Mise en oeuvre de la sauvegarde WAN LTE avec les routeurs de la gamme Cisco RV34x à l'aide d'un Mac OSX

Objectif

Cet article explique comment utiliser un routeur Cisco Business RV en tandem avec un routeur tiers qui a intégré la fonctionnalité de réseau étendu (WAN) LTE (Long Term Evolution) à l'aide d'un ordinateur Mac. Le routeur LTE est utilisé comme connexion de secours à Internet pour le routeur de la gamme RV34x. Dans ce scénario, le <u>routeur Hotspot mobile NETGEAR Nighthawk LTE, modèle MR1100</u> sera utilisé.

Si vous utilisez un ordinateur Windows, suivez les étapes de la <u>mise en oeuvre de la</u> <u>sauvegarde WAN LTE avec les routeurs de la gamme Cisco RV34x à l'aide d'un</u> <u>ordinateur Windows</u>.

Table des matières

- 1. Ressources NETGEAR
- 2. Sauvegarde de la topologie Internet
- 3. Présentation de la configuration
- 4. Configuration initiale sur le routeur mobile LTE
- 5. Configuration du transfert IP sur le routeur mobile LTE
- 6. Configuration du routeur RV34x pour Internet de secours sur WAN 2
- 7. Vérification de l'accès à Internet sur le routeur Cisco RV34x
- 8. Vérification de la sauvegarde Internet WAN 2

Périphériques pertinents | Version du micrologiciel

- RV340 | Microprogramme 1.0.03.16
- RV340W | Microprogramme 1.0.03.16
- RV345 | Microprogramme 1.0.03.16
- RV345P | Microprogramme 1.0.03.16

Introduction

Il est essentiel qu'une entreprise dispose d'Internet cohérent. Vous voulez faire tout ce qui est en votre pouvoir pour garantir la connectivité de votre réseau, mais vous n'avez aucun contrôle sur la fiabilité de votre fournisseur d'accès à Internet (FAI). À un moment donné, leur service peut être arrêté, ce qui signifie que votre réseau le sera également. C'est pourquoi il est important de planifier l'avenir. Que pouvez-vous faire ?

C'est simple, avec les routeurs de la gamme Cisco Business RV34x, deux options sont disponibles pour configurer une connexion Internet de secours :

- Vous pouvez ajouter un deuxième FAI traditionnel à l'aide d'un dongle compatible USB (Universal Serial Bus) 3G/4G LTE avec un abonnement. Le défi de cette configuration est que lorsqu'un tiers effectue une mise à jour du logiciel du dongle, il peut parfois causer des problèmes de compatibilité. Si vous souhaitez connaître la compatibilité la plus récente des dongles USB du FAI avec les routeurs de la gamme Cisco RV, cliquez <u>ici</u>.
- 2. Utilisez le 2 nd port WAN et ajoutez un deuxième routeur ISP avec la fonctionnalité LTE intégrée. Cet article est axé sur cette option, donc si cela vous intéresse, s'il vous plaît continuer!

Dans ce scénario, nous allons nous concentrer sur l'ajout d'un routeur ISP avec fonctionnalité LTE, en particulier le routeur Hotspot mobile NETGEAR Nighthawk LTE, modèle MR1100. Le routeur utilise des données mobiles, comme un téléphone portable, lorsqu'il est utilisé pour accéder à Internet. Assurez-vous donc que vous disposez du plan approprié pour prendre en charge votre environnement.

Le LTE de quatrième génération (4G) représente une amélioration par rapport au 3G. Il offre une connexion plus fiable, des vitesses de téléchargement et de téléchargement plus rapides et une meilleure clarté de la voix et de la vidéo. Bien que la 4G LTE ne soit pas une connexion 4G complète, elle est considérée comme nettement supérieure à la 3G.

En outre, le FAI secondaire peut être configuré pour équilibrer la charge et étendre la bande passante sur votre réseau. Si vous souhaitez visionner une vidéo à ce sujet, consultez <u>Cisco Tech Talk : Configuration du double WAN pour l'équilibrage de charge sur les routeurs de la gamme RV340</u>.

Cisco Business ne vend ni ne prend en charge les produits NETGEAR. Il a simplement été utilisé comme routeur LTE compatible avec les routeurs de la gamme Cisco RV.

