANTREE-7-BLOCK_PORT_TYPE: Blocking GigabitEthernet1/0/16 on VLAN0307. Inconsistent port type.
*Jul 26 18:02:16.481: %SPANTREE-7-BLOCK_PORT_TYPE: Blocking GigabitEthernet1/0/16 on VLAN0307. Inconsistent port type.
*Jul 26 18:02:16.481: %SPANTREE-7-BLOCK_PORT_TYPE: Blocking GigabitEthernet1/0/16 on VLAN0307. Inconsistent port type.
*Jul 26 18:02:16.481: %SPANTREE-7-BLOCK_PORT_TYPE: Blocking GigabitEthernet1/0/16 on VLAN0307. Inconsistent port type.
*Jul 26 18:02:16.481: %SPANTREE-7-BLOCK_PORT_TYPE: Blocking GigabitEthernet1/0/16 on VLAN0307. Inconsistent port type.
*Jul 26 18:02:18.367: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/16, changed state to up
*Jul 26 18:02:20.561: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/16, changed state to down

ポートの一般的な健全性を確認するには、show interfaces <interface> statusコマンドを発行しま す。ランダム データの例は次のとおりです。

L2Switch_1#show interfaces gigabitEthernet 1/0/13 status

Port	Name	Status	Vlan	Duplex Speed Type
Gi1/0/	13	connected	trunk	a-full a-1000 10/100/1000BaseTX

インターフェイスのステータスがconnected、notconnect、またはerrdisableのいずれであるかを確認します。状態が notconnect の場合、両側でケーブルが差し込まれていることを確認します。適切なケーブルが使用されているか確認します。状態が errdisable の場合は、カウントが過度のエラーを示していないかを確認します。詳細は、『<u>Cisco IOSプラットフォームでのerrdisableポート状態の回復</u>』を参照してください。

ポートがどの VLAN に設定されているか調べます。接続されている相手側も同じ VLAN に設定さ れていることを確認します。リンクがトランクになるように設定されている場合は、トランクの 両端で同じ VLAN に伝送されるようになっているかを確認します。

速度と二重モードの設定を調べます。設定が a- で始まっている場合、そのポートは速度と二重モ ードをオートネゴシエートする設定になっています。それ以外の場合、ネットワーク管理者によ って設定が事前に定義されています。リンクの速度と二重モードを設定する場合には、リンクの 両端で設定を一致させる必要があります。一方のスイッチ ポートがオートネゴシエーションに設 定されている場合、リンクのもう一方もオートネゴシエーションに設定する必要があります。一 方の側が特定の速度と二重モードにハードコードされている場合は、もう一方の側も同様にハー ドコードされている必要があります。一方の側をハードコードし、もう一方の側をオートネゴシ エートのままにしておくと、オートネゴシエーション プロセスは中止されます。

<#root>

L2Switch_1#show interfaces gi1/0/13 counters errors Port Align-Err FCS-Err Xmit-Err Rcv-Err UnderSize OutDiscards Gi1/0/13

0 0 0 0 0 0

Port Single-Col Multi-Col Late-Col Excess-Col Carri-Sen Runts Gi1/0/13

0 0 0 0 0 0

Align-Err、FCS-Err、または Runts が大量に発生していないかを調べます。これらは、ポートと接 続先デバイスとの間で速度と二重モードが一致していないことを示します。このエラーの解消に 、問題のポートの速度と二重モードの設定を変更してください。

ポートがトラフィックの受け渡しを行っていることを確認するには、show mac コマンドを発行 します。In列とOut列は、特定のポートで送受信されたユニキャスト、マルチキャスト、およびブ ロードキャストパケットの数を示しています。最後の行のカウンタは、廃棄されたパケットと失 われたパケットの数、およびそれらのパケットが着信トラフィックと発信トラフィックのいずれ の一部であったかが示されています。Lrn-Discrd、In-Lost、および Out-Lost は、バッファ不足が原因で 誤って転送または廃棄されたパケットの数をカウントします。

L2Switch_1#show interfaces gi1/0/13 counters

PortInOctetsInUcastPktsInMcastPktsInBcastPktsGi1/0/133049333331180453108253814978

PortOutOctetsOutUcastPktsOutMcastPktsOutBcastPktsGi1/0/13282752538276716824562588960

3. IP 接続性の確認

IP 接続性を確認します。関連付けられたルータからリモートHSRPデバイスにIP pingを発行しま す。瞬間的な接続性の喪失があれば、これによって明らかになります。拡張 ping が使用できるの は enable モードでだけです。コマンド出力例を挙げます。

Router_1#show run interface vlan 10 Building configuration...

Current configuration : 141 bytes ! interface Vlan10 ip address 192.168.10.1 255.255.255.0 standby 110 ip 192.168.10.100 standby 110 priority 110 standby 110 preempt end

Router_2#show run interface vlan 10 Building configuration...

Current configuration : 120 bytes ! interface Vlan10 ip address 192.168.10.2 255.255.255.0 standby 110 ip 192.168.10.100 standby 110 priority 109 end

Router_1#ping 192.168.10.2 repeat 1500 Type escape sequence to abort. Sending 1500, 100-byte ICMP Echos to 192.168.10.2, timeout is 2 seconds: Success rate is 100 percent (1500/1500), round-trip min/avg/max = 1/2/9 ms

各 HSRP ルータからピアに対して ping を発行し、接続性の障害のある箇所を特定します。

4. 単方向リンクのチェック

スイッチに HSRP ピアとの間の単方向リンクがないかをチェックします。単方向リンクが発生す るのは、ローカル デバイスがリンクを通じて送信したトラフィックは隣接デバイスで受信される にもかかわらず、隣接デバイスが送信したトラフィックがそのローカル デバイスでは受信されな い場合です。この機能は、UniDirectional Link Detection (UDLD; 単方向リンク検出)アグレッシ ブモードと呼ばれています。UDLD が可能なのは、接続の両端でこの機能がサポートされている 場合だけです。UDLD アグレッシブモードは L2 で動作し、リンクが正常に接続されているかど うか、およびトラフィックが適切な隣接デバイス間で双方向に流れているかを判断します。次に

