Utilisation élevée du CPU sur les commutateurs Catalyst 4500 basés sur le logiciel Cisco IOS

Contenu

Introduction Conditions préalables **Conditions requises** Components Used **Conventions** Informations générales Comprendre l'architecture de la gestion des paquets du CPU du commutateur Catalyst 4500 Identifier la raison de l'utilisation CPU élevée sur le commutateur Catalyst 4500 Spécification de base pour l'utilisation CPU Comprendre la commande show processes cpu sur les commutateurs Catalyst 4500 Comprendre la commande show platform health sur les commutateurs Catalyst 4500 Dépanner les problèmes courants liés à une utilisation CPU élevée Utilisation CPU élevée due aux paquets commutés par processus Autres causes d'une utilisation CPU élevée Outils de dépannage d'analyse du trafic destiné au CPU Outil 1 : Surveillance du trafic CPU avec SPAN-Logiciel Cisco IOS Version 12.1(19)EW et ultérieure Outil 2 : Analyseur de processeur intégré - Logiciel Cisco IOS version 12.2(20)EW et ultérieure Outil 3 : Identifier l'interface qui envoie le trafic au processeur - Logiciel Cisco IOS Version 12.2(20)EW et ultérieure Résumé Informations connexes

Introduction

Les commutateurs de la gamme Catalyst 4500, qui incluent les commutateurs Catalyst 4948, sont dotés d'une méthodologie de gestion des paquets sophistiqués pour le trafic lié au CPU. Une utilisation CPU élevée sur ces commutateurs est un problème récurrent. Ce document fournit des détails sur l'architecture de gestion des paquets CPU et vous montre comment identifier les causes d'une utilisation CPU élevée sur ces commutateurs. Ce document mentionne également des scénarios courants de configuration ou de réseau qui entraînent une utilisation CPU élevée sur la gamme Catalyst 4500.

Remarque : si vous exécutez des commutateurs Catalyst 4500/4000 basés sur Catalyst OS (CatOS), reportez-vous au document <u>Utilisation du CPU sur les commutateurs Catalyst</u> 4500/4000, 2948G, 2980G et 4912G qui exécutent le logiciel CatOS.

Conditions préalables

Conditions requises

Aucune spécification déterminée n'est requise pour ce document.

Components Used

Les informations contenues dans ce document sont basées sur les versions de matériel et de logiciel suivantes :

- Commutateurs de la gamme Catalyst 4500
- Commutateurs de la gamme Catalyst 4948

Remarque : Ce document s'applique uniquement aux commutateurs basés sur le logiciel Cisco IOS[®] et non aux commutateurs basés sur CatOS.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Conventions

Pour plus d'informations sur les conventions utilisées dans ce document, reportez-vous à <u>Conventions relatives aux conseils techniques Cisco.</u>

Informations générales

Avant d'examiner l'architecture de la manutention de paquets par le CPU pour porter un diagnostic sur la surexploitation du CPU, vous devez comprendre les différentes façons dont les commutateurs de transfert basés sur une architecture matérielle et les routeurs basés sur le logiciel Cisco IOS utilisent les ressources du CPU. On pense souvent, à tort, que l'utilisation CPU élevée indique l'épuisement des ressources sur un périphérique et la menace d'un crash. Un problème de capacité est l'un des symptômes de l'utilisation élevée du CPU sur des routeurs Cisco IOS. Cependant, un problème de capacité n'est presque jamais un symptôme d'une utilisation CPU élevée sur des commutateurs de transmissions matériels comme les commutateurs Catalyst 4500. Le commutateur Catalyst 4500 est conçu pour transférer des paquets dans l'ASIC matériel et atteindre des vitesses de transfert pouvant atteindre 102 millions de paquets par seconde (Mpps).

Le CPU du Catalyst 4500 remplit les fonctions suivantes :

- Gère les protocoles logiciels configurés, par exemple :Protocole Spanning Tree (STP)Protocole de routageCisco Discovery Protocol (CDP)Protocole d'agrégation de ports (PAgP)Protocole de jonction VLAN (VTP)Dynamic Trunking Protocol (DTP)
- Programme les entrées de configuration/dynamiques sur l'ASIC matériel, par exemple :Listes de contrôle d'accès (ACL)Entrées CEF
- Gère plusieurs composants en interne, par exemple :Cartes de ligne PoE (Power over Ethernet)Alimentations électriquesPlateau thermoventilateur

- Gère l'accès au commutateur, par exemple :TelnetConsoleProtocole de gestion de réseau simple (SNMP)
- Transfert les paquets par l'intermédiaire du chemin logiciel, par exemple :Paquets routés par Internet Packet Exchange (IPX), uniquement pris en charge dans le chemin logicielFragmentation MTU (Maximum Transmission Unit)

Selon cette liste, l'utilisation CPU élevée peut résulter de la réception ou du traitement de paquets par le CPU. Certains des paquets qui sont envoyés pour traitement peuvent être essentiels pour le fonctionnement du réseau. Les unités BPDU (bridge protocol data unit) pour les configurations de topologie spanning tree. sont un exemple de ces paquets essentiels. Cependant, d'autre paquets peuvent être du trafic de données transmis par logiciel. Ces scénarios exigent que l'ASIC de commutation envoie des paquets au CPU pour traitement :

- Paquets copiés dans le CPU, mais dont les paquets d'origine sont commutés dans le matérielUn exemple est l'apprentissage des adresses hôtes MAC.
- Paquets envoyés au CPU pour traitementExemples :Mises à jour du protocole de routageBPDUUn flux de trafic volontaire ou involontaire
- Paquets envoyés au CPU pour le transfertPar exemple, les paquets qui nécessitent le routage IPX ou AppleTalk.

<u>Comprendre l'architecture de la gestion des paquets du CPU du</u> <u>commutateur Catalyst 4500</u>

Le Catalyst 4500 dispose d'un mécanisme de qualité de service intégré (QoS) afin de différencier les types trafic destinés au CPU. Ce mécanisme différencie le trafic en fonction des informations de paquet de la couche 2 (L2)/couche 3 (L3)/couche 4(L4). Le moteur de superviseur de paquets a 16 files d'attente afin de gérer plusieurs types de paquets ou événements. La figure 1 présente ces files d'attente. Le tableau 1 répertorie les files d'attente et les types de paquet qu'elles contiennent. Les 16 files d'attente permettent au Catalyst 4500 de mettre les paquets en attente en fonction du type du paquet et de sa priorité.

Tableau 1 - Description de la file d'attente Catalyst 4500

Nu	Nom	
mér	de la	Paquets mis dans la file d'attente
o	file	

de la file d'att ent e	d'atten te	
0	Esmp	Paquets ESMP ¹ (paquets de gestion interne) pour les circuits ASIC de la carte de ligne ou d'autres composants de gestion
1	Contrô le	Paquets de plan de contrôle de couche 2, tels que STP, CDP, PAgP, LACP ² ou UDLD ³
2	Appren tissag e d'hôte	Trames avec adresses source MAC inconnues qui sont copiées vers le CPU afin de construire la table de transfert L2
3, 4, 5	L3 Fwd Highes t,L3 Fwd High/M edium, L3 Fwd Low	Paquets qui doivent être transférés dans le logiciel, tels que les tunnels GRE ⁴ Si le protocole ARP ⁵ n'est pas résolu pour l'adresse IP de destination, les paquets sont envoyés à cette file d'attente.
6, 7, 8	L2 Fwd Highes t, L2 Fwd High/M edium, L2 Fwd Low	 Paquets transférés à la suite d'un pontage Les protocoles non pris en charge dans le matériel, tels que les paquets routés IPX et AppleTalk sont pontés vers le CPU Requête et réponse ARP Les paquets avec une adresse MAC de destination de l'interface SVI⁶/L3 du commutateur sont pontés si les paquets ne peuvent pas être routés dans le matériel en raison de : Options d'en-tête IPTTL⁷ expiréEncapsulation non-ARPA
9, 10	L3 Rx High, L3 Rx Low	Le trafic du plan de contrôle de couche 3, par exemple, les protocoles de routage, qui est destiné aux adresses IP du processeur. Exemples : Telnet, SNMP et SSH ⁸ .
11	Échec RPF	Paquets de multidiffusion qui ont échoué à la vérification RPF ⁹
12	ACL fwd(sn ooping)	Paquets traités par la surveillance DHCP ¹⁰ , l'inspection ARP dynamique ou les fonctions de surveillance IGMP ¹¹
13	ACL log, unreac h	Paquets qui ont atteint un ACE ¹² avec le mot clé log ou les paquets qui ont été abandonnés en raison d'un refus dans une liste de contrôle d'accès de sortie ou de

		l'absence de route vers la destination Ces paquets nécessitent la génération de messages ICMP inaccessibles.
14	ACL sw proces sing	Paquets qui sont envoyés au processeur en raison d'un manque de ressources matérielles ACL supplémentaires, telles que TCAM ¹³ , pour la liste de contrôle d'accès de sécurité
15	MTU Fail/I nvalid	Paquets devant être fragmentés car l'interface de sortie MTU est plus petite que le paquet.

¹ ESMP = même protocole de gestion simple.

- ² LACP = Link Aggregation Control Protocol.
- 3 UDLD = UniDirectional Link Detection.
- ⁴ GRE = encapsulation de routage générique.
- ⁵ ARP = Protocole de résolution d'adresse.
- ⁶ SVI = interface virtuelle commutée.
- ⁷ TTL = Durée de vie.
- ⁸ SSH = Secure Shell Protocol.
- ⁹ RPF = Reverse Path Forwarding
- ¹⁰ DHCP = Dynamic Host Configuration Protocol.
- ¹¹ IGMP = protocole de gestion de groupe Internet.
- 12 ACE = entrée de contrôle d'accès.
- ¹³ TCAM = mémoire adressable de contenu ternaire.

Les files d'attente ci-dessous sont des files d'attente distinctes :

- L2 Fwd Highest ou L3 Fwd Highest
- L2 Fwd High/Medium ou L3 Fwd High/Medium
- L2 Fwd Low ou L3 Fwd Low
- L3 Rx High ou L3 Rx Low

Les paquets sont placés dans ces files d'attente en fonction de l'étiquette QoS, qui est la valeur DSCP (Differentiated Services Code Poin) du type de service IP (ToS). Par exemple, les paquets avec un DSCP de 63 sont placés dans la file d'attente L3 Fwd Highest. Vous pouvez voir les paquets reçus et perdus pour ces 16 files d'attente dans la sortie de la commande **show platform cpu packet statistics all.** La sortie de cette commande est très longue. Émettez la commande **show platform cpu packet statistics afin d'afficher uniquement les événements non nuls.** La commande **show platform cpuport constitue une commande alternative.** Utilisez uniquement la commande **show platform cpuport si vous exécutez le logiciel Cisco IOS Version 12.1(11)EW ou antérieure.** Cette commande est maintenant obsolète. Cependant, cette commande plus ancienne

faisait partie de la commande show tech-support dans des versions du logiciel Cisco IOS antérieures au logiciel Cisco IOS Version 12.2(20)EWA.

Utilisez la commande show platform cpu packet statistics pour tout type de dépannage.

Switch#show platform cpu packet statistics all

Le CPU du Catalyst 4500 pondère les diverses files d'attente que le <u>tableau 1 répertorie</u>. Le CPU attribue une pondération en fonction de l'importance, du type et de la priorité du trafic ou de DSCP. Le CPU traite la file d'attente en fonction du poids relatif de la file d'attente. Par exemple, si un paquet de contrôle, tel qu'un BPDU, et une demande d'écho ICMP sont en attente, le CPU traite d'abord le paquet de contrôle. Une quantité excessive de trafic non prioritaire ou moins important n'empêche pas le CPU de pouvoir traiter ou gérer le système. Ce mécanisme garantit que le réseau reste stable même lors d'une utilisation CPU élevée. Cette capacité du réseau à rester stable constitue une information essentielle que vous devez comprendre.

Il existe un autre détail très important concernant la mise en œuvre de la gestion des paquets par le CPU du Catalyst 4500. Si le CPU a déjà traité des paquets ultra-prioritaires ou des processus mais ne dispose plus de cycles CPU disponibles pendant une période en particulier, le CPU gère les paquets non prioritaires de la file d'attente ou exécute en arrière-plan des processus d'une priorité plus basse. L'utilisation CPU élevée causée par le traitement de paquets non prioritaires ou de processus en arrière-plan est normale car le CPU tente constamment d'utiliser toutes les ressources disponibles. De cette façon, le CPU tente d'obtenir des performances maximales pour le commutateur et le réseau sans sacrifier la stabilité du commutateur. Le commutateur Catalyst 4500 considère que le CPU est sous-utilisé à moins que le CPU soit utilisé à 100 pourcent pour un seul intervalle de temps.

Le logiciel Cisco IOS Version 12.2(25)EWA2 et ultérieure ont amélioré le mécanisme de gestion des paquets CPU et des processus et de comptage. Par conséquent, utilisez ces versions sur vos déploiements Catalyst 4500.