Ressources NETGEAR

- 1. Page Produit
- 2. Guide de démarrage rapide
- 3. Manuel de l'utilisateur
- 4. Quelles sont les bandes cellulaires prises en charge par le routeur mobile M1 Nighthawk MR1100 ?
- 5. Liste des transporteurs pris en charge par AirCard Hotspot
- 6. Achetez le routeur mobile M1 Nighthawk MR1100 (vérifiez la disponibilité de votre FAI)

Sauvegarde de la topologie Internet

L'image ci-dessous illustre le FAI principal connecté au WAN1 sur le routeur de la gamme RV (représenté en tant que boîtier bleu) et le WAN 2 connecté au port indiqué sur le routeur NETGEAR (l'équipement noir) du FAI secondaire.

Avant de connecter le routeur LTE au routeur RV340, suivez les instructions ci-dessous pour configurer le routeur LTE en tant qu'Internet de secours.

Présentation de la configuration

Voici les étapes de haut niveau nécessaires pour activer Internet de sauvegarde.

- 1. Configuration initiale sur le routeur mobile LTE
- 2. Configuration du transfert IP sur le routeur mobile LTE
- 3. Configuration du routeur RV34x pour Internet de secours sur WAN 2

Configuration initiale sur le routeur mobile LTE

Utilisez une station de travail pour vous connecter au routeur LTE Nighthawk et suivez les instructions pour configurer l'administration standard et les réseaux hotspots. Les étapes se trouvent dans le <u>manuel d'utilisation de NETGEAR</u>. Cela définit le routeur LTE comme un point d'accès Wi-Fi.

La configuration initiale du routeur mobile LTE permet une connexion Ethernet câblée. À l'aide de la même station de travail, connectez-vous au port Ethernet et vérifiez qu'une adresse IP valide est émise à partir du routeur mobile LTE. Vérifiez cela en ouvrant votre navigateur pour vérifier un site Internet valide.

Le hotspot sera automatiquement désactivé dans la section suivante. Cela permettra d'accéder à l'adresse IP publique externe requise pour répondre à nos besoins.

Configuration du transfert IP sur le routeur mobile LTE

Après avoir suivi les étapes de la section ci-dessus, vous pouvez accéder au tableau de bord pour configurer le routeur mobile LTE en tant que périphérique autonome permettant un accès direct à l'Internet public.

Complétez les options de configuration IP Passthrough pour fournir une adresse IP directe et publique.

Étape 1

Dans un navigateur Web, saisissez attwifimanager/index.html.

🗊 🔏 attwifimanager/index.html

Vous devriez voir un écran de tableau de bord similaire à celui présenté ci-dessous.

Cliquez sur Paramètres pour accéder aux paramètres de configuration avancés.

Étape 3

Accédez à Configuration du routeur mobile.

Sous *IP PASSTHROUGH*, sélectionnez **ON Disable Wi-Fi sur le routeur mobile**. Cette opération désactive la prise en charge des points d'accès Wi-Fi.

IP PASSTHROUGH
⊖ Off
 ON Disables Wi-Fi on the mobile router

Étape 5

Sous TETHERING, sélectionnez Charger uniquement dans le menu déroulant.

TETHERING	
Turn off Wi-Fi when tethering	0
Use USB port for	
Charge only	
7	

Étape 6

Cliquez sur Apply.

Une fenêtre contextuelle s'ouvre pour Confirmer le redémarrage, cliquez sur Continuer.

Étape 8

Un avis s'affiche dans le coin supérieur droit, Mobile Broadband Disconnected.

Mobile Broadband Disconnected

Your data connection is disconnected.

Étape 9

Un avis s'affiche, ANALYSE DU ROUTEUR MOBILE.

L'interface Wi-Fi doit être désactivée pour tester la configuration du routeur LTE sur le réseau LAN. Pour désactiver la connexion Wi-Fi, cliquez sur l'**icône Wi-Fi** et sélectionnez **Désactiver Wi-Fi**.

Vous verrez alors que le réseau n'est pas connecté au RV340.