✤ 注:次のリンクに移動して、UDLD機能の理解と設定を行います。これは、使用されている プラットフォームによって異なります。

UDLDが使用できない場合に単方向リンクの確認に役立つもう1つのオプションは、Cisco Discovery Protocol(CDP)を使用する方法です。CDP を有効にすることでも、単方向リンクの存在 を検出できます。リンクの片側だけで隣接デバイスを認識できる場合は、デバイスを接続してい るケーブルを交換し、インターフェイスが故障していないかをチェックします。

Router_1#show cdp Global CDP information: Sending CDP packets every 60 seconds Sending a holdtime value of 180 seconds Sending CDPv2 advertisements is enabled

Router_1#show cdp neighbors gi1/0/1 detail

Device ID: L2Switch_1.cisco.com Entry address(es): IP address: 192.168.70.1 IPv6 address: 2001:420:140E:2101::1 (global unicast) IPv6 address: FE80::2FE:C8FF:FED3:86C7 (link-local) Platform: cisco WS-C3650-12X48UR, Capabilities: Router Switch IGMP Interface: GigabitEthernet1/0/1, Port ID (outgoing port): GigabitEthernet1/0/13 Holdtime : 173 sec

Version :

Cisco IOS Software [Denali], Catalyst L3 Switch Software (CAT3K_CAA-UNIVERSALK9-M), Version 16.3.8, RELEASE SOFTWARE (fc3) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2019 by Cisco Systems, Inc. Compiled Wed 13-Feb-19 03:00 by mcpre

advertisement version: 2 VTP Management Domain: 'CALOnet' Native VLAN: 1 Duplex: full Management address(es): IP address: 192.168.70.1 Spare Pair PoE: Yes, Spare Pair Detection Required: No Spare Pair PD Config: Disable, Spare Pair PSE Operational: No

Total cdp entries displayed : 1

5. 物理層のトラブルシューティングに関するその他のリファレンス

次のドキュメントを参照してください。

• <u>イーサネット 10/100/1000 Mbps 半二重/全二重自動ネゴシエーションの設定とトラブルシ</u>

<u>ューティング</u>

- <u>Cisco IOS プラットフォームでの Errdisable ポート状態の回復</u>
- 「Troubleshooting Cisco Catalyst Switches to NIC Compatibility Issues (Cisco Catalyst スイ ッチと NIC との互換性に関する問題のトラブルシューティング)」
- Cisco Catalyst スイッチと NIC との互換性に関する問題のトラブルシューティングの「デー タリンクエラーについて」セクション
- トラブルシューティング:スイッチポートおよびインターフェイスの問題

D. レイヤ 3 HSRP デバッグ

HSRP状態の変化が頻繁に起こる場合は、ルータでHSRP debugコマンド(イネーブルモード)を使用して、HSRPのアクティビティを監視します。この情報は、どのような HSRP パケットがルータで送受信されているかを確認する上で役立ちます。シスコ テクニカル サポートでサービスリクエストを作成する場合は、この情報を収集します。デバッグ出力には、HSRP 状態に関する情報とともに、詳細な HSRP hello パケットのアカウントも表示されます。

1. 標準 HSRP デバッグ

Cisco IOSでは、debug standbyコマンドを使用して、HSRPデバッグ機能を有効にします。この 情報は、問題が断続的で、影響が少数のインターフェイスだけに及ぶような場合に役立ちます。 このデバッグによって、問題の HSRP ルータが一定の間隔で HSRP hello パケットを送受信して いるかどうかがわかります。ルータが hello パケットが受信しない場合は、ピアが hello パケット を送信していないか、またはネットワークがパケットを廃棄しているかのどちらかが推測されま す。

コマンド	目的		
debug standby	HSRP デバッグを有効にする		

コマンド出力例を挙げます。

Router_1#debug standby

HSRP debugging is on

Jul 29 16:12:16.889: HSRP: V110 Grp 110 Hello out 192.168.10.1 Active pri 110 vIP 192.168.10.100 Jul 29 16:12:16.996: HSRP: V111 Grp 111 Hello in 192.168.11.2 Standby pri 109 vIP 192.168.11.100 Jul 29 16:12:17.183: HSRP: V110 Grp 110 Hello in 192.168.10.2 Standby pri 109 vIP 192.168.10.100 Jul 29 16:12:17.366: HSRP: V111 Grp 111 Hello out 192.168.11.1 Active pri 110 vIP 192.168.11.100 Jul 29 16:12:18.736: HSRP: V110 Interface adv in, Passive, active 0, passive 1, from 192.168.10.2 Jul 29 16:12:19.622: HSRP: V110 Grp 110 Hello out 192.168.10.1 Active pri 110 vIP 192.168.10.100

2. 条件付き HSRP デバッグ(スタンバイ グループや VLAN に基づく出力の制限)

Cisco IOS ソフトウェア リリース 12.0(3) ではデバッグ条件が導入されたため、インターフェイ

スとグループ番号に基づいて、debug standby コマンドの出力にフィルタをかけることができま す。コマンドは、Cisco IOS ソフトウェア リリース 12.0 で導入されたデバッグ条件のパラダイム を利用します。

コマンド	目的
デバッグ条件standby <インターフェイ	グループ(0 ~ 255)に対する HSRP 条件付きデバッ
ス> <グループ>	グをイネーブルにする

interface は、HSRP をサポートできる有効なインターフェイスである必要があります。group に は、0 から 255 の任意のグループを指定できます。存在しないグループにデバッグ条件を設定す ることもできます。これにより、新しいグループの初期化中のデバッグを取得することが可能で す。デバッグ出力を生成するためには、debug standby を有効にしておく必要があります。スタ ンバイ デバッグ条件が存在しない場合は、すべてのインターフェイス上にあるすべてのグループ についてデバッグ出力が生成されます。スタンバイ デバッグ条件が 1 つ以上存在する場合は、す べてのスタンバイ デバッグ条件に従って、スタンバイ デバッグの出力がフィルタリングされます 。コマンド出力例を挙げます。