Identifier la raison de l'utilisation CPU élevée sur le commutateur Catalyst 4500

Maintenant que vous comprenez l'architecture et la conception de gestion de paquets du CPU, vous souhaitez peut-être déterminer pourquoi l'utilisation du CPU de votre Catalyst 4500 est élevée. Le Catalyst 4500 dispose des commandes et des outils nécessaires pour identifier la cause principale de l'utilisation CPU élevée. Une fois cette raison identifiée, les administrateurs peuvent exécuter l'une ou l'autre de ces actions :

• Action corrective : peut inclure des modifications de configuration ou de réseau, ou la création

d'une demande de service <u>d'assistance technique Cisco</u> pour une analyse plus approfondie.

 Aucune action : le Catalyst 4500 fonctionne selon les attentes. Le CPU affiche une utilisation élevée car le moteur de superviseur optimise les cycles du CPU afin d'effectuer tous les transferts logiciels de paquets et travaux d'arrière-plan nécessaires.

Assurez-vous d'avoir identifié la cause d'une utilisation élevée du CPU, même si une action corrective n'est pas nécessaire dans tous les cas. Une utilisation CPU élevée peut simplement être le symptôme d'un problème sur le réseau. La résolution de la cause principale de ce problème peut être nécessaire afin de réduire l'utilisation du CPU.

La figure 2 présente la méthodologie de dépannage à utiliser afin d'identifier la cause principale d'une utilisation CPU élevée sur le Catalyst 4500.

Figure 2 - Méthodologie de dépannage de l'utilisation élevée du CPU sur les commutateurs Catalyst 4500

Les étapes de dépannage générales sont les suivantes :

- 1. Émettez la commande show processes cpu afin d'identifier les processus de Cisco IOS qui utilisent des cycles CPU.
- 2. Émettez la commande show platform health afin d'identifier les processus spécifiques à la plate-forme.
- 3. Si le processus très actif est **K2CpuMan Review, émettez la commande show platform cpu packet statistics** afin d'identifier le type de trafic qui atteint le CPU.Si l'activité n'est pas due à

K2CpuMan Review, ignorez l'étape 4 et passez à l'étape 5.

- 4. Identifiez les paquets qui atteignent le CPU en utilisant <u>les outils de dépannage d'analyse du</u> <u>trafic destiné au CPU</u>, si nécessaire.Le Switched Port Analyzer (SPAN) est un exemple d'outil de dépannage à utiliser.
- 5. Passez en revue ce document ainsi que la section <u>Dépanner les problèmes courants liés à</u> <u>une utilisation CPU élevée</u> pour en connaître les causes courantes.Si vous ne parvenez toujours pas à identifier la cause principale, contactez <u>l'assistance technique Cisco</u>.

Spécification de base pour l'utilisation CPU

La première étape importante est de connaître l'utilisation CPU de votre commutateur pour votre configuration et la configuration du réseau. Utilisez la commande **show processes cpu afin d'identifier l'utilisation CPU sur le commutateur Catalyst 4500.** Une mise à jour constante des spécifications de base pour l'utilisation du CPU peut être nécessaire lorsque vous rendez la configuration du réseau plus complexe ou lorsque votre modèle de trafic réseau change. La figure 2 indique cette nécessité.

Cette sortie provient d'un commutateur Catalyst 4507R complètement chargé. L'état d'équilibre du CPU se situe entre 32 et 38 pourcent, ce qui est nécessaire afin de remplir les fonctions de gestion pour ce commutateur :

Swite	Witch#show processes cpu										
CPU u	tilizatio	n fo	r five	seconds:	38%/	1%; one	minute	e: 32%;	five	e minutes: 32%	
PID	Runtime(m	s)	Invoke	d u	Secs	5Sec	1Min	5Min	TTY	Process	
1		0	6	3	0	0.00%	0.00%	0.00%	0	Chunk Manager	
2		60	5007	4	1	0.00%	0.00%	0.00%	0	Load Meter	
3		0		1	0	0.00%	0.00%	0.00%	0	Deferred Events	
!	Output su	ppre	essed. 2	7 524 25	0268	2 0.00%	0.00%	0.00% () TTY	Background 28 816 254843 3 0.00%	
0.008	; 0.00% 0	Per-	Second	Jobs 29	10110	0 5053	20007 0).00% 0.	.01%	0.00% 0 Per-minute Jobs 30	
26057	260 2672	0902	1	975 12.	07% 1	1.41% 1	1.36%	0 Cat4	lk Mg	mt HiPri	
31	194829	80	2941306	0	662	24.07%	19.32%	19.20%	0	Cat4k Mgmt LoPri	
32	44	68	16274	8	27	0.00%	0.00%	0.00%	0	Galios Reschedul	
33		0		1	0	0.00%	0.00%	0.00%	0	IOS ACL Helper	
34		0		2	0	0.00%	0.00%	0.00%	0	NAM Manager	

Une utilisation CPU de cinq secondes est exprimée comme suit :

x%/y%

x% représente l'utilisation totale du CPU et y% représente le CPU utilisé au niveau d'interruption. Lorsque vous dépannez les commutateurs Catalyst 4500, concentrez-vous uniquement sur l'utilisation totale du CPU.

<u>Comprendre la commande show processes cpu sur les commutateurs</u> <u>Catalyst 4500</u>

Cette sortie **show processes cpu** montre qu'il y a deux processus qui utilisent le CPU : cat4k Mgmt HIPTI et cat4k Mgmt LoPTI. Ces deux processus regroupent plusieurs processus spécifiques à une plate-forme qui remplissent les fonctions de gestion essentielles sur le Catalyst 4500. Ces processus traitent des plans de contrôle aussi bien que des paquets de données devant être commutés ou traités de manière logicielle.

Afin de voir quels processus spécifiques à une plate-forme utilisent le CPU dans le contexte de Cat4k Mgmt HiPri et de Cat4k Mgmt LoPri, émettez la commande show platform health.

Chacun des processus spécifiques à une plate-forme a une utilisation cible/prévue du CPU. Lorsque ce processus fait partie de la cible, le CPU l'exécute dans le contexte hautement prioritaire. La sortie de la commande **show processes cpu compte cette utilisation sous Cat4k Mgmt HiPri.** Si un processus dépasse l'utilisation cible/prévue, il s'exécute dans le contexte non prioritaire. La sortie de la commande **show processes cpu compte cette utilisation supplémentaire sous Cat4k Mgmt LoPri.** Ce **Cat4k Mgmt LoPri est également utilisé pour exécuter des processus d'arrière-plan et d'autres processus non prioritaires, tels que le contrôle de cohérence et la lecture des compteurs d'interface.** Ce mécanisme permet au CPU d'exécuter des processus hautement prioritaires si nécessaire, et les cycles CPU restants sont utilisés pour les processus non prioritaires. Un léger dépassement de l'utilisation cible du CPU ou un pic d'utilisation momentané n'indiquent pas un problème nécessitant une enquête.

Switch# show	platform	health

	%CPU	%CPU	RunTir	neMax	Prior	rity	Avera	age	%CPU	Total
	Target	Actual	Target	Actual	Fg	Bg	5Sec	Min	Hour	CPU
Lj-poll	1.00	0.02	2	1	100	500	0	0	0	1:09
GalChassisVp-review	3.00	0.29	10	3	100	500	0	0	0	11:15
S2w-JobEventSchedule	10.00	0.32	10	7	100	500	0	0	0	10:14
Stub-JobEventSchedul	10.00	12.09	10	6	100	500	14	13	9	396:35
StatValueMan Update	1.00	0.22	1	0	100	500	0	0	0	6:28
Pim-review	0.10	0.00	1	0	100	500	0	0	0	0:22
Ebm-host-review	1.00	0.00	8	0	100	500	0	0	0	0:05
Ebm-port-review	0.10	0.00	1	0	100	500	0	0	0	0:01
Protocol-aging-revie	0.20	0.00	2	0	100	500	0	0	0	0:00
Acl-Flattener e	1.00	0.00	10	0	100	500	0	0	0	0:00
KxAclPathMan create/	1.00	0.00	10	5	100	500	0	0	0	0:39
KxAclPathMan update	2.00	0.00	10	0	100	500	0	0	0	0:00
KxAclPathMan reprogr	1.00	0.00	2	0	100	500	0	0	0	0:00
TagMan-RecreateMtegR	1.00	0.00	10	0	100	500	0	0	0	0:00
K2CpuMan Review	30.00	10.19	30	28	100	500	14	13	9	397:11
K2AccelPacketMan: Tx	10.00	2.20	20	0	100	500	2	2	1	82:06
K2AccelPacketMan: Au	0.10	0.00	0	0	100	500	0	0	0	0:00
K2AclMan-taggedFlatA	1.00	0.00	10	0	100	500	0	0	0	0:00
K2AclCamMan stale en	1.00	0.00	10	0	100	500	0	0	0	0:00
K2AclCamMan hw stats	3.00	1.04	10	5	100	500	1	1	0	39:36
K2AclCamMan kx stats	1.00	0.00	10	5	100	500	0	0	0	13:40
K2AclCamMan Audit re	1.00	0.00	10	5	100	500	0	0	0	13:10
K2AclPolicerTableMan	1.00	0.00	10	1	100	500	0	0	0	0:38
K2L2 Address Table R	2.00	0.00	12	5	100	500	0	0	0	0:00
K2L2 New Static Addr	2.00	0.00	10	1	100	500	0	0	0	0:00
K2L2 New Multicast A	2.00	0.00	10	5	100	500	0	0	0	0:01
K2L2 Dynamic Address	2.00	0.00	10	0	100	500	0	0	0	0:00
K2L2 Vlan Table Revi	2.00	0.00	12	9	100	500	0	0	0	0:01
K2 L2 Destination Ca	2.00	0.00	10	0	100	500	0	0	0	0:00
K2PortMan Review	2.00	0.72	15	11	100	500	1	1	0	37:22
Gigaport65535 Review	0.40	0.07	4	2	100	500	0	0	0	3:38
Gigaport65535 Review	0.40	0.08	4	2	100	500	0	0	0	3:39
K2Fib cam usage revi	2.00	0.00	15	0	100	500	0	0	0	0:00
K2Fib IrmFib Review	2.00	0.00	15	0	100	500	0	0	0	0:00
K2Fib Vrf Default Ro	2.00	0.00	15	0	100	500	0	0	0	0:00
K2Fib AdjRepop Revie	2.00	0.00	15	0	100	500	0	0	0	0:00
K2Fib Vrf Unpunt Rev	2.00	0.01	15	0	100	500	0	0	0	0:23
K2Fib Consistency Ch	1.00	0.00	5	2	100	500	0	0	0	29:25
K2FibAdjMan Stats Re	2.00	0.30	10	4	100	500	0	0	0	6:21
K2FibAdjMan Host Mov	2.00	0.00	10	4	100	500	0	0	0	0:00
K2FibAdjMan Adj Chan	2.00	0.00	10	0	100	500	0	0	0	0:00

K2FibMulticast Signa	2.00	0.01	10	2	100	500	0	0	0	2:04
K2FibMulticast Entry	2.00	0.00	10	7	100	500	0	0	0	0:00
K2FibMulticast Irm M	2.00	0.00	10	7	100	500	0	0	0	0:00
K2FibFastDropMan Rev	2.00	0.00	7	0	100	500	0	0	0	0:00
K2FibPbr route map r	2.00	0.06	20	5	100	500	0	0	0	16:42
K2FibPbr flat acl pr	2.00	0.07	20	2	100	500	0	0	0	3:24
K2FibPbr consolidati	2.00	0.01	10	0	100	500	0	0	0	0:24
K2FibPerVlanPuntMan	2.00	0.00	15	4	100	500	0	0	0	0:00
K2FibFlowCache flow	2.00	0.01	10	0	100	500	0	0	0	0:23
K2FibFlowCache flow	2.00	0.00	10	0	100	500	0	0	0	0:00
K2FibFlowCache adj r	2.00	0.01	10	0	100	500	0	0	0	0:20
K2FibFlowCache flow	2.00	0.00	10	0	100	500	0	0	0	0:06
K2MetStatsMan Review	2.00	0.14	5	2	100	500	0	0	0	23:40
K2FibMulticast MET S	2.00	0.00	10	0	100	500	0	0	0	0:00
K2QosDblMan Rate DBL	2.00	0.12	7	0	100	500	0	0	0	4:52
IrmFibThrottler Thro	2.00	0.01	7	0	100	500	0	0	0	0:21
K2 VlanStatsMan Revi	2.00	1.46	15	7	100	500	2	2	1	64:44
K2 Packet Memory Dia	2.00	0.00	15	8	100	500	0	1	1	45:46
K2 L2 Aging Table Re	2.00	0.12	20	3	100	500	0	0	0	7:22
RkiosPortMan Port Re	2.00	0.73	12	7	100	500	1	1	1	52:36
Rkios Module State R	4.00	0.02	40	1	100	500	0	0	0	1:28
Rkios Online Diag Re	4.00	0.02	40	0	100	500	0	0	0	1:15
RkiosIpPbr IrmPort R	2.00	0.02	10	3	100	500	0	0	0	2:44
RkiosAclMan Review	3.00	0.06	30	0	100	500	0	0	0	2:35
MatMan Review	0.50	0.00	4	0	100	500	0	0	0	0:00
Slot 3 ILC Manager R	3.00	0.00	10	0	100	500	0	0	0	0:00
Slot 3 ILC S2wMan Re	3.00	0.00	10	0	100	500	0	0	0	0:00
Slot 4 ILC Manager R	3.00	0.00	10	0	100	500	0	0	0	0:00
Slot 4 ILC S2wMan Re	3.00	0.00	10	0	100	500	0	0	0	0:00
Slot 5 ILC Manager R	3.00	0.00	10	0	100	500	0	0	0	0:00
Slot 5 ILC S2wMan Re	3.00	0.00	10	0	100	500	0	0	0	0:00
Slot 6 ILC Manager R	3.00	0.00	10	0	100	500	0	0	0	0:00
Slot 6 ILC S2wMan Re	3.00	0.00	10	0	100	500	0	0	0	0:00
Slot 7 ILC Manager R	3.00	0.00	10	0	100	500	0	0	0	0:00
Slot 7 ILC S2wMan Re	3.00	0.00	10	0	100	500	0	0	0	0:00
EthHoleLinecardMan(1	1.66	0.04	10	0	100	500	0	0	0	1:18
EthHoleLinecardMan(2	1.66	0.02	10	0	100	500	0	0	0	1:18
EthHoleLinecardMan(6	1.66	0.17	10	6	100	500	0	0	0	6:38

%CPU Totals 212.80 **35.63**

Comprendre la commande show platform health sur les commutateurs Catalyst 4500

La commande show platform health fournit beaucoup d'informations pertinentes uniquement pour un ingénieur de développement. Afin de dépanner une utilisation CPU élevée, recherchez un chiffre élevé dans la colonne %CPU actual de la sortie. Observez également les éléments affichés à droite de cette colonne afin de vérifier l'utilisation CPU de ce processus dans les colonnes 1 minute et 1 heure average %CPU. Parfois, les processus connaissent un pic momentané sans utiliser le CPU très longtemps. Une partie de l'utilisation élevée momentanée du CPU se produit lors de la programmation du matériel ou l'optimisation de la programmation. Par exemple, un pic de l'utilisation CPU est normal lors de la programmation matérielle d'une grande ACL dans le TCAM.