• • < > =		Network	5	Q Search
	Location:	Automatic	٥	
USB 10/00 LAN Not Connected Bluetooth PAN Not Connected	**> 8	Status:	Not Connected The cable for USB 10/100/1 connected, but your compt an IP address.	1000 LAN is uter does not have
BelkinB-C LAN Not Connected	\leftrightarrow	Configure IPv4:	Using DHCP	0
MR1100 Not Connected	~>	IP Address:		
Wi-Fi		Subnet Mask:		
Off	Ŷ	Router:		
ThundeIt Bridge Not Connected	~>	DNS Server:		
		Search Domains:		
+ - *-	_			Advanced ?

Àl'étape 7, le routeur NETGEAR a redémarré. Une fois cette opération terminée, prenez un câble Ethernet et connectez le routeur LTE directement à votre ordinateur.

Étape 13

Notez l'adresse IP Internet du FAI de votre réseau local Ethernet. Il s'agit de l'adresse IP du routeur LTE.

Vérifiez la connectivité à Internet en ouvrant votre navigateur et en saisissant un site Internet valide.

Étape 15

Déconnectez le câble Ethernet du routeur LTE et du PC.

Configuration du routeur RV34x pour Internet de secours sur WAN 2

Maintenant que le routeur LTE a été configuré et que la station de travail reçoit une adresse IP générée par le FAI, connectez le routeur mobile LTE directement au port WAN 2 du routeur de la gamme RV340, comme indiqué dans la section <u>Topologie</u> <u>Internet de sauvegarde</u> de cet article. Cette adresse a été fournie au routeur Cisco directement par le routeur LTE (du FAI).

Actuellement, la connexion Internet est fournie par le WAN 1 du RV340.

Étape 1

Connectez le routeur LTE au port WAN 2 du routeur RV340.

Étape 2

Connectez votre ordinateur au routeur RV afin d'accéder aux menus d'administration.

Étape 3

Accédez à **Status and Statistics > ARP Table**. Notez l'adresse IPv4 de votre ordinateur sur le réseau local. Cette adresse IP sera nécessaire pour l'étape 5.

Sélectionnez System Summary et voyez que WAN 1 et WAN 2 sont affichés comme up.

8	Getting Started	System S	Summar	У						
	Status and Statistics									
1	System Summary	System Inform	ation					Firmware Info	ormation	
	TCP/IP Services	Host Name:	route	r445788				Firmware Vers	sion:	1.0.03.16
	Port Traffic	Serial Number:	PSZ2	0231BKX				Firmware MD5	5 Checksum:	1b5370409d0f404504
	WAN QoS Statistics	System Up Time	e: 0 Day	s 3 Hours 11 Mi	nutes 36 Sec	onds		WANT MAC A	ddress:	ec:bd:1d:44:57:86
	ARP Table	CPU/Memory U	Isage: 6% /	-Jan-23, 01:13: 34%	21 GM1			LAN MAC Add	dress:	ec:bd:1d:44:57:87
	Routing Table	PID VID:	RV34	5P-K9 PP						
	DHCP Bindings	Port Status	1							
	Mobile Network	. on outdo								
	View Logs	Port ID	1	2	3	4	5	6	7	8
*	Administration	Interface	LAN	LAN	LAN	LAN	LAN	LAN	LAN	LAN
٠	System Configuration	Link Status	1	T	1	1	1	1	1	1
0	WAN	Speed		1000Mbps						
"	LAN							2	_	
۲	Routing	Port ID	11	12	13	14	15	16/DMZ	Internet	Internet
	Firewall	Interface	LAN	LAN	LAN	LAN	LAN	LAN	WAN1	WAN2
₽	VPN	Link Status	1	4	1	1	1	4	t.	T
	Security	Speed							1000Mbp	s 1000Mbps

Étape 5

Faites défiler la page vers le bas et prenez note des adresses IP de chaque réseau étendu.

	11.14.2	
Interface	WAN1	WAN2
IP Address	192.168.100.147	10.226.255.225
Default Gateway	192.168.100.1	10.226.255.1
DNS	192.168.100.1	172.26.38.1
Dynamic DNS	Disabled	Disabled
Multi-WAN Status	Online	Online
	Release	Release
	Renew	Renew

Sur l'ordinateur Mac, sélectionnez ce qui suit :

1. Dossier Applications

- 2.
- 3. Dossier Utilitaires

4.