Router_1#debug condition standby vlan 10 110 Condition 1 set Router_1# Jul 29 16:16:20.284: Vl10 HSRP110 Debug: Condition 1, hsrp Vl10 HSRP110 triggered, count 1 Router_1#debug standby HSRP debugging is on Router_1# Jul 29 16:16:44.797: HSRP: Vl10 Grp 110 Hello out 192.168.10.1 Active pri 110 vIP 192.168.10.100 Jul 29 16:16:45.381: HSRP: Vl10 Grp 110 Hello in 192.168.10.2 Standby pri 109 vIP 192.168.10.100 Jul 29 16:16:47.231: HSRP: Vl10 Grp 110 Hello out 192.168.10.1 Active pri 110 vIP 192.168.10.100 Jul 29 16:16:48.248: HSRP: Vl10 Grp 110 Hello in 192.168.10.2 Standby pri 109 vIP 192.168.10.100

3. 拡張 HSRP デバッグ

Cisco IOS ソフトウェア リリース 12.1(1) では、拡張 HSRP デバッグが導入されました。有用な 情報を見つけ出せるよう、拡張 HSRP デバッグでは定期的な hello メッセージのノイズが制限さ れるほか、状態に関する情報が追加されます。この情報は、サービス リクエストを作成する場合 、シスコ テクニカル サポートのエンジニアと共同作業を行う際に特に役立ちます。

コマンド	目的
debug standby	HSRP のエラー、イベント、およびパケッ トをすべて表示する
debug standby errors	HSRP エラーを表示する
debug standby events [[all] [hsrp redundancy track]] [detail]	HSRP イベントを表示する
debug standby packets [[all terse] [advertise coup hello resign]] [detail]	HSRP パケットを表示する
debug standby terse	HSRPエラー、イベント、およびパケット の範囲が限られている

コマンド出力例を挙げます。

Router_2#debug standby terse
HSRP:
HSRP Errors debugging is on
HSRP Events debugging is on
(protocol, neighbor, redundancy, track, ha, arp, interface)
HSRP Packets debugging is on
(Coup, Resign)
Router_2#
*Jul 29 16:49:35.416: HSRP: V110 Grp 110 Resign in 192.168.10.1 Active pri 110 vIP 192.168.10.100
*Jul 29 16:49:35.416: HSRP: Vl10 Grp 110 Standby: i/Resign rcvd (110/192.168.10.1)
*Jul 29 16:49:35.416: HSRP: V110 Grp 110 Active router is local, was 192.168.10.1
*Jul 29 16:49:35.416: HSRP: V110 Nbr 192.168.10.1 no longer active for group 110 (Standby)
*Jul 29 16:49:35.417: HSRP: V110 Nbr 192.168.10.1 Was active or standby - start passive holddown
*Jul 29 16:49:35.417: HSRP: V110 Grp 110 Standby router is unknown, was local
*Jul 29 16:49:35.417: HSRP: V110 Grp 110 Standby -> Active
*Jul 29 16:49:35.418: %HSRP-5-STATECHANGE: Vlan10 Grp 110 state Standby -> Active
*Jul 29 16:49:35.418: HSRP: Peer not present
*Jul 29 16:49:35.418: HSRP: Vl10 Grp 110 Redundancy "hsrp-Vl10-110" state Standby -> Active
*Jul 29 16:49:35.419: HSRP: V110 Grp 110 Added 192.168.10.100 to ARP (0000.0c07.ac6e)
*Jul 29 16:49:35.420: HSRP: V110 IP Redundancy "hsrp-V110-110" standby, local -> unknown
*Jul 29 16:49:35.421: HSRP: V110 IP Redundancy "hsrp-V110-110" update, Standby -> Active
*Jul 29 16:49:38.422: HSRP: V110 IP Redundancy "hsrp-V110-110" update, Active -> Active

このデバッグ出力をフィルタリングするため、インターフェイスや HSRP グループによる条件付 きデバッグを使用できます。

コマンド	目的
debug condition interface interface	インターフェイスの条件付きデバッグを有効 にする
デバッグ条件standby <インターフェイス> <グル ープ>	HSRP の条件付きデバッグを有効にする