Dans la sortie de la commande show platform health de la section <u>Comprendre la commande</u> <u>show platform health sur les commutateurs Catalyst 4500</u>, les processus <u>Stub-JobEventSchedul</u> et K2CpuMan Review utilisent un nombre élevé de cycles CPU. <u>Le Tableau 2 fournit certaines</u> informations de base concernant les processus spécifiques à une plate-forme courants qui apparaissent dans la sortie de la commande show platform health.

Tableau 2 - Description des processus spécifiques à la plate-forme à partir de la commande show platform health

Nom du processus spécifique à une plate- forme	Description
Pim-review	Gestion de l'état du châssis/de la carte de ligne
Ebm	Module de pont Ethernet, tel que le vieillissement et la surveillance
Acl- Flattener / K2AclMan	Processus de fusion ACL
KxAclPathMa n - Path TagMan- Review	Gestion et maintenance d'état d'ACL
K2CpuMan Review	Processus qui effectue le transfert de paquets logiciels Si vous voyez une utilisation élevée du CPU due à ce processus, examinez les paquets qui touchent le CPU à l'aide de la commande show platform cpu packet statistics .
K2AccelPack etMan	Pilote qui interagit avec le moteur de paquet afin d'envoyer des paquets envoyés depuis le CPU
CamMan K2Acl	Gère le matériel d'entrée et de sortie TCAM pour QoS et les fonctions de sécurité
K2AclPolice rTableMan	Contrôle les applicateurs de stratégies d'entrée et sortie
K2L2	Représente le sous-système de transfert L2 du logiciel Cisco IOS Catalyst 4500 Ces processus sont responsables de la maintenance des différentes tables L2.
K2PortMan Review	Gère les fonctions de programmation liées aux ports
K2Fib	Gestion FIB ¹
CacheFluxK2 Fib	Gestion du cache PBR ²
K2FibAdjMan	Gestion de la table de juxtaposition FIB
Multidiffus ion K2Fib	Gère les entrées FIB Multicast
K2MetStatsM an Review	Gère les statistiques MET ³
K2QosDblMan Review	Gère QoS DBL ⁴
tler Thro	Module de routage IP
K2 L2 Aging Table Re	Gère la fonction de vieillissement L2

GalChassisV p-review	Surveillance de l'état du châssis
S2w- JobEventSch edule	Gère les protocoles S2W ⁵ pour surveiller l'état des cartes de ligne
Stub- JobEventSch edul	Surveillance et maintenance des cartes de ligne de remplacement basées sur ASIC
RkiosPortMa n Port Re	Surveillance et maintenance de l'état des ports
Rkios Module State R	Surveillance et maintenance des cartes de ligne
EthHoleLine	Gère les GBICs ⁶ dans chacune des cartes

- ¹ FIB = Base d'informations de transfert.
- ² PBR = routage basé sur des stratégies.
- 3 MET = Table d'extension multidiffusion.
- ⁴ DBL = Limitation de tampon dynamique.
- 5 S2W = série à fil.
- ⁶ GBIC = Gigabit Interface Converter.

Dépanner les problèmes courants liés à une utilisation CPU élevée

Cette section traite de certains des problèmes courants liés à une utilisation CPU élevée sur les commutateurs Catalyst 4500.

Utilisation CPU élevée due aux paquets commutés par processus

Une des raisons courantes d'une utilisation CPU élevée est que le CPU du Catalyst 4500 est occupé par le traitement des paquets transmis par logiciel ou des paquets de contrôle. Les paquets IPX ou les paquets de contrôle, tels que BPDU constituent des exemples de paquets transmis par logiciel. Une petite partie de ces paquets est généralement envoyée au CPU. Cependant, un nombre de paquets régulièrement important peut indiquer une erreur de configuration ou un événement sur le réseau. Vous devez identifier la cause des événements qui mènent au transfert de paquets au CPU pour traitement. Cette identification vous permet de déboguer les problèmes liés à une utilisation CPU élevée.

Raisons courantes d'une utilisation CPU élevée due aux paquets à commutation par processus :

- Un nombre élevé d'instances de port spanning-tree
- Redirections ICMP ; routage de paquets sur la même interface
- <u>Routage IPX ou AppleTalk</u>
- Apprentissage d'hôte

- Manque de ressources matérielles (TCAM) pour la sécurité de liste de contrôle d'accès
- Mot clé log dans la liste de contrôle d'accès
- Boucles de transfert de la couche 2

Autres raisons de la commutation de paquets sur le CPU :

- Fragmentation MTU : assurez-vous que toutes les interfaces sur le chemin du paquet ont la même MTU.
- ACL avec des indicateurs TCP autres qu'établi
- Routage IP version 6 (IPv6) : ce routage est pris en charge uniquement via le chemin de commutation logicielle.
- GRE : cette fonctionnalité est prise en charge uniquement via le chemin de commutation logicielle.
- Refus du trafic dans l'ACL du routeur (RACL) entrant ou sortant **Remarque :** ceci est limité dans le logiciel Cisco IOS Version 12.1(13)EW1 et ultérieure.Émettez la commande **no ip unreachables sous interface de l'ACL.**
- Un trafic ARP et DHCP excessif arrive au CPU pour traitement en raison d'un grand nombre de serveurs directement connectésSi vous suspectez une attaque DHCP, utilisez le DCHP snooping pour limiter le débit du trafic DHCP depuis n'importe quel port hôte spécifique.
- Nombre de requêtes SNMP excessif par une station d'extrémité légitime ou présentant un comportement inattendu

Un nombre élevé d'instances de port spanning-tree

Le Catalyst 4500 prend en charge 3 000 instances de ports ou ports actifs de spanning tree en mode Per VLAN spanning-tree + (PVST+). Tous les moteurs de superviseur sont pris en charge à l'exception de Supervisor Engine II+ et II+TS, et de Catalyst 4948. Supervisor Engine II+ et II+TS, et Catalyst 4948 prennent en charge jusqu'à 1 500 instances de port. Si vous dépassez ces recommandations d'instance STP, le commutateur présente une utilisation CPU élevée.

Ce diagramme présente un commutateur Catalyst 4500 avec trois ports de liaison qui transportent chacun les VLAN 1 à 100. Cela équivaut à 300 instances de port de spanning-tree. Généralement vous pouvez calculer des instances de port de spanning-tree avec cette formule :

Total number of STP instances = Number of access ports + Sum of all VLANs that are carried in each of the trunks

Dans ce diagramme, il n'y a aucun port d'accès, mais les trois joncteurs réseau portent les VLAN 1 à 100 :

Total number of STP instances = 0 + 100 + 100 + 100 = 300

Étape 1 : Vérifiez le processus de Cisco IOS avec la commande show processes cpu.

Cette section passe en revue les commandes qu'un administrateur utilise afin d'identifier le problème d'utilisation CPU élevée. Si vous émettez la commande **show processes cpu, vous pouvez voir que deux processus, Cat4k Mgmt LoPri et spanning-tree, sont les principaux utilisateurs du CPU.** Cette information vous suffit à savoir que le processus de spanning-tree utilise une importante partie des cycles CPU.

Swite	h# show	proces	sses cpu						
CPU u	utilizat	tion fo	or five secon	ds: 74%	/1%; one	minute	: 73%;	five	e minutes: 50%
PID	Runtime	e(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
1		4	198	20	0.00%	0.00%	0.00%	0	Chunk Manager
2		4	290	13	0.00%	0.00%	0.00%	0	Load Meter
!	Output	suppre	e <i>ssed</i> . 25 488	33 1478	37 0.00%	0.02%	0.00% () Pei	r-minute Jobs 26 90656 223674 405
6.798	6.90%	7.22%	0 Cat4k Mgmt	HiPri	27	158796	59	9219	2681 32.55% 33.80% 21.43%
0 Cat	4k Mgmt	: LoPri	L						
28		20	1693	11	0.00%	0.00%	0.00%	0	Galios Reschedul
29		0	1	0	0.00%	0.00%	0.00%	0	IOS ACL Helper
30		0	2	0	0.00%	0.00%	0.00%	0	NAM Manager

! Output	suppressed	41 0 1 0	0.00%	0.00%	0.00% 0	SFF8472	42 0 2 0 0.00% 0.00% 0.00% 0 AAA
Dictionary	r 43	78564	20723		3791 32	.63% 30.0	3% 17.35% 0 Spanning Tree
44	112	999	112	0.00%	0.00%	0.00%	0 DTP Protocol
45	0	147	0	0.00%	0.00%	0.00%	0 Ethchnl

Étape 2 : Vérifiez le processus spécifique au Catalyst 4500 à l'aide de la commande show platform health.

Afin de comprendre quel processus spécifique à une plate-forme utilise le CPU, émettez la commande **show platform health.** Cette sortie vous permet de voir que le processus **K2CpuMan Review, une tâche de gestion des paquets liés au CPU, utilise le CPU :**

Switch#show platform health

%CPU	%CPU	RunTi	.meMax	Priority	y Averag	e %CF	OT U	tal						
			Target	Actual 7	Farget Ac	tual	Fg	Bg	5Sec	Min	Hour	CPU		
!	Output	suppress	<mark>ed.</mark> Tag	Man-Recre	eateMtegR	1.00	0.00	10 C	100	500	0 0 0	0:00	K2CpuMan	Review
30.00	37.62	30	53	100 500	0 41 3	3	1 2:	12						
K2Acc	elPacke	tMan: Tx	10.00	4.95	20	0	100	500	5	4	0	0:36		
K2Acc	elPacke	tMan: Au	u 0.10	0.00	0	0	100	500	0	0	0	0:00		
K2Acl	Man-tag	gedFlatA	1.00	0.00	10	0	100	500	0	0	0	0:00		

Étape 3 : Contrôlez la file d'attente du CPU qui reçoit le trafic afin d'identifier le type de trafic lié au CPU.

Émettez la commande **show platform cpu packet statistics afin de contrôler quelle file d'attente CPU reçoit le paquet lié au CPU.** La sortie de cette section montre que la file d'attente de contrôle reçoit beaucoup de paquets. Utilisez les informations du <u>tableau 1 et la conclusion à laquelle vous</u> <u>avez abouti lors de l'étape 1.</u> Vous pouvez déterminer que le traitement des BPDU est à l'origine des paquets que le CPU traite et de l'utilisation élevée du CPU.

Switch#show platform cpu packet statistics

! Out	put suppre	ssed. Total	packet qu	ueues 16 Pa	ckets Receiv	ed by Packet	Queue Que	eue Total !	5
sec avg 	1 min avg	5 min avg 1 Esmp 2	hour avg 02760 196	173 128 28	Control			388623	
2121	1740	598	16						
Packets	Dropped by	Packet Que	ue						
Queue		Total		5 sec avg	1 min avg 5	min avg 1 ho	our avg		
Control			17918	0	19	24	3		

Étape 4 : Identifiez la cause principale.

