Nexus 7000 serie M Module ELAM Procedura

Sommario

Introduzione

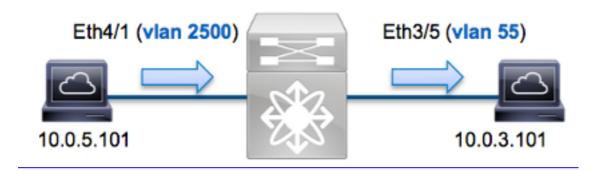
Topologia

Determinare il motore di inoltro in ingresso

Configurazione del trigger

Avvia l'acquisizione

Interpreta i risultati


Ulteriore verifica

Introduzione

Questo documento descrive i passaggi utilizzati per eseguire un ELAM sui moduli Cisco Nexus serie 7000 (N7K) M, spiega gli output più rilevanti e come interpretare i risultati.

Suggerimento: Fare riferimento al documento <u>ELAM Overview</u> per una panoramica su ELAM.

Topologia

Nell'esempio, un host sulla VLAN 2500 (10.0.5.101), la porta Eth4/1 invia una richiesta ICMP (Internet Control Message Protocol) a un host sulla VLAN 5 (10.0.3.101), la porta **Eth3/5**. ELAM viene usato per acquisire questo pacchetto singolo da **10.0.5.101** a **10.0.3.101**. È importante ricordare che ELAM consente di acquisire un singolo frame.

Per eseguire un ELAM sulla N7K, è necessario prima connettersi al modulo appropriato (è necessario avere il privilegio di amministratore di rete):

```
Attaching to module 4 ...

To exit type 'exit', to abort type '$.'

module-4#
```

Determinare il motore di inoltro in ingresso

Èprevisto che il traffico entri nello switch sulla porta **Eth4/1**. Quando si controllano i moduli nel sistema, si osserverà che il **modulo 4** è un modulo della serie M. È importante ricordare che la N7K è completamente distribuita e che i moduli, non il supervisore, prendono le decisioni di inoltro per il traffico della corsia dati.

N7K#	# show module				
Mod	Ports	Module-Type	Model	Status	
3	32	10 Gbps Ethernet Module	N7K-M132XP-12	ok	
4	48	10/100/1000 Mbps Ethernet Module	N7K-M148GT-11	ok	
5	0	Supervisor module-1X	N7K-SUP1	active *	
6	0	Supervisor module-1X	N7K-SUP1	ha-standby	

Per i moduli serie M, eseguire l'ELAM sul Layer 2 (L2) Forwarding Engine (FE) con il nome in codice interno **Eureka**. Il bus di dati L2 FE (DBUS) contiene le informazioni di intestazione originali prima delle ricerche L2 e Layer 3 (L3), mentre il bus di risultati (RBUS) contiene i risultati dopo entrambe le ricerche L3 e L2. La ricerca L3 viene eseguita dal layer L3/layer 4 (L4) FE con nome in codice interno **Lamira**, che è lo stesso processo utilizzato sulla piattaforma dello switch Cisco Catalyst serie 6500 con Supervisor Engine 2T.

I moduli serie M N7K possono utilizzare più FE per ciascun modulo, quindi è necessario determinare l'ASIC **Eureka** utilizzato per il FE sulla porta **Eth4/1**. Immettere questo comando per verificare:

Nell'output, è possibile vedere che la porta Eth4/1 è sull'istanza Eureka (L2LKP) 0.

Nota: Per i moduli serie M, la sintassi ELAM utilizza valori basati su 1, pertanto l'istanza **0** diventa l'istanza **1** quando si configura l'ELAM. Ciò non è il caso dei moduli della serie F.

Configurazione del trigger

Eureka ASIC supporta i trigger ELAM per IPv4, IPv6 e altri. Il trigger ELAM deve essere allineato al tipo di frame. Se il frame è un frame IPv4, il trigger deve essere anche IPv4. Un frame IPv4 non viene acquisito con un altro trigger. La stessa logica si applica a IPv6.