この例では、ルータが既存の HSRP グループに参加しています。

Rotuer_2#debug condition standby vlan 10 110 Condition 1 set Router_2#debug condition interface gigabitEthernet 1/0/1 vlan-id 10 Condition 2 set Router_2#debug standby HSRP debugging is on Router_2# *Jul 29 16:54:12.496: HSRP: Vl10 Grp 110 Hello out 192.168.10.2 Active pri 109 vIP 192.168.10.100 *Jul 29 16:54:15.122: HSRP: Vl10 Grp 110 Hello out 192.168.10.2 Active pri 109 vIP 192.168.10.100 *Jul 29 16:54:17.737: HSRP: Vl10 Grp 110 Hello out 192.168.10.2 Active pri 109 vIP 192.168.10.100 *Jul 29 16:54:17.737: HSRP: Vl10 Grp 110 Hello out 192.168.10.2 Active pri 109 vIP 192.168.10.100 *Jul 29 16:54:20.316: HSRP: Vl10 Grp 110 Hello out 192.168.10.2 Active pri 109 vIP 192.168.10.100 *Jul 29 16:54:20.316: HSRP: Vl10 Grp 110 Hello out 192.168.10.1 Listen pri 109 vIP 192.168.10.100 *Jul 29 16:54:20.322: HSRP: Vl10 Grp 110 Active: j/Coup rcvd from higher pri router (110/192.168.10.1) *Jul 29 16:54:20.323: HSRP: V110 Grp 110 Active router is 192.168.10.1, was local *Jul 29 16:54:20.323: HSRP: V110 Nbr 192.168.10.1 is no longer passive *Jul 29 16:54:20.324: HSRP: V110 Nbr 192.168.10.1 active for group 110 *Jul 29 16:54:20.324: HSRP: V110 Grp 110 Active -> Speak *Jul 29 16:54:20.325: %HSRP-5-STATECHANGE: Vlan10 Grp 110 state Active -> Speak *Jul 29 16:54:20.325: HSRP: Peer not present *Jul 29 16:54:20.325: HSRP: V110 Grp 110 Redundancy "hsrp-V110-110" state Active -> Speak *Jul 29 16:54:20.326: HSRP: V110 Grp 110 Removed 192.168.10.100 from ARP *Jul 29 16:54:20.326: HSRP: V110 Grp 110 Deactivating MAC 0000.0c07.ac6e *Jul 29 16:54:20.327: HSRP: V110 Grp 110 Removing 0000.0c07.ac6e from MAC address filter *Jul 29 16:54:20.328: HSRP: V110 Grp 110 Hello out 192.168.10.2 Speak pri 109 vIP 192.168.10.100 *Jul 29 16:54:20.328: HSRP: V110 Grp 110 Hello in 192.168.10.1 Active pri 110 vIP 192.168.10.100 *Jul 29 16:54:23.104: HSRP: V110 Grp 110 Hello out 192.168.10.2 Speak pri 109 vIP 192.168.10.100 *Jul 29 16:54:23.226: HSRP: V110 Grp 110 Hello in 192.168.10.1 Active pri 110 vIP 192.168.10.100 *Jul 29 16:54:25.825: HSRP: Vl10 Grp 110 Hello in 192.168.10.1 Active pri 110 vIP 192.168.10.100 *Jul 29 16:54:25.952: HSRP: V110 Grp 110 Hello out 192.168.10.2 Speak pri 109 vIP 192.168.10.100 *Jul 29 16:54:28.427: HSRP: Vl10 Grp 110 Hello in 192.168.10.1 Active pri 110 vIP 192.168.10.100 *Jul 29 16:54:28.772: HSRP: V110 Grp 110 Hello out 192.168.10.2 Speak pri 109 vIP 192.168.10.100 *Jul 29 16:54:30.727: HSRP: V110 Grp 110 Speak: d/Standby timer expired (unknown) *Jul 29 16:54:30.727: HSRP: V110 Grp 110 Standby router is local *Jul 29 16:54:30.727: HSRP: V110 Grp 110 Speak -> Standby *Jul 29 16:54:30.727: %HSRP-5-STATECHANGE: Vlan10 Grp 110 state Speak -> Standby *Jul 29 16:54:30.728: HSRP: Peer not present *Jul 29 16:54:30.728: HSRP: V110 Grp 110 Redundancy "hsrp-V110-110" state Speak -> Standby *Jul 29 16:54:30.728: HSRP: V110 Grp 110 Hello out 192.168.10.2 Standby pri 109 vIP 192.168.10.100 *Jul 29 16:54:31.082: HSRP: Vl10 Grp 110 Hello in 192.168.10.1 Active pri 110 vIP 192.168.10.100 *Jul 29 16:54:33.459: HSRP: V110 Grp 110 Hello out 192.168.10.2 Standby pri 109 vIP 192.168.10.100 *Jul 29 16:54:33.811: HSRP: V110 Grp 110 Hello in 192.168.10.1 Active pri 110 vIP 192.168.10.100 *Jul 29 16:54:36.344: HSRP: V110 Grp 110 Hello out 192.168.10.2 Standby pri 109 vIP 192.168.10.100 *Jul 29 16:54:36.378: HSRP: V110 Grp 110 Hello in 192.168.10.1 Active pri 110 vIP 192.168.10.100 *Jul 29 16:54:38.856: HSRP: V110 Grp 110 Hello in 192.168.10.1 Active pri 110 vIP 192.168.10.100 *Jul 29 16:54:38.876: HSRP: V110 Grp 110 Hello out 192.168.10.2 Standby pri 109 vIP 192.168.10.100 *Jul 29 16:54:41.688: HSRP: V110 Grp 110 Hello out 192.168.10.2 Standby pri 109 vIP 192.168.10.100 *Jul 29 16:54:41.717: HSRP: Vl10 Grp 110 Hello in 192.168.10.1 Active pri 110 vIP 192.168.10.100

E. スパニング ツリーのトラブルシューティング

ネットワーク内での STP のループ状態や不安定さにより、HSRP ピアの適切な通信が妨げられる 場合があります。この不適切な通信が原因で、それぞれのピアがアクティブルータになります。 STP ループにより、ブロードキャスト ストーム、フレームの重複、および MAC テーブルの矛盾 が引き起こされる可能性があります。これらの問題はすべてネットワーク全体、とりわけ HSRP に影響を及ぼします。STP 問題の最初の徴候が HSRP エラー メッセージであることもあります 。

STP のトラブルシューティングを行う際には、ネットワークの STP トポロジを VLAN ごとに理 解する必要があります。どのスイッチがルート ブリッジであり、スイッチ上のどのポートがブロ ッキング状態で、どのポートがフォワーディング状態かを特定する必要があります。各 VLAN に はそれぞれ固有の STP トポロジがあるため、この情報は VLAN ごとに非常に重要です。

1. スパニング ツリー設定の確認

ネットワーク内にあるすべてのスイッチとブリッジング デバイスで STP が設定されていること

を確認します。各スイッチが、ルートブリッジをどこにあると認識しているかに注意します。また、次のタイマーの値にも注意します。

- Root Max Age
- Helloタイム
- 転送遅延

この情報すべてを参照するにはshow spanning-treeコマンドを発行します。デフォルトでは、このコマンドはすべてのVLANに関する情報を表示します。ただし、コマンドを使用してVLAN番号を指定すると、他のVLAN情報をフィルタリングすることもできます。この情報は、STP 問題のトラブルシューティングを行う際に非常に役に立ちます。

show spanning-treeの出力に表示される、これらの3つのタイマーは、ルートブリッジから学習さ れます。これらのタイマーは、特定のブリッジに設定されているタイマーと一致する必要はあり ません。しかし、このスイッチがある時点でルート ブリッジになるような場合は、これらのタイ マーがルート ブリッジと一致していることを確認してください。タイマーがルート ブリッジと一 致していると、一貫性が維持され管理が容易になります。また、誤ったタイマーを持つスイッチ によってネットワークが損なわれることが防止されます。