Émettez la commande **show spanning-tree summary.** Vous pouvez vérifier si la réception des BPDU est due au nombre élevé d'instances de port de spanning-tree. La sortie identifie clairement la cause principale :

Switch# show spanning-tree summary												
Switch is in pvst mode												
Root bridge for: none												
Extended system ID	is	enabled										
Portfast Default	is	disabled										
PortFast BPDU Guard Default	is	disabled										
Portfast BPDU Filter Default	is	disabled										
Loopguard Default is disabled												

0	0	5999	5999					
					2994 vlans		0	
! 0	utput sı	<i>ppressed</i> . Name	e Blocking	g Listening	Learning Forwarding	STP Active		
Config	ured Pat	hcost method u	used is sl	hort				
Backbor	neFast		is disa	bled				
Uplink	Fast		is disa	bled				
EtherC!	hannel m	isconfig guard	d is enab	led				

Il existe un grand nombre de VLAN avec la configuration de mode PVST+. Afin de résoudre ce problème, changez le mode STP en Multiple Spanning Tree (MST). Dans certains cas, le nombre d'instances STP est élevé car un grand nombre de VLAN sont transférés sur tous les ports de jonction. Dans ce cas, supprimez manuellement les VLAN qui ne sont pas nécessaires à la liaison afin de diminuer le nombre de ports STP actifs bien au-dessous de la valeur recommandée.

Conseil : assurez-vous que vous ne configurez pas les ports de téléphone IP en tant que ports agrégés. Il s'agit d'une erreur de configuration courante. Configurez les ports de téléphone IP avec une configuration VLAN voix. Cette configuration crée une pseudo liaison, mais n'exige pas que vous supprimiez manuellement les VLAN inutiles. Pour plus d'informations sur la configuration des ports de voix, référez-vous au guide de configuration logicielle <u>Configurer les interfaces voix</u>. Les téléphones IP non-Cisco ne prennent pas en charge cette configuration VLAN voix ou VLAN auxiliaire. Vous devez supprimer manuellement les ports liés à des téléphones IP non-Cisco.

Redirections ICMP ; Routage de paquets sur la même interface

Le routage de paquets sur la même interface, ou l'entrée et la sortie de trafic sur la même interface L3, peut entraîner une redirection ICMP par le commutateur. Si le commutateur sait que le prochain périphérique de saut vers la destination finale est dans le même sous-réseau que le périphérique émetteur, il génère une redirection ICMP vers la source. Les messages de redirection indiquent à la source d'envoyer le paquet directement au prochain périphérique de saut. Le message indique que le prochain périphérique de saut a un meilleur itinéraire de destination, un itinéraire comprenant un saut de moins que ce commutateur.

Dans le diagramme de cette section, le PC A communique avec le serveur Web. La passerelle par défaut du PC A indique l'adresse IP de l'interface VLAN 100. Cependant, le prochain routeur de saut qui permet au Catalyst 4500 d'atteindre sa destination est dans le même sous-réseau que le PC A. Dans ce cas, passer directement par le « routeur » est plus rapide. Le Catalyst 4500 envoie un message de redirection ICMP au PC A. Le message demande au PC A d'envoyer les paquets destinés au serveur Web par l'intermédiaire de routeur, plutôt que par le Catalyst 4500. Cependant, dans la plupart des cas, les périphériques ne répondent pas à la redirection ICMP. Cette absence de réponse entraine l'utilisation par le Catalyst 4500 d'un grand nombre de cycles CPU pour la génération de ces redirections d'ICMP pour tous les paquets que Catalyst transfert par l'intermédiaire de la même interface que les paquets d'entrée.

La redirection ICMP est activée par défaut. Pour la désactiver, utilisez la commande **no ip icmp redirects.** Émettez la commande sous l'interface SVI ou L3 pertinente.

Remarque : Puisque **ip icmp redirects** est une commande par défaut, elle n'est pas visible dans le résultat de la commande **show running-configuration**.

Étape 1 : Vérifiez le processus de Cisco IOS avec la commande show processes cpu.

Émettez la commande **show processes cpu.** Vous pouvez voir que deux processus, **Cat4k Mgmt LoPri et IP Input, sont les principaux utilisateurs du CPU.** Cette information vous suffit à savoir que le traitement des paquets IP utilise une grande partie du CPU.

Swite	witch# show processes cpu												
CPU ι	utilizat	ion for	five s	seconds:	38%/1	%; one	minute	: 32%;	five	minutes: 3	32%		
PID	Runtime	(ms)	Invoked	l us	Secs	5Sec	1Min	5Min	TTY	Process			
1		0	63	3	0	0.00%	0.00%	0.00%	0	Chunk Manag	ger		
2		60	50074	ł	1	0.00%	0.00%	0.00%	0	Load Meter			
3		0	1	-	0	0.00%	0.00%	0.00%	0	Deferred Ev	vents		
!	Output :	suppres	sed. 27	524 250	0268 2	0.00%	0.00%	0.00% () TTY	Background	d 28 816	254843 3	0.00%
0.00	₺ 0.00% () Per-S	econd J	lobs 29 2	101100	5053 2	20007 0	.00% 0.	.01%	0.00% 0 Per	r-minute	Jobs 30	
2605	7260 2672	20902 9	75 5.81	.% 6.78%	5.76%	0 Cat4	4k Mgmt	HiPri	31	19482908	2941306	0	662
19.64	18.20 ⁹	% 20.48	% 0 C	at4k Mgr	nt LoP	ri							
!	Output :	suppres	sed. 35	60 902	0 0.0	0% 0.00	0.00	% 0 DHC	CP Sr	nooping 36	5046253	04 645491	491

Étape 2 : Vérifiez le processus spécifique au Catalyst 4500 à l'aide de la commande show platform health.

La sortie de la commande show platform health confirme le pourcentage de CPU utilisé pour traiter les paquets liés au CPU.

Étape 3 : Contrôlez la file d'attente du CPU qui reçoit le trafic afin d'identifier le type de trafic lié au CPU.

Émettez la commande show platform cpu packet statistics afin de contrôler quelle file d'attente CPU reçoit le paquet lié au CPU. Vous pouvez voir que la file d'attente L3 Fwd Low reçoit énormément de trafic.

Switch#show platfor	m cpu packet statistic	s				
! Output suppres	sed. Packets Received	by Packet	Queue Quei	ue Total 5	sec avg 1 min	n avg 5 min
avg 1 hour avg						
Esmp 48613268 38 39	38 39 Control 1421666	548 74 74	73 73 Host	Learning	1845568 2 2 2	2 L3 Fwd
High 17 0 0 0 0 L3	Fwd Medium 2626 0 0 0	0 L3 Fwd	Low		4717094264	3841
3879 3873	3547					
L2 Fwd Medium	1	0	0	0	0	
L3 Rx High	257147	0	0	0	0	
L3 Rx Low	5325772	10	19	13	7	
RPF Failure	155	0	0	0	0	
ACL fwd(snooping)	65604591	53	54	54	53	
ACL log, unreach	11013420	9	8	8	8	

Étape 4 : Identifiez la cause principale.

Dans ce cas, utilisez CPU SPAN afin de déterminer le trafic qui atteint le CPU. Pour des informations concernant CPU SPAN, voyez l'<u>outil 1 : Surveillez le trafic CPU avec SPAN—Logiciel</u> <u>Cisco IOS Version 12.1(19)EW et ultérieure</u> de ce document. Effectuez une analyse du trafic et une configuration à l'aide de la commande **show running-configuration**. Dans ce cas, un paquet est routé par la même interface, qui mène au problème de redirection ICMP pour chaque paquet. Cette cause principale est l'une des raisons courantes d'une utilisation CPU élevée sur le Catalyst 4500.

Vous pouvez vous attendre à ce que le périphérique d'accès réagisse à la redirection ICMP que le Catalyst 4500 envoie et modifie le prochain saut pour la destination. Cependant, tous les périphériques ne répondent pas à une redirection ICMP. Si le périphérique ne répond pas, le Catalyst 4500 doit envoyer des redirections pour chaque paquet que reçoit le commutateur d'un périphérique émetteur. Ces redirections peuvent utiliser beaucoup de ressources CPU. La solution est de désactiver la redirection ICMP. Émettez la commande **no ip redirects sous les interfaces.**

Ce scénario peut se produire lorsque vous avez également configuré des adresses IP

secondaires. Lorsque vous activez les adresses IP secondaires, la redirection d'IP est automatiquement désactivée. Assurez-vous de ne pas activer manuellement les redirections d'IP.

Comme l'indique cette section intitulée <u>Redirections ICMP ; routage de paquets sur la même</u> <u>interface, la plupart des périphériques ne répondent pas aux redirections ICMP.</u> Par conséquent, de manière générale, désactivez cette fonctionnalité.

Routage IPX ou AppleTalk

Le Catalyst 4500 prend en charge le routage IPX et AppleTalk par l'intermédiaire d'un chemin de transfert logiciel uniquement. Avec configuration de tels protocoles, une utilisation CPU plus élevée est normale.

Remarque : La commutation du trafic IPX et AppleTalk dans le même VLAN ne nécessite pas de commutation de processus. Seuls les paquets qui doivent être routés nécessitent un transfert de chemin logiciel.

Étape 1 : Vérifiez le processus de Cisco IOS avec la commande show processes cpu.

Émettez la commande show processes cpu afin de vérifier quel processus de Cisco IOS utilise le CPU. Dans cette sortie de commande, notez que le processus supérieur est Cat4k Mgmt LoPri :

witch#show processes cpu

 CPU utilization for five seconds: 87%/10%; one minute: 86%; five minutes: 87%

 PID Runtime(ms)
 Invoked
 uSecs
 5Sec
 1Min
 5Min TTY Process

 1
 4
 53
 75
 0.00%
 0.00%
 0 Chunk Manager

 !--- Output suppressed.
 25
 8008
 1329154
 6
 0.00%
 0.00%
 0 Per-Second Jobs 26
 413128
 38493

 10732
 0.00%
 0.00%
 0
 0.00%
 0.00%
 2.42%
 2.77%
 0 Cat4k

 Mgmt HiPri
 28
 285796820
 720618753
 396
 50.15%
 59.72%
 61.31%
 0 Cat4k Mgmt LoPri

Étape 2 : Vérifiez le processus spécifique au Catalyst 4500 à l'aide de la commande show platform health.

La sortie de la commande show platform health confirme le pourcentage de CPU utilisé pour traiter les paquets liés au CPU.

Switch#show platform health %CPU %CPU RunTimeMax Priority Average %CPU Total Target Actual Target Actual Fg Bg 5Sec Min Hour CPU !--- Output suppressed. TagMan-RecreateMtegR 1.00 0.00 10 4 100 500 0 0 0 0:00 K2CpuMan Review 30.00 27.39 30 53 100 500 42 47 42 4841: K2AccelPacketMan: Tx 10.00 8.03 20 0 100 500 21 29 26 270:4

Étape 3 : Contrôlez la file d'attente du CPU qui reçoit le trafic afin d'identifier le type de trafic lié au CPU.

Afin de déterminer le type de trafic qui atteint le CPU, émettez la commande **show platform cpu packet statistics.**

avg 1 hour avg						
Esmp 48613268 38 39 38	39 Control 142166	648 74 74	73 73 Host	Learning	1845568 2 2 2	2 L3 Fwd
High 17 0 0 0 0 L3 Fwd	Medium 2626 0 0 0	0 L3 Fwd	Low 1582414	4 1 1 1 1	L2 Fwd Medium	1 0 0 0 0 L2
Fwd Low	576905398	1837	1697	1938	1515	
L3 Rx High	257147	0	0	0	0	
L3 Rx Low	5325772	10	19	13	7	
RPF Failure	155	0	0	0	0	
ACL fwd(snooping)	65604591	53	54	54	53	
ACL log, unreach	11013420	9	8	8	8	

Étape 4 : Identifiez la cause principale.

Puisque l'administrateur a configuré le routage IPX ou AppleTalk, l'identification de la cause principale devrait être simple. Mais pour le confirmer, utilisez SPAN sur le trafic CPU et assurezvous que le trafic que vous voyez est le trafic attendu. Pour des informations concernant CPU SPAN, voyez l'<u>outil 1 : Surveillez le trafic CPU avec SPAN—Logiciel Cisco IOS Version</u> <u>12.1(19)EW et ultérieure</u> de ce document.

Dans ce cas, l'administrateur doit mettre à jour la spécification de base du CPU avec la valeur actuelle. Le CPU du Catalyst 4500 se comporte comme prévu lorsqu'il traite les paquets commutés par logiciel.

Apprentissage d'hôte

Le Catalyst 4500 apprend les adresses MAC de plusieurs hôtes si l'adresse MAC n'est pas déjà dans la table des adresses MAC. Le moteur de commutation transfert une copie du paquet avec la nouvelle adresse MAC au CPU.

Toutes les interfaces VLAN (couche 3) utilisent l'adresse matérielle de base de châssis comme adresse MAC. En conséquence, la table d'adresses MAC ne comporte aucune entrée et les paquets destinés à ces interfaces VLAN ne sont pas envoyés au CPU pour traitement.

S'il le nombre de nouvelles adresses MAC est trop important pour que le commutateur les apprenne, l'utilisation CPU peut augmenter.

Étape 1 : Vérifiez le processus de Cisco IOS avec la commande show processes cpu.