Con Nexus Operating Systems (NX-OS), è possibile utilizzare il punto interrogativo per separare il trigger ELAM:

```
module-4(eureka-elam)# trigger dbus dbi ingress ipv4 if ?
(some output omitted)
destination-flood
                        Destination Flood
destination-index
                       Destination Index
destination-ipv4-address Destination IP Address
destination-mac-address Destination MAC Address
                        IP TOS
ip-tos
                        IP Total Length
ip-total-len
                        IP TTL
ip-ttl
                     Source MAC Address
source-mac-address
                        Vlan ID Number
```

Nell'esempio, il frame viene acquisito in base agli indirizzi IPv4 di origine e di destinazione, quindi vengono specificati solo i valori specificati.

Eureka richiede l'impostazione di trigger per DBUS e RBUS. I dati RBUS possono risiedere in due diversi Packet Buffer (PB). La determinazione della variante PB corretta dipende dal tipo esatto di modulo e dalla porta in entrata. In genere, è consigliabile configurare PB1 e, se RBUS non viene attivato, ripetere la configurazione con PB2.

Di seguito è riportato il trigger DBUS:

vlan-id

```
module-4(eureka-elam)# trigger dbus dbi ingress ipv4 if source-ipv4-address
 10.0.5.101 destination-ipv4-address 10.0.3.101 rbi-corelate
Di seguito è riportato il trigger RBUS:
module-4(eureka-elam)# trigger rbus rbi pb1 ip if cap2 1
```

Nota: La parola chiave rbi-correlata alla fine del trigger DBUS è necessaria affinché RBUS venga attivato correttamente sul bit cap2.

Avvia l'acquisizione

Dopo aver selezionato la FE in entrata e configurato il trigger, è possibile avviare l'acquisizione:

```
module-4(eureka-elam)# start
```

Per controllare lo stato dell'ELAM, immettere il comando status:

```
module-4(eureka-elam)# status
Instance: 1
```

```
EU-DBUS: Armed
trigger dbus dbi ingress ipv4 if source-ipv4-address 10.0.5.101
  destination-ipv4-address 10.0.3.101 rbi-corelate
EU-RBUS: Armed
trigger rbus rbi pb1 ip if cap2 1
LM-DBUS: Dis-Armed
No configuration
LM-RBUS: Dis-Armed
No configuration
```

Quando il frame che corrisponde al trigger viene ricevuto dal FE, lo stato ELAM viene visualizzato come **Triggered**:

```
module-4(eureka-elam)# status
Instance: 1
EU-DBUS: Triggered
trigger dbus dbi ingress ipv4 if source-ipv4-address 10.0.5.101
  destination-ipv4-address 10.0.3.101 rbi-corelate
EU-RBUS: Triggered
trigger rbus rbi pbl ip if cap2 1
LM-DBUS: Dis-Armed
No configuration
LM-RBUS: Dis-Armed
No configuration
```

Interpreta i risultati

Per visualizzare i risultati ELAM, immettere i comandi **show dbus** e **show rbus**. Se il volume di traffico è elevato e corrisponde agli stessi trigger, DBUS e RBUS potrebbero attivare due frame diversi. È quindi importante controllare i numeri di sequenza interni sui dati DBUS e RBUS per verificare che corrispondano:

```
module-4(eureka-elam)# show dbus | i seq
seq = 0x05
module-4(eureka-elam)# show rbus | i seq
seq = 0x05
```

Di seguito è riportato l'estratto dei dati ELAM più importante per questo esempio (alcuni output sono omessi):

```
module-4(eureka-elam)# show dbus
seq = 0x05
vlan = 2500
source_index = 0x00a21
13_protocol = 0x0 (0:IPv4, 6:IPv6)
13_protocol_type = 0x01, (1:ICMP, 2:IGMP, 4:IP, 6:TCP, 17:UDP)
dmac = 00.00.0c.07.ac.65
smac = d0.d0.fd.b7.3d.c2
ip_ttl = 0xff
ip_source = 010.000.005.101
ip_destination = 010.000.003.101
module-4(eureka-elam)# show rbus
seq = 0x05
flood = 0x0
dest_index = 0x009ed
vlan = 55
ttl = 0xfe
```

```
data(rit/dmac/recir) = 00.05.73.a9.55.41
data(rit/smac/recir) = 84.78.ac.0e.47.41
```

Con i dati DBUS, è possibile verificare che il frame venga ricevuto sulla VLAN 2500 con un indirizzo MAC di origine d0d0.fdb7.3dc2 e un indirizzo MAC di destinazione 000.0c07.ac65. Si può anche notare che questo è un frame IPv4 originato da 10.0.5.101 e destinato a 10.0.3.101.