注:ネットワーク内に冗長リンクがあるかどうかに関係なく、常にすべてのVLANでSTPを 有効にしてください。非冗長ネットワークで STP を有効にすると、障害が防止されます。 スイッチどうしやスイッチとハブをブリッジし、誤って物理ループが作成された場合に障害 が発生する場合があります。STP は特定の問題を切り分けるためにも非常に役立ちます。 STP を有効にした結果、ネットワーク内のなんらかの動作に影響が生じた場合は、切り分 けが必要な既存の問題がある可能性があります。

show spanning-treeコマンドの出力例を次に示します。

L2Switch_1#show spanning-tree vlan 10								
VLAN0010								
Spanning tr	Spanning tree enabled protocol rstp							
Root ID I	Priority 32778							
Add	ress 00fe.c8d3.86	580						
This	bridge is the root							
Hell	o Time 2 sec Max	Age 20 sec Forward Delay 15 sec						
Bridge ID Add Hell Agir	Priority 32778 (p ress 00fe.c8d3.86 o Time 2 sec Max ng Time 300 sec	riority 32768 sys-id-ext 10) 580 Age 20 sec Forward Delay 15 sec						
Interface	Role Sts Cost	Prio.Nbr Type						
Gi1/0/3	Desg FWD 4	128.3 P2p						
Gi1/0/10	Desg FWD 4	128.10 P2p Edge						
Gi1/0/11	Desg FWD 4	128.11 P2p						
Gi1/0/13	Desg FWD 4	128.13 P2p						

Gi1/0/14	Desg FWD 4	128.14	P2p
Gi1/0/15	Desg FWD 4	128.15	P2p
Gi1/0/16	Desg FWD 4	128.16	P2p
Gi1/0/35	Desg FWD 4	128.35	P2p

L2Switch_1#show spanning-tree vlan 11

VLAN0011

Spanning tree enabled protocol rstp
Root ID Priority 32779
Address 00fe.c8d3.8680
This bridge is the root
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 32779 (priority 32768 sys-id-ext 11) Address 00fe.c8d3.8680 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300 sec

Interface	Role Sts Cost	Prio.Nbr Type	
Gi1/0/3	Desg FWD 4	128.3 P2p	
Gi1/0/10	Desg FWD 4	128.10 P2p Edge	
Gi1/0/11	Desg FWD 4	128.11 P2p	
Gi1/0/13	Desg FWD 4	128.13 P2p	
Gi1/0/14	Desg FWD 4	128.14 P2p	
Gi1/0/15	Desg FWD 4	128.15 P2p	
Gi1/0/16	Desg FWD 4	128.16 P2p	
Gi1/0/35	Desg FWD 4	128.35 P2p	

スイッチL2Switch_1はVLAN 10とVLAN 11のルートです。

2. スパニング ツリー ループ状態

STP ループが発生する場合、ネットワーク内に L2 の物理的冗長性があるはずです。物理ループ の状態になる可能性がない場合、STP ループは発生しません。STP ループ状態の症状には次のも のがあります。

- ・ ネットワーク全体の停止
- 接続の消失
- ネットワーク機器によりプロセスやシステムの高い使用率がレポートされる

STP ループ状態の VLAN が 1 つでもあれば、リンクの輻輳が起こり、他の VLAN が帯域幅不足 に陥る可能性があります。show interfaces <interface> controllerコマンドにより、過剰な数のパ ケットを送受信しているポートが特定されます。ブロードキャストとマルチキャストが過剰なポ ートは、STP ループを構成している可能性があります。基本的には、マルチキャストまたはブロ ードキャストがユニキャスト パケットの数を上回っている場合は、リンクが STP ループ状態に 陥っていることを常に疑います。

◆ 注:スイッチでは、マルチキャストフレームとして送受信されるSTPブリッジプロトコルデ ータユニット(BPDU)もカウントされます。ポートでは、STP ブロッキング状態になっても 、引き続き STP BPDU は送受信されます。

Router_2#show interfaces gi1/0/1 controller GigabitEthernet1/0/1 is up, line protocol is up (connected) Hardware is Gigabit Ethernet, address is 1880.90d8.5901 (bia 1880.90d8.5901) Description: PNP STARTUP VLAN MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Full-duplex, 1000Mb/s, media type is 10/100/1000BaseTX input flow-control is on, output flow-control is unsupported ARP type: ARPA, ARP Timeout 04:00:00 Last input 00:00:00, output 00:00:04, output hang never Last clearing of "show interface" counters never Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 33000 bits/sec, 31 packets/sec 5 minute output rate 116000 bits/sec, 33 packets/sec 9641686 packets input, 1477317083 bytes, 0 no buffer Received 1913802 broadcasts (1151766 multicasts) 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog, 1151766 multicast, 0 pause input 0 input packets with dribble condition detected 10702696 packets output, 4241534645 bytes, 0 underruns Output 3432 broadcasts (0 multicasts) 0 output errors, 0 collisions, 2 interface resets 9582 unknown protocol drops 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier, 0 pause output 0 output buffer failures, 0 output buffers swapped out Transmit GigabitEthernet1/0/1 Receive 4241534645 Total bytes 1477317083 Total bytes 10562003 Unicast frames 7727884 Unicast frames 4229489212 Unicast bytes 1291270617 Unicast bytes 137261 Multicast frames 1151766 Multicast frames 11812065 Multicast bytes 91096867 Multicast bytes 3432 Broadcast frames 762036 Broadcast frames 233368 Broadcast bytes 94949599 Broadcast bytes 0 System FCS error frames 0 IpgViolation frames 0 MacUnderrun frames 0 MacOverrun frames 0 Pause frames 0 Pause frames 0 Cos 0 Pause frames 0 Cos 0 Pause frames 0 Cos 1 Pause frames 0 Cos 1 Pause frames 0 Cos 2 Pause frames 0 Cos 2 Pause frames 0 Cos 3 Pause frames 0 Cos 3 Pause frames 0 Cos 4 Pause frames 0 Cos 4 Pause frames 0 Cos 5 Pause frames 0 Cos 5 Pause frames 0 Cos 6 Pause frames 0 Cos 6 Pause frames 0 Cos 7 Pause frames 0 Cos 7 Pause frames 0 Oam frames 0 OamProcessed frames