Émettez la commande **show processes cpu afin de vérifier quel processus de Cisco IOS utilise le CPU.** Dans cette sortie de commande, notez que le processus supérieur est **Cat4k Mgmt LoPri :**

Switch#show processes cpu

 CPU utilization for five seconds: 89%/1%; one minute: 74%; five minutes: 71%

 PID Runtime(ms)
 Invoked
 uSecs
 5Sec
 1Min
 5Min TTY Process

 1
 4
 53
 75
 0.00%
 0.00%
 0 Chunk Manager

 !--- Output suppressed.
 25
 8008
 1329154
 6
 0.00%
 0.00%
 0 Per-Second Jobs 26
 413128
 38493

 10732
 0.00%
 0.00%
 0
 Per-minute Jobs 27
 148288424
 354390017
 418
 26.47%
 10.28%
 10.11%
 0

 Cat4k Mgmt HiPri
 28
 285796820
 720618753
 396
 52.71%
 56.79%
 55.70%
 0 Cat4k Mgmt LoPri

Étape 2 : Vérifiez le processus spécifique au Catalyst 4500 à l'aide de la commande show platform health.

La sortie de la commande show platform health confirme le pourcentage de CPU utilisé pour traiter les paquets liés au CPU.

Switch#show platform health

a '.

		%CPU	%CPU	RunTi	meMax	Ρ	riori	ity	Avera	age ^g	\$CPU	Total		
		Target	Actual	Target	Actua	1	Fg	Bg	5Sec	Min	Hour	CPU		
! Output	t suppres	sed. Tagi	Man-Rec	reateMt	egR 1.(00	0.00	10 4	100 l	500	0 0 0	0:00	K2CpuMan	Review
30.00 46.8	88 30	47	100 5	00 30	29	21	265	5:01						
K2AccelPac	ketMan: Tr	c 10.00	8.03	20	(0	100	500	21	29	26	270:4	ł	
<u>Étape 3 : C</u>	<u>Contrôlez</u>	<u>la file d'</u>	<u>attente</u>	du CPI	J qui r	eç	oit le	trafi	<u>c afin</u>	d'ic	<u>lentifi</u>	<mark>er le t</mark> y	<u>/pe de tr</u>	<u>afic lié au</u>
CPU.														

Afin de déterminer le type de trafic qui atteint le CPU, émettez la commande **show platform cpu packet statistics.**

.

Switch#snow plation	n cpu j	packet st	atistics						
! Output suppres	sed. Pa	ackets Re	ceived by	Packe	t Qu	eue Quei	ue Total	5 sec avg 1 m	nin avg 5 min
avg 1 hour avg									
Esmp 48613268 38 39	38 39	Control	142166648	74 74	73	73 Host	Learning		1845568
1328 1808	1393	130	9						
L3 Fwd High			17	0		0	0	0	
L3 Fwd Medium			2626	0		0	0	0	
L3 Fwd Low		158	2414	1		1	1	1	
L2 Fwd Medium			1	0		0	0	0	
L2 Fwd Low		57690	5398	37		7	8	5	
L3 Rx High		25	7147	0		0	0	0	
L3 Rx Low		532	5772	10		19	13	7	
RPF Failure			155	0		0	0	0	
ACL fwd(snooping)		6560	4591	53		54	54	53	
ACL log, unreach		1101	3420	9		8	8	8	
Étape 4 : Identifiez I	a cau	se princip	ale.						

La sortie de la commande show platform health vous indique que le CPU voit beaucoup de nouvelles adresses MAC. Cette situation est souvent le résultat de l'instabilité de topologie du réseau. Par exemple, si la topologie du spanning-tree change, le commutateur génère des notifications de modification de topologie (TCN). L'émission des TCN réduit le temps de vieillissement à 15 secondes en mode PVST+. Les entrées d'adresses MAC sont éliminées si les adresses ne sont pas réapprises dans le délai prévu. Dans le cas de RSTP (Rapid STP) (IEEE 802.1w) ou de MST (IEEE 802.1s), les entrées expirent immédiatement si le TCN provient d'un autre commutateur. Cette expiration fait que les adresses MAC doivent être à nouveau apprises. Il ne s'agit pas d'un problème grave si les modifications de topologie sont rares. Mais un lien instable, un commutateur défectueux ou des ports hôtes non autorisés pour PortFast peuvent entraîner un nombre excessif de modifications de topologie. Ceci peut entraîner le vidage de nombreuses tables MAC et donc nécessiter un nouvel apprentissage. L'étape suivante dans l'identification de la cause principale consiste à dépanner le réseau. Le commutateur fonctionne comme prévu et envoie les paquets au CPU pour l'apprentissage des adresses d'hôtes. Identifiez et réparez le périphérique défectueux qui entraîne une génération excessive de TCN.

Votre réseau peut contenir de nombreux périphériques qui envoient le trafic par à-coups, ce qui fait expirer les adresse MAC qui doivent ensuite être apprises à nouveau par le commutateur. Dans ce cas, augmentez le délai de vieillissement de la table d'adresses MAC afin d'améliorer la situation. Avec un délai de vieillissement plus long, les commutateurs retiennent les adresses MAC dans la table plus longtemps avant d'expirer.

Attention : Ne changez cet âge qu'après un examen attentif. Cette modification peut entraîner un trou noir dans le trafic si votre réseau comporte des périphériques mobiles.

Manque de ressources matérielles (TCAM) pour la sécurité de liste de contrôle d'accès

Catalyst 4500 programme les ACL configurées à l'aide du TCAM Cisco. TCAM permet l'application des ACL dans le chemin de transfert matériel. Il n'y a aucune incidence sur la performance du commutateur, avec ou sans ACL dans le chemin de transfert. La performance est constante quelle que soit la taille de l'ACL car la performance des recherches ACL est à plein débit. Cependant, TCAM n'est pas une ressource inépuisable. Par conséquent, si vous configurez un nombre excessif d'entrées ACL, vous dépasserez la capacité TCAM. <u>Le tableau 3 montre le</u> <u>nombre de ressources TCAM disponibles sur chacun des moteurs de superviseur et</u> <u>commutateurs Catalyst 4500.</u>

Product (produit)	Fonction TCAM (par direction)	QoS TCAM (par direction)				
Supervisor Engine	8 192 entrées avec	8 192 entrées avec				
+/ +TS	1 024masques	1 024masques				
Supervisor Engine	16 384 entrées	16 384 entrées				
III/IV/V et	avec	avec				
Catalyst 4948	2 048 masques	2 048 masques				
Supervisor Engine V-	16 384 entrées	16 384 entrées				
10GE et	avec	avec				
Catalyst 4048 10CE	16 384 masque	16 384 masque				
Calalysi 4940-10GE	s	S				

Tableau 3 - Capacité TCAM sur les moteurs/commutateurs de supervision Cat	alyst 4500
---	------------

Le commutateur utilise la caractéristique TCAM afin de programmer la sécurité ACL, comme RACL et VLAN ACL (VACL). Le commutateur utilise également TCAM pour les fonctions de sécurité comme la protection de la source IP (IPSG) pour les ACL dynamiques. Le commutateur utilise QoS TCAM afin de programmer la classification et les ACL de l'applicateur de stratégies.

Lorsque le Catalyst 4500 vient à manquer de ressources TCAM lors de la programmation d'une sécurité ACL, une application partielle de l'ACL se produit par l'intermédiaire du chemin logiciel. Les paquets qui atteignent ces ACE sont traités dans le logiciel, ce qui entraîne une utilisation élevée du CPU. L'ACL est programmée de haut en bas. En d'autres termes, si l'ACL ne s'insère pas dans le TCAM, l'ACE de la partie inférieure de l'ACL n'est vraisemblablement pas programmée dans le TCAM.

Ce message d'avertissement apparaît lorsqu'un débordement TCAM se produit :

%C4K_HWACLMAN-4-ACLHWPROGERRREASON: (Suppressed ltimes) Input(null, 12/Normal) Security: 140 - insufficient hardware TCAM masks. %C4K_HWACLMAN-4-ACLHWPROGERR: (Suppressed 4 times) Input Security: 140 - hardware TCAM limit, some packet processing will be software switched.

Vous pouvez voir ce message d'erreur dans la sortie de commande **show logging.** Ce message indique de façon certaine qu'un traitement logiciel aura lieu et, par conséquent, qu'il peut y avoir utilisation CPU élevée.

Remarque : si vous modifiez une liste de contrôle d'accès volumineuse, ce message s'affiche brièvement avant que la liste de contrôle d'accès modifiée ne soit de nouveau programmée dans le TCAM.

Émettez la commande **show processes cpu.** Vous pouvez voir que l'utilisation CPU est élevée car le processus **Cat4k Mgmt LoPri utilise la plupart des cycles CPU.**

Switch#show processes cpu CPU utilization for five seconds: 99%/0%; one minute: 99%; five minutes: 99% PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process 0 11 0 0.00% 0.00% 0.00% 0 Chunk Manager 1 2 9716 632814 15 0.00% 0.00% 0.00% 0 Load Meter 780 302 2582 0.00% 0.00% 0.00% 0 SpanTree Helper 3 !--- Output suppressed. 23 18208 3154201 5 0.00% 0.00% 0.00% 0 TTY Background 24 37208 3942818 9 0.00% 0.00% 0.00% 0 Per-Second Jobs 25 1046448 110711 9452 0.00% 0.03% 0.00% 0 Per-minute Jobs 26 175803612 339500656 517 4.12% 4.31% 4.48% 0 Cat4k Mgmt HiPri 27 835809548 339138782 2464 86.81% 89.20% 89.76% 0 Cat4k Mgmt LoPri 28 28668 2058810 13 0.00% 0.00% 0.00% 0 Galios Reschedul

Étape 2 : Vérifiez le processus spécifique au Catalyst 4500 à l'aide de la commande show platform health.

Émettez la commande **show platform health.** Vous pouvez voir que **K2CpuMan Review**, une tâche de gestion des paquets liés au CPU, utilise le CPU.

0.10011	Duck Pract	orm moure									
%CPU	%CPU Ru:	nTimeMax	Priori	ty Ave:	rage %C	PU To	otal				
		Targe	t Actual	Target	Actual	Fg	Bg	5Sec	Min	Hour	CPU
Lj-pol	.1	1.0	0 0.01	2	0	100	500	0	0	0	13:45
GalCha	ssisVp-revi	ew 3.0	0 0.20	10	16	100	500	0	0	0	88:44
S2w-Jo	bEventSched	ule 10.0	0 0.57	10	7	100	500	1	0	0	404:22
Stub-J	obEventSche	dul 10.0	0 0.00	10	0	100	500	0	0	0	0:00
StatVa	lueMan Upda	te 1.0	0 0.09	1	0	100	500	0	0	0	91:33
Pim-re	view	0.1	0 0.00	1	0	100	500	0	0	0	4:46
Ebm-ho	st-review	1.0	0 0.00	8	4	100	500	0	0	0	14:01
Ebm-po	ort-review	0.1	0 0.00	1	0	100	500	0	0	0	0:20
Protoc	ol-aging-re	vie 0.2	0 0.00	2	0	100	500	0	0	0	0:01
Acl-Fl	attener	1.0	0 0.00	10	5	100	500	0	0	0	0:04
KxAclP	athMan crea	te/ 1.0	0 0.00	10	5	100	500	0	0	0	0:21
KxAclP	athMan upda	te 2.0	0 0.00	10	б	100	500	0	0	0	0:05
KxAclP	athMan repr	ogr 1.0	0 0.00	2	1	100	500	0	0	0	0:00
TagMan	-InformMtegi	Rev 1.0	0 0.00	5	0	100	500	0	0	0	0:00
TagMan	-RecreateMt	egR 1.0	0 0.00	10	14	100	500	0	0	0	0:18
K2CpuM	lan Review	30.0	0 91.31	30	92	100	500	128	119	84	13039:02
K2Acce	lPacketMan:	Tx 10.0	0 2.30	20	0	100	500	2	2	2	1345:30
K2Acce	lPacketMan:	Au 0.1	0 0.00	0	0	100	500	0	0	0	0:00

Étape 3 : Contrôlez la file d'attente du CPU qui reçoit le trafic afin d'identifier le type de trafic lié au CPU.

Vous devez comprendre quelle file d'attente CPU et donc quel type de traffic atteint la file d'attente CPU. Émettez la commande **show platform cpu packet statistics.** Vous pouvez voir que la file d'attente ACL sw processing reçoit un nombre élevé de paquets. Par conséquent, le débordement TCAM est la cause de ce problème d'utilisation CPU élevée.

Switch#show platform cpu packet statistics

Switch#show platform health

!	Output	suppressed.	Packets	Received	by	Packet	Queue	Queue	Total	5	sec	avg	1	min	avg	5	min
avg 1	. hour a	avg															·

Control 57902635 22 16 12 3 Host Learning 464678 0 0 0 0 L3 Fwd Low 623229 0 0 0 0 L2 Fwd Low 11267182 7 4 6 1 L3 Rx High 508 0 0 0 L3 Rx Low 1275695 10 1 0 0 ACL fwd(snooping) 2645752 0 0 0 0 ACL log, unreach 51443268 9 4 5 5 ACL sw processing 842889240 1453 1532 1267 1179

Packets Dropped by Packet Queue

Queue	Total	5	sec	avg	1	min	avg	5	min	avg	1	hour	avg
L2 Fwd Low	3270			0			0			0			0
ACL sw processing	12636			0			0			0			0

Étape 4 : Résolvez le problème.