Suggerimento: Sono disponibili diversi altri campi utili non inclusi in questo output, ad esempio il valore TOS (Type of Service), i flag IP, la lunghezza IP e la lunghezza del frame L2.

Per verificare su quale porta viene ricevuto il frame, immettere il comando **SRC_INDEX** (la logica di destinazione locale (LTL) di origine). Immettere questo comando per eseguire il mapping di una LTL a una porta o a un gruppo di porte per la scheda N7K:

```
N7K# show system internal pixm info ltl 0xa21

Member info
-----
Type LTL
------
PHY_PORT Eth4/1

FLOOD_W_FPOE 0x8014
```

L'output mostra che il valore SRC_INDEX di 0xa21 è mappato alla porta Eth4/1. Ciò conferma che il frame viene ricevuto sulla porta Eth4/1.

Con i dati RBUS, è possibile verificare che il frame sia instradato alla VLAN 55 e che il valore TTL sia diminuito da **0xff** nei dati **DBUS** a **0xfe** nei **dati RBUS**. Come si può notare, gli indirizzi MAC di origine e destinazione vengono riscritti rispettivamente in **8478.ac0e.4741** e **005.73a9.5541**. Inoltre, è possibile confermare la porta in uscita da **DEST_INDEX** (LTL di destinazione):

```
N7K# show system internal pixm info ltl 0x9ed

Member info
-----

Type LTL
------

PHY_PORT Eth3/5

FLOOD_W_FPOE 0x8017

FLOOD_W_FPOE 0x8016
```

L'output mostra che il valore DEST_INDEX di 0x9ed viene mappato sulla porta Eth3/5. Ciò conferma che il frame viene inviato dalla porta Eth3/5.

Ulteriore verifica

Per verificare in che modo lo switch alloca il pool LTL, immettere il comando **show system internal pixm info ltl-region**. L'output di questo comando è utile per comprendere lo scopo di una LTL se non corrisponde a una porta fisica. Un buon esempio è un **Drop** LTL:

```
N7K# show system internal pixm info ltl 0x11a0 0x11a0 is not configured

N7K# show system internal pixm info ltl-region
```

LTL POOL TYPE	SIZE	RANGE			
DCE/FC Pool	1024	0x0000 to 0x03ff			
SUP Inband LTL	32	0x0400 to 0x041f			
MD Flood LTL	1	0x0420			
Central R/W	1	0x0421			
UCAST Pool	1536	0x0422 to $0x0a21$			
PC Pool	1720	0x0a22 to 0x10d9			
LC CPU Pool	32	0x1152 to 0x1171			
EARL Pool	72	0x10da to 0x1121			
SPAN Pool	48	0x1122 to 0x1151			
UCAST VDC Use Pool	16	0x1172 to 0x1181			
UCAST Generic Pool	30	0x1182 to 0x119f			
LISP Pool	4	0x1198 to 0x119b			
Invalid SI	1	0x119c to 0x119c			
ESPAN SI	1	0x119d to 0x119d			
Recirc SI	1	0x119e to 0x119e			
Drop DI	2	0x119f to 0x11a0			
UCAST (L3_SVI_SI) Region	31	0x11a1 to 0x11bf			
UCAST (Fex/GPC/SVI-ES) 3648	0x11c0 to	0x1fff			
UCAST Reserved for Future Use Region	2048	0x2000 to 0x27ff			
======================================					
VDC OMF Pool	32	0x2800 to 0x281f			