0 Oam frames 38144 Minimum size frames 4910833 65 to 127 byte frames 1237675 128 to 255 byte frames 1029126 256 to 511 byte frames 2205966 512 to 1023 byte frames 1280952 1024 to 1518 byte frames 0 1519 to 2047 byte frames 0 2048 to 4095 byte frames 0 4096 to 8191 byte frames 0 8192 to 16383 byte frames 0 16384 to 32767 byte frame 0 > 32768 byte frames 0 Late collision frames 0 Excess Defer frames 0 Good (1 coll) frames 0 Good (>1 coll) frames 0 Deferred frames 0 Gold frames dropped 0 Gold frames truncated 0 Gold frames successful 0 1 collision frames 0 2 collision frames 0 3 collision frames 0 4 collision frames 0 5 collision frames 0 6 collision frames 07 collision frames 0 8 collision frames 0 9 collision frames 0 10 collision frames 0 11 collision frames 0 12 collision frames 0 13 collision frames 0 14 collision frames 0 15 collision frames 0 Excess collision frames

0 OamDropped frames 4165201 Minimum size frames 3126489 65 to 127 byte frames 750243 128 to 255 byte frames 1279281 256 to 511 byte frames 103668 512 to 1023 byte frames 205229 1024 to 1518 byte frames 11575 1519 to 2047 byte frames 0 2048 to 4095 byte frames 0 4096 to 8191 byte frames 0 8192 to 16383 byte frames 0 16384 to 32767 byte frame 0 > 32768 byte frames 0 SymbolErr frames 0 Collision fragments 0 ValidUnderSize frames 0 InvalidOverSize frames 0 ValidOverSize frames 0 FcsErr frames

LAST UPDATE 2384 msecs AGO

3. トポロジ変更通知

STP問題の診断に重要なもう1つのコマンドが、show spanning-tree detailコマンドです。このコ マンドは、Topology Change Notification (TCN; トポロジ変更通知)メッセージを発信者までた どって追跡します。TCN メッセージは、特別な BPDU としてスイッチ間で送信され、スイッチ 上でトポロジの変更があったことを示します。トポロジの変更があったスイッチは、自身のルー トポートから TCN を送出します。TCN は上流方向にルート ブリッジまで移動します。ルート ブリッジは、Topology Change Acknowledgement (TCA; トポロジ変更確認応答)というもう 1 つの特別な BPDU をすべてのポートから送出します。ルート ブリッジはコンフィギュレーショ ン BPDU に TCN ビットを設定します。これにより、すべての非ルート ブリッジは自身の MAC アドレス テーブルのエージング タイマーをコンフィギュレーション STP 転送遅延に設定します。 この問題を切り分けるには、各VLANのルートブリッジにアクセスし、スイッチが接続されたポ ートに対してshow spanning-tree <interface> detailコマンドを発行します。last change occurredエントリに、最後のTCNが受信された時刻が表示されます。この状況では、TCN を受信 してから時間が経過し過ぎているため、どのデバイスが STP ループの原因となる TCN を発行し たかはわかりません。Number of topology changesエントリから、発生したTCNの数を推測できま す。STP ループの間、このカウンタは 1 分ごとに増分される可能性があります。詳細は、「 Spanning Tree Protocol Problems and Related Design Considerations (スパニングツリープロト コルのトラブルシューティングと設計上の考慮事項)」を参照してください。

そのほか、次のような役立つ情報があります。

- ・ 前回の TCN のポート
- 前回の TCN の時刻
- 現在の TCN の数

コマンド出力例を挙げます。

L2Switch_1#show spanning-tree vlan 10 detail

VLAN0010 is executing the rstp compatible Spanning Tree protocol
Bridge Identifier has priority 32768, sysid 10, address 00fe.c8d3.8680
Configured hello time 2, max age 20, forward delay 15, transmit hold-count 6
We are the root of the spanning tree
Topology change flag not set, detected flag not set
Number of topology changes 8 last change occurred 03:21:48 ago from GigabitEthernet1/0/35
Times: hold 1, topology change 35, notification 2 hello 2, max age 20, forward delay 15
Timers: hello 0, topology change 0, notification 0, aging 300

Port 3 (GigabitEthernet1/0/3) of VLAN0010 is designated forwarding Port path cost 4, Port priority 128, Port Identifier 128.3. Designated root has priority 32778, address 00fe.c8d3.8680 Designated bridge has priority 32778, address 00fe.c8d3.8680 Designated port id is 128.3, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 Link type is point-to-point by default BPDU: sent 6066, received 0

Port 10 (GigabitEthernet1/0/10) of VLAN0010 is designated forwarding Port path cost 4, Port priority 128, Port Identifier 128.10. Designated root has priority 32778, address 00fe.c8d3.8680 Designated bridge has priority 32778, address 00fe.c8d3.8680 Designated port id is 128.10, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 The port is in the portfast mode by portfast trunk configuration Link type is point-to-point by default BPDU: sent 6063, received 0

Port 11 (GigabitEthernet1/0/11) of VLAN0010 is designated forwarding

Port path cost 4, Port priority 128, Port Identifier 128.11. Designated root has priority 32778, address 00fe.c8d3.8680 Designated bridge has priority 32778, address 00fe.c8d3.8680 Designated port id is 128.11, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 Link type is point-to-point by default BPDU: sent 6066, received 0

Port 13 (GigabitEthernet1/0/13) of VLAN0010 is designated forwarding Port path cost 4, Port priority 128, Port Identifier 128.13. Designated root has priority 32778, address 00fe.c8d3.8680 Designated bridge has priority 32778, address 00fe.c8d3.8680 Designated port id is 128.13, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 Link type is point-to-point by default BPDU: sent 6066, received 3

Port 14 (GigabitEthernet1/0/14) of VLAN0010 is designated forwarding Port path cost 4, Port priority 128, Port Identifier 128.14. Designated root has priority 32778, address 00fe.c8d3.8680 Designated bridge has priority 32778, address 00fe.c8d3.8680 Designated port id is 128.14, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 Link type is point-to-point by default BPDU: sent 6066, received 3