Dans l'<u>étape 3</u>, vous avez déterminé la cause principale dans ce scénario. Supprimez l'ACL qui a entraîné le débordement ou réduisez au minimum l'ACL pour éviter le débordement. Passez également en revue les directives concernant la configuration <u>Configurer la sécurité du réseau</u> avec les ACL afin d'optimiser la configuration et la programmation d'ACL dans le matériel.

Mot clé log dans la liste de contrôle d'accès

Le Catalyst 4500 prend en charge la journalisation de détails de paquets qui atteignent n'importe quelle entrée ACL. Toutefois, une journalisation excessive peut entraîner une utilisation CPU élevée. Évitez l'utilisation des **mots-clés de journal, sauf pendant l'étape de découverte du trafic.** Pendant l'étape de découverte du trafic, vous identifiez le trafic qui traverse votre network pour lequel vous n'avez pas explicitement configuré d'ACE. N'utilisez pas le **mot-clé de journal afin de recueillir des statistiques.** Dans le Logiciel Cisco IOS Version 12.1(13)EW et ultérieure, les **messages du journal sont limités en débit.** Si vous utilisez des **messages du journal afin de compter le nombre de paquets qui correspondent à l'ACL, le compte n'est pas précise.** Au lieu de cela, utilisez la commande **show access-list afin d'obtenir des statistiques précises.** L'identification de cette cause principale est plus facile parce qu'un examen de la configuration ou des **messages du journal peut indiquer l'utilisation de la fonctionnalité de journalisation ACL.**

Étape 1 : Vérifiez le processus de Cisco IOS avec la commande show processes cpu.

Émettez la commande show processes cpu afin de vérifier quel processus de Cisco IOS utilise le CPU. Dans cette sortie de commande, notez que le processus supérieur est Cat4k Mgmt LoPri :

Swit	ch# show proce	esses cpu							
CPU	utilization f	for five se	conds: 99%,	′0%; on∈	e minute	e: 99%;	five	e minutes: 99%	
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process	
1	0	11	0	0.00%	0.00%	0.00%	0	Chunk Manager	
2	9716	632814	15	0.00%	0.00%	0.00%	0	Load Meter	
!	Output supp	ressed. 26	175803612 3	3950065	6 517 4	1.12% 4.	.31%	4.48% 0 Cat4k Mgmt HiPri	27
8358	09548 339138	782 2	464 86.81%	89.20%	89.76%	0 Cat	:4k 1	Mgmt LoPri	
28	28668	2058810	13	0.00%	0.00%	0.00%	0	Galios Reschedul	

Étape 2 : Vérifiez le processus spécifique au Catalyst 4500 à l'aide de la commande show platform health.

Contrôlez le processus spécifique à une plate-forme qui utilise le CPU. Émettez la commande **show platform health.** Dans la sortie, notez que **K2CpuMan Review process utilise la plupart des cycles CPU.** Cette activité indique que le CPU est occupé, car il traite les paquets qui lui sont destinés.

Switch#show platform health

	%CPU	%CPU	RunT	imeMax	Pric	rity	Ave	rage	%CPU	Total
	Target	Actual	Target	Actual	Fg	Bg	5Sec	Min	Hour	CPU
Lj-poll	1.00	0.01	2	0	100	500	0	0	0	13:45
GalChassisVp-review	3.00	0.20	10	16	100	500	0	0	0	88:44
S2w-JobEventSchedule	10.00	0.57	10	7	100	500	1	0	0	404:22
Stub-JobEventSchedul	10.00	0.00	10	0	100	500	0	0	0	0:00
StatValueMan Update	1.00	0.09	1	0	100	500	0	0	0	91:33
Pim-review	0.10	0.00	1	0	100	500	0	0	0	4:46
Ebm-host-review	1.00	0.00	8	4	100	500	0	0	0	14:01
Ebm-port-review	0.10	0.00	1	0	100	500	0	0	0	0:20
Protocol-aging-revie	0.20	0.00	2	0	100	500	0	0	0	0:01
Acl-Flattener	1.00	0.00	10	5	100	500	0	0	0	0:04
KxAclPathMan create/	1.00	0.00	10	5	100	500	0	0	0	0:21
KxAclPathMan update	2.00	0.00	10	б	100	500	0	0	0	0:05
KxAclPathMan reprogr	1.00	0.00	2	1	100	500	0	0	0	0:00
TagMan-InformMtegRev	1.00	0.00	5	0	100	500	0	0	0	0:00
TagMan-RecreateMtegR	1.00	0.00	10	14	100	500	0	0	0	0:18
K2CpuMan Review	30.00	91.31	30	92	100	500	128	119	84	13039:02
K2AccelPacketMan: Tx	10.00	2.30	20	0	100	500	2	2	2	1345:30
K2AccelPacketMan: Au	0.10	0.00	0	0	100	500	0	0	0	0:00

Étape 3 : Contrôlez la file d'attente du CPU qui reçoit le trafic afin d'identifier le type de trafic lié au CPU.

Afin de déterminer le type de trafic qui atteint le CPU, émettez la commande **show platform cpu packet statistics.** Dans cette sortie de commande, vous pouvez voir que la réception de paquets est due au **mot-clé de journal d'ACL :**

Switch#show platform cpu packet statistics

Packets Dropped by Packet Queue

Queue	Total	5 sec a	avg 1	1 min	avg	5 min	avg	1 hour	avg
ACL log, unreach	193094788		509		362		437		394

Étape 4 : Résolvez le problème.

Dans l'<u>étape 3</u>, vous avez déterminé la cause principale dans ce scénario. Afin d'éviter ce problème, supprimez le **mot-clé de journal des ACL.** Dans le logiciel Cisco IOS Version 12.1(13)EW1 et version ultérieure, les paquets sont limités en débit de sorte que l'utilisation du CPU ne soit pas trop élevée. Utilisez les compteurs de listes d'accès afin de garder une trace des consultations ACL. Vous pouvez voir les compteurs de listes d'accès dans la sortie de commande **show access-list** *acl_id*.

Boucles de transfert de la couche 2

Les boucles de transfert de la couche 2 peuvent être provoquées par une mauvaise mise en œuvre du protocole Spanning Tree protocol (STP) et divers problèmes qui peuvent affecter STP.

Étape 1 : Vérifiez le processus de Cisco IOS avec la commande show processes cpu

Cette section passe en revue les commandes qu'un administrateur utilise afin d'identifier le problème d'utilisation CPU élevée. Si vous émettez la commande **show processes cpu, vous pouvez voir que deux processus, Cat4k Mgmt LoPri et spanning-tree, sont les principaux utilisateurs du CPU.** Cette information vous suffit à savoir que le processus de spanning-tree utilise une importante partie des cycles CPU.

Swite	h# show	proces	ses cpu						
CPU u	utilizat	ion fo	r five seco	nds: 74%	/1%; one	e minute	e: 73%; f	ive minutes:	50%
PID	Runtime	e(ms)	Invoked	uSecs	5Sec	1Min	5Min 7	TTY Process	
1		4	198	20	0.00%	0.00%	0.00%	0 Chunk Mar	lager
2		4	290	13	0.00%	0.00%	0.00%	0 Load Mete	er
!	Output	suppre	<i>ssed.</i> 25 48	8 33 147	87 0.00%	\$ 0.02%	0.00% 0	Per-minute J	obs 26 90656 223674 405
6.798	\$ 6.90%	7.22%	0 Cat4k Mgm	t HiPri	27	158796	5 592	219 268	1 32.55% 33.80% 21.43%
0 Cat	4k Mgmt	: LoPri							
28		20	1693	11	0.00%	0.00%	0.00%	0 Galios Re	eschedul
29		0	1	0	0.00%	0.00%	0.00%	0 IOS ACL H	Ielper
30		0	2	0	0.00%	0.00%	0.00%	0 NAM Manag	ler
!	Output	suppre	<i>ssed</i> . 41 0	1 0 0.00	% 0.00%	0.00% 0) SFF8472	2 42 0 2 0 0.	00% 0.00% 0.00% 0 AAA
Dicti	lonary R	43	78564	2072	3	3791 32	2.63% 30.	.03% 17.35%	0 Spanning Tree
44		112	999	112	0.00%	0.00%	0.00%	0 DTP Proto	ocol
45		0	147	0	0.00%	0.00%	0.00%	0 Ethchnl	

Étape 2 : Vérifiez le processus spécifique à Catalyst 4500 à l'aide de la commande show platform health

Afin de comprendre quel processus spécifique à une plate-forme utilise le CPU, émettez la commande **show platform health**. Cette sortie vous permet de voir que le processus **K2CpuMan Review, une tâche de gestion des paquets liés au CPU, utilise le CPU :**

Switc	h# show	platfo	orm he	alth												
%CPU	%CPU	Rur	nTimeM	lax	Prior	ity A	vera	age %CP	U Tot	al						
			Та	rget	Actua	l Targ	et A	Actual	Fg	Bg	5Sec	Min	Hour	CPU		
!	Output	suppre	essed.	Tagl	Man-Re	create	Mteg	gR 1.00	0.00	10 0	100	500	0 0 0	0:00	K2CpuMan	Review
30.00	37.62	2 3	30	53	100	500	41	33	1 2::	L2						
K2Acc	elPacke	etMan:	Tx 1	0.00	4.9	5	20	0	100	500	5	4	0	0:36		
K2Acc	elPacke	etMan:	Au	0.10	0.0	0	0	0	100	500	0	0	0	0:00		
K2Acl	Man-tag	ggedFla	atA	1.00	0.0	0	10	0	100	500	0	0	0	0:00		

Étape 3 : Contrôlez la file d'attente du CPU qui reçoit le trafic afin d'identifier le type de trafic lié au CPU

Émettez la commande **show platform cpu packet statistics afin de contrôler quelle file d'attente CPU reçoit le paquet lié au CPU.** La sortie de cette section montre que la file d'attente de contrôle reçoit beaucoup de paquets. Utilisez les informations du <u>tableau 1 et la conclusion à laquelle vous</u> <u>avez abouti lors de l'étape 1.</u> Vous pouvez déterminer que le traitement des BPDU est à l'origine des paquets que le CPU traite et de l'utilisation élevée du CPU.

Switch#show platform cpu packet statistics

Queue	Total	5 sec	avg	1 n	min a	avg	5 min	avg	1 hou	r avg
Control	17918		0			19		24		3

Étape 4 : Identifiez la cause principale et résolvez le problème

Généralement, vous pouvez effectuer ces étapes pour procéder au dépannage (selon la situation, certaines étapes ne sont pas nécessaires) :

- 1. Identifiez la boucle.
- 2. Découvrez la portée de la boucle.
- 3. Cassez la boucle.
- 4. Corrigez la cause de la boucle.
- 5. Restaurez la redondance.

Chacune des étapes est expliquée en détails dans <u>Dépannage des boucles de transfert -</u> <u>Dépannage de STP sur des commutateurs Catalyst exécutant le logiciel Cisco IOS System</u>.

Étape 5 : Mettez en œuvre les fonctionnalités STP avancées

- BDPU Guard : protège STP des périphériques réseau non autorisés connectés aux ports portfast. Pour plus d'informations, référez-vous à <u>Amélioration de Spanning Tree PortFast</u> <u>BPDU Guard.</u>
- Protection contre les boucles : améliore la stabilité des réseaux de couche 2. Pour plus d'informations, référez-vous à <u>Amélioration du protocole Spanning Tree à l'aide des</u> fonctionnalités de protection contre les boucles et de détection des différences de temps de propagation des BPDU.
- Root Guard : applique le placement du pont racine dans le réseau. Référez-vous à <u>Perfectionnement de la protection de la racine du protocole Spanning Tree pour plus</u> <u>d'informations.</u>
- UDLD : détecte les liaisons unidirectionnelles et empêche les boucles de transfert. Pour plus d'informations, référez-vous à <u>Comprendre et configurer la fonctionnalité protocole</u> <u>UDLD (UniDirectional Link Detection).</u>

Autres causes d'une utilisation CPU élevée

Voici quelques autres causes connues d'utilisation CPU élevée :

- Instabilités excessives du lien
- Pics d'utilisation CPU dus au contrôle de cohérence FIB
- Utilisation élevée du CPU dans le processus K2FibAdjMan Host Move
- <u>Utilisation CPU élevée dans le processus RkiosPortMan Port Review</u>
- Utilisation CPU élevée une fois connecté à un téléphone IP avec l'utilisation des ports de jonction
- Utilisation CPU élevée avec RSPAN et les paquets de contrôle de la couche 3
- Pic pendant la programmation d'une ACL de grande tailleLa pointe dans l'utilisation CPU se produit pendant l'application ou la suppression d'une ACL de grande taille d'une interface.

Le Catalyst 4500 fait état d'une utilisation élevée du CPU lorsqu'un ou plusieurs des liens attachés deviennent trop instables. Cette situation se produit dans des versions du logiciel Cisco IOS antérieures au logiciel Cisco IOS Version 12.2(20)EWA.

Étape 1 : Vérifiez le processus de Cisco IOS avec la commande show processes cpu.

Émettez la commande show processes cpu afin de vérifier quel processus de Cisco IOS utilise le CPU. Dans cette sortie de commande, notez que le processus supérieur est Cat4k Mgmt LoPri :

Swit	ch# show pro	cesses cpu						
CPU	utilization	for five s	econds: 96%	/0%; one	minute	: 76%;	five minutes: 68%	
PID	Runtime(ms) Invoked	l uSecs	5Sec	1Min	5Min	TTY Process	
1		0 4	ŧ 0	0.00%	0.00%	0.00%	0 Chunk Manager	
2	984	0 463370) 21	0.00%	0.00%	0.00%	0 Load Meter	
3		0 2	2 0	0.00%	0.00%	0.00%	0 SNMP Timers	
!	Output sup	pressed. 27	232385144	53064496	6 437 1	3.98% 1	2.65% 12.16% 0 Cat4k Mgmt HiPri	28
5647	56724 15662	7753	3605 64.74%	60.71%	54.75%	0 Cat	:4k Mgmt LoPri	
29	971	6 1806301	. 5	0.00%	0.00%	0.00%	0 Galios Reschedul	

Étape 2 : Vérifiez le processus spécifique au Catalyst 4500 à l'aide de la commande show platform health.

La sortie de la commande show platform health indique que le processus KxAclPathMan Create utilise la plupart des ressources CPU. Ce processus est dédié à la création d'un chemin interne.

	%CPU	%CPU	RunTir	neMax	Prior	ity	Avera	age ^g	\$CPU	Total
	Target	Actual	Target	Actual	Fg	Bg	5Sec	Min	Hour	CPU
Lj-poll	1.00	0.03	2	0	100	500	0	0	0	9:49
GalChassisVp-review	3.00	1.11	10	62	100	500	0	0	0	37:39
S2w-JobEventSchedule	10.00	2.85	10	8	100	500	2	2	2	90:00
Stub-JobEventSchedul	10.00	5.27	10	9	100	500	4	4	4	186:2
Pim-review	0.10	0.00	1	0	100	500	0	0	0	2:51
Ebm-host-review	1.00	0.00	8	4	100	500	0	0	0	8:06
Ebm-port-review	0.10	0.00	1	0	100	500	0	0	0	0:14
Protocol-aging-revie	0.20	0.00	2	0	100	500	0	0	0	0:00
Acl-Flattener	1.00	0.00	10	5	100	500	0	0	0	0:00
KxAclPathMan create/	1.00	69.11	10	5	100	500	42	53	22	715:0
KxAclPathMan update	2.00	0.76	10	б	100	500	0	0	0	86:00
KxAclPathMan reprogr	1.00	0.00	2	1	100	500	0	0	0	0:00
TagMan-InformMtegRev	1.00	0.00	5	0	100	500	0	0	0	0:00
TagMan-RecreateMtegR	1.00	0.00	10	227	100	500	0	0	0	0:00
K2CpuMan Review	30.00	8.05	30	57	100	500	6	5	5	215:0
K2AccelPacketMan: Tx	10.00	6.86	20	0	100	500	5	5	4	78:42

Switch#show platform health

Étape 3 : Identifiez la cause principale.

Activez la journalisation pour les messages d'établissement/interruption de liaison. Cette journalisation n'est pas activée par défaut. Son activation vous aide à déterminer très rapidement les liens posant problème. Émettez la commande **logging event link-status sous toutes les interfaces.** Vous pouvez utiliser la commande **interface range afin de lancer la commande sur une série d'interfaces, comme le montre l'exemple ci-dessous :**

Switch#show logging

!--- Output suppressed. 3w5d: %LINK-3-UPDOWN: Interface GigabitEthernet5/24, changed state to down 3w5d: %LINK-3-UPDOWN: Interface GigabitEthernet5/24, changed state to down 3w5d: %LINK-3-UPDOWN: Interface GigabitEthernet5/24, changed state to down 3w5d: %LINK-3-UPDOWN: Interface GigabitEthernet5/24, changed state to up Après avoir identifié l'interface défectueuse ou instable, éteignez-la afin de résoudre le problème d'utilisation CPU élevée. Le logiciel Cisco IOS Version 12.2(20)EWA et ultérieure ont amélioré le comportement du Catalyst 4500 en cas de lien instable. Par conséquent, l'incidence sur le CPU n'est plus aussi importante qu'avant l'amélioration. Rappelez-vous que ce processus est un processus d'arrière-plan. L'utilisation CPU élevée due à ce problème n'entraîne pas d' effets indésirables sur les commutateurs Catalyst 4500.

Pics d'utilisation CPU dus au contrôle de cohérence FIB

Les commutateurs Catalyst 4500 peuvent faire état de pics momentanés d'utilisation CPU pendant un contrôle de cohérence d'une table FIB. La table FIB est la table de transfert L3 créée par le processus CEF. Le contrôle de cohérence maintient la cohérence entre la table FIB du logiciel Cisco IOS et les entrées matérielles. Cette cohérence assure que les paquets ne sont pas routés de manière incorrecte. Le contrôle a lieu toutes les 2 secondes et fonctionne comme processus en arrière-plan non prioritaire. Ce processus se comporte normalement et n'interfère pas avec d'autres processus ou paquets hautement prioritaires.

La sortie de la commande show platform health montre que K2Fib Consistency Ch utilise la plus grande partie du CPU.

Remarque : L'utilisation moyenne du CPU pour ce processus est insignifiante sur une minute ou une heure, ce qui confirme que la vérification est une révision périodique courte. Ce processus en arrière-plan utilise uniquement des cycles CPU inactifs.

Switch#show platform	health												
	%CPU	%CPU	RunTimeM	lax	Priori	ity	Avera	ge %(CPU	Total			
	Target	Actual	Target Ac	tual	Fg	Bg	5Sec	Min I	Hour	CPU			
Lj-poll	1.00	0.02	2	1	100	500	0	0	0	1:09			
GalChassisVp-review	3.00	0.29	10	3	100	500	0	0	0	11:15			
! Output suppresse	ed. K2Fi	b cam u	sage revi	2.00	0.00	15 C	100	500 () O C) 0:00 H	(2Fib	IrmFi	b
Review 2.00 0.00 15 (0 100 50	0 0 0 0	0:00 K2F	'ib Vr	f Defa	ault	Ro 2.	00 0	.00 1	L5 0 100) 500	0 0 0	0:00
K2Fib AdjRepop Revie	2.00 0.	00 15 0	100 500	0 0 0	0:00	K2Fi	b Vrf	Unpu	unt F	Rev 2.00) 0.02	1 15 0	100
500 0 0 0 0:23 K2Fib	Consist	ency Ch	1.00 60.	40 5	2 100	500	0 0	(0 100):23			
K2FibAdjMan Stats Re	2.00	0.30	10	4	100	500	0	0	0	6:21			
K2FibAdjMan Host Mov	2.00	0.00	10	4	100	500	0	0	0	0:00			
K2FibAdjMan Adj Chan	2.00	0.00	10	0	100	500	0	0	0	0:00			
K2FibMulticast Signa	2.00	0.01	10	2	100	500	0	0	0	2:04			

Utilisation élevée du CPU dans le processus K2FibAdjMan Host Move

Le Catalyst 4500 peut présenter une utilisation CPU élevée dans le processus **K2FibAdjMan Host Move.** Cette utilisation élevée apparaît dans la sortie de la commande **show platform health.** De nombreuses adresses MAC expirent fréquemment ou sont apprises sur de nouveaux ports, ce qui entraîne cette utilisation élevée du CPU. La valeur par défaut du temps de vieillissement de la table d'adresses MAC est de 5 minutes (300 secondes). La solution à ce problème consiste à augmenter le temps de vieillissement des adresses MAC ou vous pouvez concevoir le réseau de façon à éviter un nombre élevé de mouvements d'adresses MAC. Le logiciel Cisco IOS Version 12.2(18)EW et ultérieure ont amélioré le comportement de ce processus afin d'utiliser moins de CPU. Référez-vous à l'ID bogue Cisco <u>CSCed15021 (clients enregistrés uniquement).</u>

Switch#show platform health

	%CPU	%CPU	RunTir	neMax	Prior	ity	Avera	ge %	CPU	Total		
	Target	Actual	Target	Actual	Fg	Bg	5Sec	Min	Hour	CPU		
Lj-poll	1.00	0.02	2	1	100	500	0	0	0	1:09		
GalChassisVp-review	3.00	0.29	10	3	100	500	0	0	0	11:15		
S2w-JobEventSchedule	10.00	0.32	10	7	100	500	0	0	0	10:14		
! Output suppresse	ed. K2F:	ibAdjMan	Stats	Re 2.0	0 0.30	10 4	4 100	500	0 0 0	6:21	K2FibAdjMan	Host
Mov 2.00 18.68	10	4 10	0 500	25	29 2	8 21	L34:39					
K2FibAdjMan Adj Chan	2.00	0.00	10	0	100	500	0	0	0	0:00		
K2FibMulticast Signa	2.00	0.01	10	2	100	500	0	0	0	2:04		
K2FibMulticast Entry	2.00	0.00	10	7	100	500	0	0	0	0:00		

Vous pouvez modifier le temps de vieillissement maximum d'une adresse MAC dans le mode de configuration globale. La syntaxe de la commande est mac-address-table aging-time seconds pour un routeur et mac-address-table aging-time seconds [vlan vlan-id] pour un commutateur Catalyst. Pour plus d'informations, référez-vous au Guide de référence des commandes de services de commutation de Cisco IOS.

Utilisation CPU élevée dans le processus RkiosPortMan Port Review

Le Catalyst 4500 peut présenter une utilisation élevée du CPU dans le processus **RkiosPortMan Port Review dans la sortie de la commande show platform health dans le logiciel Cisco IOS Version 12.2(25)EWA et 12.2(25)EWA1.** L'ID bogue Cisco <u>CSCeh08768 (clients enregistrés</u> <u>uniquement) entraîne une utilisation CPU élevée, que le logiciel Cisco IOS Version 12.2(25)EWA2</u> <u>résout.</u> Ce processus est un processus en arrière-plan et n'affecte pas la stabilité des commutateurs Catalyst 4500.

Switch#show platform	health												
	%CPU	%CPU	RunTim	eMax	Prior	ity	Avera	age 9	≩CPU	Total			
	Target	Actual	Target 2	Actual	Fg	Bg	5Sec	Min	Hour	CPU			
Lj-poll	1.00	0.02	2	1	100	500	0	0	0	1:09			
GalChassisVp-review	3.00	0.29	10	3	100	500	0	0	0	11:15			
S2w-JobEventSchedule	10.00	0.32	10	7	100	500	0	0	0	10:14			
! Output suppress	<mark>ed.</mark> K2 1	Packet 1	Memory D	ia 2.00	0.00	15 8	3 100	500	0 1 2	1 45:46	K2 L2	Aging	
Table Re 2.00 0.12 2	0 3 100	500 0	0 0 7:22	RkiosP	ortMai	n Por	t Re	2	.00 8	87.92	12	7	100
500 99 99 89 1	052:36												
Rkios Module State R	4.00	0.02	40	1	100	500	0	0	0	1:28			
Rkios Online Diag Re	4.00	0.02	40	0	100	500	0	0	0	1:15			

Utilisation CPU élevée une fois connecté à un téléphone IP avec l'utilisation des ports de jonction

Si un port est configuré pour l'option VLAN voix et VLAN accès, le port sert de port d'accès multi-VLAN. L'avantage est que seuls les VLAN configurés pour les options de voix et d'accès VLAN sont liés.

Les VLAN qui sont liés au téléphone augmentent le nombre d'instances STP. Le commutateur gère les instances STP. La gestion de l'augmentation des instances STP augmente également l'utilisation CPU du STP.

La liaison de tous les VLAN entraîne également une diffusion, un Multicast et un trafic unicast inconnu vers le lien téléphonique.

Switch#show processes cpu											
CPU 1	utilization :	for five s	econds: 69%	/0%; one	e minute	e: 72%;	five	e minutes: 73%			
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process			
1	4	165	24	0.00%	0.00%	0.00%	0	Chunk Manager			
2	29012	739091	39	0.00%	0.00%	0.00%	0	Load Meter			
3	67080	13762	4874	0.00%	0.00%	0.00%	0	SpanTree Helper			
4	0	1	0	0.00%	0.00%	0.00%	0	Deferred Events			
5	0	2	0	0.00%	0.00%	0.00%	0	IpSecMibTopN			
б	4980144	570766	8725	0.00%	0.09%	0.11%	0	Check heaps			
26	539173952	530982442	1015	13.09%	13.05%	13.20%	0	Cat4k Mgmt HiPri			
27	716335120	180543127	3967	17.61%	18.19%	18.41%	0	Cat4k Mgmt LoPri			
33	1073728	61623	17424	0.00%	0.03%	0.00%	0	Per-minute Jobs			
34	1366717824	231584970	5901	38.99%	38.90%	38.92%	0	Spanning Tree			
35	2218424	18349158	120	0.00%	0.03%	0.02%	0	DTP Protocol			
36	5160	369525	13	0.00%	0.00%	0.00%	0	Ethchnl			
37	271016	2308022	117	0.00%	0.00%	0.00%	0	VLAN Manager			
38	958084	3965585	241	0.00%	0.01%	0.01%	0	UDLD			
39	1436	51011	28	0.00%	0.00%	0.00%	0	DHCP Snooping			
40	780	61658	12	0.00%	0.00%	0.00%	0	Port-Security			
41	1355308	12210934	110	0.00%	0.01%	0.00%	0	IP Input			

Utilisation CPU élevée avec RSPAN et les paquets de contrôle de la couche 3

Les paquets de contrôle de la couche 3 capturés avec RSPAN sont destinés au CPU plutôt qu'uniquement à l'interface de destination du RSPAN, ce qui entraîne une utilisation CPU élevée. Les paquets de contrôle L3 sont capturés par des entrées CAM statiques, puis transférées à l'action CPU. Les entrées CAM statiques sont communes à tous les VLAN. Afin d'éviter une utilisation CPU excessive, utilisez la fonctionnalité Per-VLAN Control Traffic Intercept, disponible dans le logiciel Cisco IOS Version 12.2(37)SG et ultérieure.