Port 15 (GigabitEthernet1/0/15) of VLAN0010 is designated forwarding Port path cost 4, Port priority 128, Port Identifier 128.15. Designated root has priority 32778, address 00fe.c8d3.8680 Designated bridge has priority 32778, address 00fe.c8d3.8680 Designated port id is 128.15, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 Link type is point-to-point by default BPDU: sent 6067, received 0

Port 16 (GigabitEthernet1/0/16) of VLAN0010 is designated forwarding Port path cost 4, Port priority 128, Port Identifier 128.16. Designated root has priority 32778, address 00fe.c8d3.8680 Designated bridge has priority 32778, address 00fe.c8d3.8680 Designated port id is 128.16, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 Link type is point-to-point by default BPDU: sent 6067, received 0

Port 35 (GigabitEthernet1/0/35) of VLAN0010 is designated forwarding Port path cost 4, Port priority 128, Port Identifier 128.35. Designated root has priority 32778, address 00fe.c8d3.8680 Designated bridge has priority 32778, address 00fe.c8d3.8680 Designated port id is 128.35, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 Link type is point-to-point by default BPDU: sent 6067, received 0 この出力は、インターフェイスGigabitEthernet1/0/35に接続されたデバイスから最後のトポロジ 変更が発生したことを示しています。次に、このデバイスから同じshow spanning-tree detailコマ ンドを発行して、問題の追跡を試みます。TCNを生成するこのスイッチがPCまたはエンドポイン トだけに接続されている場合は、これらのポートでSTP PortFastが有効になっていることを確認 します。STP PortFast が有効であれば、ポートの状態が遷移したときに STP TCN が抑制されま す。

STP の情報と、ネットワーク インターフェイス カード(NIC)に関連するリンク遷移のトラブル シューティングを行う方法については、次のドキュメントを参照してください。

- ・ PortFast と他のコマンドを使用したワークステーションの接続始動遅延の修復
- <u>高速スパニングツリープロトコル(802.1w)について</u>
- STP の問題点と関連設計の考慮事項

4. ブロックされたポートの切断

Fast EtherChannel (FEC) (ポートチャネリング)のロード バランシング特性が原因で、FEC 問題が HSRP と STP 両方の問題の一因になる場合があります。STPまたはHSRPのトラブルシュ ーティングを行う際、FEC接続の設定を削除できます。設定の変更を行った後、両方のスイッチ でshow spanning-tree blockedportsコマンドを発行します。少なくとも一方のポートが、接続の 片側でブロッキングを開始するようにします。

Fast EtherChannel については、次のドキュメントを参照してください。

- <u>CatalystスイッチでのEtherChannelのロードバランシングと冗長性について</u>
- ・ <u>EtherChannel の設定</u>

5. ブロードキャストの抑制

ブロードキャスト ストームの影響が軽減されるようにするには、ブロードキャストの抑制を有効 にします。ブロードキャスト ストームは、STP ループの主な副作用の 1 つです。コマンド出力 例を挙げます。

L2Switch_1#show run interface TenGigabitEthernet1/1/5 Building configuration...

Current configuration : 279 bytes ! interface TenGigabitEthernet1/1/5 switchport trunk allowed vlan 300-309 switchport mode trunk storm-control broadcast level 30.00 storm-control multicast level 30.00 storm-control unicast level 30.00 spanning-tree guard root end L2Switch_1#show storm-control broadcast

Key: U - Unicast, B - Broadcast, M - Multicast

Interface	Filter State	Upper Lo	wer Cur	rent Ac	ction	Туре
Te1/1/5	Forwarding	30.00%	30.00%	0.00%	None	В
Te1/1/7	Link Down	30.00%	30.00%	0.00%	None	В
Te1/1/8	Forwarding	10.00%	10.00%	0.00%	None	В

L2Switch_1#show storm-control multicast

Key: U - Unicast, B - Broadcast, M - Multicast

Interface	Filter State	Upper	Lower	Curr	ent Ac	tion	Туре
Te1/1/5	Forwarding	30.	00% 3	0.00%	0.00%	None	Μ
Te1/1/7	Link Down	30.	00% 3	30.00%	0.00%	None	Μ

6. コンソールおよび Telnet アクセス

スイッチへのコンソール トラフィックまたは Telnet トラフィックが停滞し、STP ループの発生 時に問題のデバイスを適切に追跡できない場合があります。ネットワークを強制的に即時復旧す るには、冗長物理リンクをすべて削除します。新しい非冗長トポロジで STP が再コンバージされ るようになってから、一度に1つずつ冗長リンクを再接続します。特定のセグメントを追加した 後で STP ループが再び発生すれば、問題のデバイスがどれであるかがわかります。

7. スパニングツリーの機能: Portfast、UplinkFast、およびBackboneFast

PortFast、UplinkFast、および BackboneFast が適切に設定されていることを確認します。STP 問題のトラブルシューティングを行う際には、拡張 STP(UplinkFast と BackboneFast)をすべ て無効にします。さらに、STP PortFast が有効になっているのは、非ブリッジング ホストに直接 接続されているポートだけであることを確認します。非ブリッジング ホストには、ユーザ ワーク ステーションやブリッジ グループを持たないルータがあります。ハブや他のスイッチに接続され ているポートでは、PortFast を有効にしないでください。これらの機能の理解と設定に役立つド キュメントを次に示します。

<u>スパニングツリーPortFast、BPDUガード、BPDUフィルタ、UplinkFast、BackboneFast、および</u> <u>ループガードの設定</u>

<u>UplinkFast機能の理解と設定</u>

8. BPDU ガード

PortFast の BPDU ガードを有効にすると、PortFast 対応の非トランキング ポートで BPDU が受 信されたときに、そのポートが errdisable 状態に移行します。この機能は、PortFast が正しく設 定されていないポートを検出するのに役立ちます。また、デバイスがパケットを反映する場所、 またはネットワークにSTP BPDUを挿入する場所も検出します。STP問題のトラブルシューティ ングを行う際に、この機能を有効にすると、STPの問題を切り分けるのに役立ちます。 L2Switch_1#configure terminal Enter configuration commands, one per line. End with CNTL/Z. L2Switch_1(config)#spanning-tree portfast bpduguard L2Switch_1(config)#end