Switch(config)# access-list hardware capture mode vlan

Les ACL statiques sont installées en haut de la fonctionnalité d'entrée TCAM afin de capturer des paquets de contrôle destinés à des adresses Multicast IP connues dans la plage 224.0.0.*. Les ACL statiques sont installées au moment du démarrage et apparaissent avant toute ACL configurée par l'utilisateur. Les ACL statiques sont toujours consultées en premier et arrêtent le trafic de contrôle vers le CPU sur tous les VLAN.

La fonctionnalité Per-VLAN control traffic intercept fournit un mode géré de chemin par VLAN sélectif de capture du trafic de contrôle. Les entrées CAM statiques correspondantes dans la fonctionnalité TCAM d'entrée sont invalidées dans le nouveau mode. Des paquets de contrôle sont capturés par l'ACL spécifique à une fonction attachée aux VLAN sur lesquels les fonctionnalités de snooping et de routage sont activées. Aucun ACL spécifique à une fonctionnalité n'est attaché au VLAN du RSPAN. Par conséquent, aucun des paquets de contrôle de la couche 3 provenant du VLAN du RSPAN n'est transféré au CPU.

Outils de dépannage d'analyse du trafic destiné au CPU

Comme l'a montré ce document, le trafic destiné au CPU constitue l'une des principales causes d'une utilisation CPU élevée sur les Catalyst 4500. Le trafic destiné au CPU peut être intentionnel en raison de la configuration, ou involontaire en raison d'une mauvaise configuration ou d'une attaque de déni de service. Le CPU dispose d' un mécanisme QoS incorporé afin d'empêcher tous

les effets indésirables sur le réseau causés par ce trafic. Cependant, identifiez la cause principale du trafic lié au CPU et éliminez le trafic s'il se révèle indésirable.

Outil 1 : Surveillance du trafic CPU avec SPAN—Logiciel Cisco IOS Version 12.1(19)EW et ultérieure

Le Catalyst 4500 permet la surveillance du trafic lié au CPU, d'entrée ou de sortie, à l'aide de la fonction standard SPAN. L'interface de destination se connecte un outil de surveillance des paquets ou à un ordinateur portable d'administrateur qui exécute le logiciel renifleur de paquet. Cet outil aide à analyser rapidement et précisément le trafic que traite le CPU. Cet outil permet de surveiller les files d'attente individuelles qui sont liées au moteur de paquet du CPU.

Remarque : Le moteur de commutation dispose de 32 files d'attente pour le trafic CPU et le moteur de paquets CPU de 16 files d'attente.

```
Switch(config)#monitor session 1 source cpu ?
  both Monitor received and transmitted traffic
  queue SPAN source CPU queue
  rx Monitor received traffic only
         Monitor transmitted traffic only
  tx
  <cr>
Switch(config)#monitor session 1 source cpu queue ?
 <1-32> SPAN source CPU queue numbers
acl Input and output ACL [13-20]
adj-same-if Packets routed to the incoming interface [7]
all All queues [1-32]
bridged L2/bridged packets [29-32]
  control-packet Layer 2 Control Packets [5]
  mtu-exceeded Output interface MTU exceeded [9]
  nfl Packets sent to CPU by netflow (unused) [8]
routed L3/routed packets [21-28]
rpf-failure Multicast RPF Failures [6]
  spanSPAN to CPU (unused) [11]unknown-saPackets with missing source address [10]
Switch(config)#monitor session 1 source cpu queue all rx
Switch(config)#monitor session 1 destination interface gigabitethernet 1/3
Switch(config)#end
4w6d: %SYS-5-CONFIG_I: Configured from console by console
Switch#show monitor session 1
```

Session 1 -----Type : Local Session Source Ports : RX Only : CPU Destination Ports : Gi1/3 Encapsulation : Native Ingress : Disabled Learning : Disabled

Si vous connectez un PC qui exécute un programme de renifleur, vous pouvez analyser rapidement le trafic. Dans la sortie qui apparaît dans la fenêtre de cette section, vous pouvez voir que l'utilisation élevée du CPU est due à un nombre excessif des BPDU de STP.

Remarque : les BPDU STP dans l'analyseur de processeur sont normaux. Mais si vous en voyez plus que prévu, vous pouvez avoir dépassé les limites recommandées pour votre moteur de superviseur. Pour plus d'informations, voyez la section <u>Un nombre élevé d'instances de port</u> <u>spanning-tree de ce document.</u>

PSE094	A_CPU	_Captu	re_01070	H.CAP	- Ethere	al	1E -		11		6										الد ا	9 ×
Ele Edi	t <u>Vi</u> er	4 <u>G</u> o	Capture	Analyz	e Stati	stics	delt															
	2	6	(@)	8		4	\$	٩	Ŧ	₫ (€, (2.0	. 1	0	Ð	Ľ,	X	0				
E BRer:										-	♦ E φ	ression	100	Jear	1	Soply						
No.	Time		Source				Destinati	on -		Protocol	Info											1-
3972 3973 3974 3975 3976 3977 3978 3980 3981 3980 3981 3980 3983 3984 3985 3986 5 Frame 5 Logfe	NRC Decompone Stock Protect 3972 611.62574* Cisco_db:f9:66 Spanning-tree- STP Conf. Root = 8192/00:0b:bf:e8:48:75 Cost = 4 Port = 0x8128 3973 611.62587* Cisco_db:f9:68 Spanning-tree- STP Conf. Root = 8192/00:0b:bf:e8:48:75 Cost = 4 Port = 0x8128 3974 611.62601 Cisco_db:f9:68 Spanning-tree- STP Conf. Root = 8192/00:0b:bf:e8:48:75 Cost = 4 Port = 0x8128 3975 611.62615* Cisco_db:fa:60 Spanning-tree- STP Conf. Root = 8192/00:0b:bf:e8:48:75 Cost = 4 Port = 0x8141 3976 611.62661* Cisco_db:fa:62 Spanning-tree- STP Conf. Root = 8192/00:0b:bf:e8:48:75 Cost = 4 Port = 0x8141 3977 611.62663* Cisco_db:fa:62 Spanning-tree- STP Conf. Root = 8192/00:0b:bf:e8:48:75 Cost = 4 Port = 0x8141 3978 611.62663* Cisco_db:fa:65 Spanning-tree- STP Conf. Root = 8192/00:0b:bf:e8:48:75 Cost = 4 Port = 0x8141 3978 611.62663* Cisco_db:fa:65 Spanning-tree- STP Conf. Root = 8192/00:0b:bf:e8:48:75 <																					
<pre>> Spanning Tree Protocol Protocol Identifier: Spanning Tree Protocol (0x0000) Protocol Version Identifier: Spanning Tree (0) BPDU Type: Configuration (0x00) > BPDU Type: Configuration (0x00) > BPDU Type: Configuration (0x00) 0 = Topology Change Acknowledgment: No 0 = Topology Change: No Root Identifier: 8192 / 00:0b:bf:e8:48:75 Root Path Cost: 4 Bridge Identifier: 61558 / 00:0b:fd:d5:58:80 Port identifier: 0x8145 Message Age: 1 Max Age: 20 Hello Time: 2 Forward Delay: 15</pre>																						
0000 0 0010 0 0020 0 0030 0	01 80 03 00 00 04 02 00	c2 0 00 0 f0 7 0f 0	0 00 00 0 00 00 6 00 00 0 00 00	0 00 3 0 20 0 0 fd 0	11 92 00 00 15 58 00 00	2 db 0 0b 3 80 0 00	fa 64 bf e8 81 45 00 00	00 2 48 7 01 0	6 42 5 00 0 14	42 00 00		×	d.&B .Hu. E	9								
File: PSE05	M_CPL	_Captur	e_0107D4	P: 401	6 D: 401	6 M: 0								-								11

Outil 2 : Analyseur de processeur intégré - Logiciel Cisco IOS version 12.2(20)EW et ultérieure

Le Catalyst 4500 fournit un renifleur et décodeur de CPU incorporé pour identifier rapidement le trafic qui atteint le CPU. Vous pouvez activer cette fonctionnalité avec la commande **debug**, **comme le montre l'exemple de cette section.** Cette fonctionnalité applique une mémoire tampon circulaire qui peut retenir 1 024 paquets simultanément. Lorsque de nouveaux paquets arrivent, ils écrasent les plus anciens. Cette fonctionnalité peut être utilisée en toute sécurité lors du dépannage de problèmes d'utilisation CPU élevée.

Switch#debug platform packet all receive buffer platform packet debugging is on Switch#show platform cpu packet buffered Total Received Packets Buffered: 36 _____ Index 0: 7 days 23:6:32:37214 - RxVlan: 99, RxPort: Gi4/48 Priority: Crucial, Tag: Dot1Q Tag, Event: Control Packet, Flags: 0x40, Size: 68 Eth: Src 00-0F-F7-AC-EE-4F Dst 01-00-0C-CC-CD Type/Len 0x0032 Remaining data: 0: 0xAA 0xAA 0x3 0x0 0x0 0xC 0x1 0xB 0x0 0x0 10: 0x0 0x0 0x0 0x80 0x0 0x0 0x2 0x16 0x63 0x28 20: 0x62 0x0 0x0 0x0 0x0 0x80 0x0 0x0 0x2 0x16 30: 0x63 0x28 0x62 0x80 0xF0 0x0 0x0 0x14 0x0 0x2 40: 0x0 0xF 0x0 0x0 0x0 0x0 0x0 0x2 0x0 0x63 Index 1:

7 days 23:6:33:180863 - RxVlan: 1, RxPort: Gi4/48 Priority: Crucial, Tag: DotlQ Tag, Event: Control Packet, Flags: 0x40, Size: 68 Eth: Src 00-0F-F7-AC-EE-4F Dst 01-00-0C-CC-CC-CD Type/Len 0x0032 Remaining data: 0: 0xAA 0xAA 0x3 0x0 0x0 0xC 0x1 0xB 0x0 0x0 10: 0x0 0x0 0x0 0x80 0x0 0x2 0x16 0x63 0x28 20: 0x62 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x2 0x16 30: 0x63 0x28 0x62 0x80 0xF0 0x0 0x0 0x14 0x0 0x2 40: 0x0 0xF 0x0 0x0 0x0 0x0 0x0 0x2 0x16

Remarque : L'utilisation du CPU lorsque vous émettez une commande **debug** est toujours de presque 100 %. Il est normal d'avoir une utilisation CPU élevée lorsque vous émettez une commande **debug**.

Outil 3 : Identifier l'interface qui envoie le trafic au processeur - Logiciel Cisco IOS Version 12.2(20)EW et ultérieure

Catalyst 4500 fournit un autre outil utile pour identifier les interfaces supérieures qui envoient du trafic/des paquets pour traitement par le CPU. Cet outil vous aide à identifier rapidement un périphérique qui envoie un nombre élevé de diffusions ou d'autres attaques par déni de service au CPU. Cette fonctionnalité est également sûre pour une utilisation lors du dépannage de problèmes d'utilisation CPU élevée.

		5	5	5	5	
Gi4/47	23130	5	10	50	20	
Gi4/48	50	1	0	0	0	
—						

Remarque : L'utilisation du CPU lorsque vous émettez une commande **debug** est toujours de presque 100 %. Il est normal d'avoir une utilisation CPU élevée lorsque vous émettez une commande **debug**.

<u>Résumé</u>

Les commutateurs Catalyst 4500 gèrent un débit élevé de transfert de paquets de la version d'IP 4 (ipv4) dans le matériel. Certaines des fonctionnalités ou des exceptions peuvent entraîner le transfert de certains paquets par l'intermédiaire du chemin de traitement du CPU. Le Catalyst 4500 utilise un mécanisme QoS sophistiqué pour gérer les paquets liés au CPU. Ce mécanisme assure la fiabilité et la stabilité des commutateurs tout en maximisant le CPU pour le transfert logiciel de paquets. Le logiciel Cisco IOS Version 12.2(25)EWA2 et ultérieure fournit des améliorations supplémentaires pour la gestion de paquets/processus ainsi que le comptage. Catalyst 4500 dispose également de commandes suffisantes et d'outils puissants pour faciliter l'identification de la cause principale des scénarios d'utilisation élevée du CPU. Mais, dans la plupart des cas, l'utilisation élevée du CPU sur un Catalyst 4500 n'est pas une cause d'instabilité du réseau ni un sujet d'inquiétude.

Informations connexes

- <u>Utilisation du processeur sur les commutateurs Catalyst 4500/4000, 2948G, 2980G et 4912G</u> <u>qui exécutent le logiciel CatOS</u>
- Pages de support pour les produits LAN
- Page de support sur la commutation LAN
- Support et documentation techniques Cisco Systems