9. VTP プルーニング

ネットワークで VTP プルーニングが有効にされていると、HSRP グループのデバイスがアクティ ブになる場合があります。これにより、ゲートウェイで IP 競合が発生し、トラフィックの問題と なります。いずれかの HSRP グループの VLAN が、ネットワーク内で VTP によりプルーニング されていないことを確認してください。

F.分割攻略方式

HSRP 問題を切り分けたり解決したりする試みがすべて失敗した場合は、次のアプローチとして 「分割統治」法を利用します。この方法を使用すると、ネットワークと、ネットワークを構成す るコンポーネントを切り離すことができます。分割統治には、次に列挙するようなガイドライン があります。

- ✤ 注:このリストには、このドキュメントの他のセクションで説明したガイドラインが含まれています。
 - HSRP 用テスト VLAN と、HSRP ルータを使用してスイッチングする隔離された VLAN を 作成します。
 - すべての冗長ポートの接続を解除します。
 - FEC ポートを単一接続ポートに分割します。
 - HSRP グループのメンバを削減して 2 メンバだけにします。
 - トランク ポートをプルーニングして、それらのポートから必要な VLAN だけが伝搬される ようにします。
 - 問題がなくなるまで、ネットワーク内で接続されているスイッチの接続を解除します。

既知の問題

Cisco 2620/2621、ファストイーサネットを搭載したCisco 3600使用時のHSRP状 態のフラッピング/不安定性

この問題は、ネットワーク接続の途絶、または優先度の高い HSRP ルータのネットワークへの追加により、ファスト イーサネット インターフェイスで発生する可能性があります。HSRP 状態がアクティブからスピークに変わると、ルータはインターフェイスの MAC アドレス フィルタから HSRP MAC アドレスを削除するために、そのインターフェイスをリセットします。この問題

が発生するのは、Cisco 2600、3600、および 7500 のファスト イーサネット インターフェイスで 使用される特定のハードウェアに限られます。ルータ インターフェイスがリセットされるとファ スト イーサネット インターフェイスのリンク状態が変わり、スイッチがその変更を検出します。 スイッチで STP が動作している場合、その変更により STP の移行が発生します。STP がポート を forwarding 状態に遷移させるには 30 秒かかります。この時間はデフォルトの転送遅延時間で ある 15 秒の 2 倍です。同時に、HSRP ホールド タイムの 10 秒が経過すると、スピーク状態の ルータが standby 状態に遷移します。STP はまだフォワーディング状態でないため、アクティブ ルー タからの HSRP hello メッセージは受信されません。そのため、およそ 10 秒後にスタンバイ ル ータがアクティブになります。この時点で両方のルータが active になっています。STP ポートが フォワーディング状態になると、プライオリティの低い方のルータがアクティブからスピークに 変わり、プロセス全体が繰り返されます。

Platform	説明	Cisco Bug ID	修正	回避策
Cisco 2620/2621	HSRP を設定したとき やケーブルが抜けたと きに、ファースト イー サネット インターフェ イスがフラップし始め る。		ソフトウェア アッ プグレード。リビ ジョンの詳細は不 具合情報を参照し てください。	接続スイッチ ポ ートでスパニン グ ツリー PortFast を有効 にする。
Cisco 2620/2621	2600 のファスト イー サネットで HSRP 状態 のフラッピングが発生 している。		Cisco IOS ソフト ウェア リリース 12.1.3	接続スイッチ ポ ートでスパニン グ ツリー PortFast を有効 にする。
NM-1FE-TX ^{1 を搭載} した Cisco 3600	2600 および 3600 のフ ァースト イーサネット で HSRP 状態のフラッ ピングが発生していま す。		Cisco IOS ソフト ウェア リリース 12.1.3	接続スイッチ ポ ートでスパニン グ ツリー PortFast を有効 にする。
ファスト イーサネ ット インターフェ イスを搭載した Cisco 4500	4500 のファスト イー サネットで HSRP 状態 のフラッピングが発生 している。	Cisco Bug ID <u>CSCds16055</u>	Cisco IOS ソフト ウェア リリース 12.1.5	接続スイッチ ポ ートでスパニン グ ツリー PortFast を有効 にする。

1NM-1FE-TX は、1 ポートのファスト イーサネット(10/100BASE-TX インターフェイス)ネットワーク モジュール です。

STP 転送遅延がデフォルトの HSRP ホールド タイムの半分よりも短くなるように HSRP タイマ ーを調整するという、別の回避策もあります。デフォルトでは、STP 転送遅延は 15 秒、HSRP ホールド タイムは 10 秒になっています。

HSRP プロセスで track コマンドを使用する場合、HSRP フラップを回避するために特定のデク リメント値を使用することをお勧めします。

track コマンドを使用する場合の、HSRP アクティブ ルータの設定例を次に示します。

standby 1 ip 10.0.0.1
standby 1 priority 105
standby 1 preempt delay minimum 60
standby 1 name TEST
standby 1 track <object> decrement 15

ここで、15はオブジェクトがフラップしたときの減少値です。trackコマンドの詳細については、 『<u>HSRPv2の設定例</u>』のドキュメント「trackオプション」に移動してください。

関連情報

- <u>キャンパスLAN Catalystスイッチ アクセス</u>
- <u>LAN スイッチング</u>
- <u>テクニカル サポートとドキュメント Cisco Systems</u>

翻訳について

シスコは世界中のユーザにそれぞれの言語でサポート コンテンツを提供するために、機械と人に よる翻訳を組み合わせて、本ドキュメントを翻訳しています。ただし、最高度の機械翻訳であっ ても、専門家による翻訳のような正確性は確保されません。シスコは、これら翻訳の正確性につ いて法的責任を負いません。原典である英語版(リンクからアクセス可能)もあわせて参照する ことを推奨します。