5. Terminal

Entrez la commande permettant d'envoyer une requête ping à la passerelle LAN locale du routeur.

$c: ar{Users}$ ping [adresse IP de la passerelle locale du routeur]

Dans ce scénario, l'adresse IP est 172.168.1.1.

C:\USers\ ping 172.168.1.1

	Downloads — R2 — -bash — 80×25
	E MBRidownloads \$ ping 172.168.1.1
	PING 172.168.1.1 (172.168.1.1): 56 data bytes
A	64 Dytes from 1/2.168.1.1: icmp_seq=0 ttl=64 time=0.800 ms
	64 bytes from 172.168.1.1: icmp_seq=1 ttl=64 time=0.659 ms
1	64 bytes from 172.168.1.1: icmp_seq=2 ttl=64 time=0.623 ms
	64 bytes from 172.168.1.1: icmp_seq=3 ttl=64 time=0.592 ms
	^c
	172.168.1.1 ping statistics
	4 packets transmitted, 4 packets received, 0.0% packet loss
	round-trip min/avg/max/stddev = 0.592/0.668/0.800/0.080 ms
É	tape 8

Entrez la commande permettant d'envoyer une requête ping à la passerelle WAN 2.

Sur un ordinateur Mac, la requête ping continue jusqu'à ce que vous atteigniez **control** + **C**.

C: ackslash USers ackslash ping [adresse IP de la passerelle WAN 2]

Dans ce scénario, l'adresse IP est 10.226.255.1.

C:\Users\ ping 10.226.255.1

Entrez la commande permettant d'envoyer une requête ping à la passerelle WAN 1. Laissez la requête ping continuer tout au long du processus de vérification.

 $\texttt{C:} \setminus \texttt{USers} \setminus$ ping [adresse IP de la passerelle WAN 1]

Dans ce scénario, l'adresse IP est 192.168.100.1.

```
C:\USETS\ ping 192.168.100.1
```

T Hitsey of			1 minutes			ping 192.	168.100.	.1	
PII	NG 192	.168.3	100.1	(192.16	8.10	00.1): 56	data by	tes	
	oyces.	1.1.000		68.100.	11 3	cmp_seq=0	tt1=63	time=2.334	mø
64	bytes	from	192.1	68.100.	1: 3	cmp_seq=1	tt1=63	time=1.716	21.5
64	bytes	from	192.1	68.100.	1: 3	cmp_seq=2	tt1=63	time=1.638	ms
64	bytes	from	192.1	68.100.	lı i	cmp_seq=3	tt1=63	time=1.623	2.5
64	bytes	from	192.1	68.100.	1: 3	cmp_seq=4	tt1=63	time=1.806	2.6
64	bytes	from	192.1	68.100.	1: 3	cmp_seq=5	tt1=63	time=1.735	mø
64	bytes	from	192.1	68.100.	1: 3	cmp_seq=6	tt1=63	time=1.617	216
64	bytes	from	192.1	68.100.	1: 3	cmp_seq=7	tt1=63	time=1.960	21.5
64	bytes	from	192.1	68.100.	1: 3	cmp_seq=8	tt1=63	time=1.734	8.0
64	bytes	from	192.1	68.100.	1: i	cnp_seq=9	tt1=63	time=1.730	ms

Étape 10

Accédez à **WAN > Multi-WAN**. Assurez-vous que WAN 1 a la priorité 1 et que WAN 2 a la priorité 2.

Ceci permet de configurer le WAN 2 comme FAI de secours en cas de défaillance sur le WAN 1.

			cisco	RV345P-router445788		cisco (admin)	English •	8 6 🕩
⊗	Getting Started	Mul	ti-WAN					Canad
٩	Status and Statistics	- Wildi					Арру	Cancel
*	Administration	Inte	rface Setting	Table				^
٠	System Configuration							
1			3		Weighted by Percentage (For Load-Balance)(%) (O Weighted by Bandwi	dth (For Load-Ba	lance)
1	WAN WAN Settings		3 Interface ¢	Precedence (For Failover) \$	Weighted by Percentage (For Load-Balance)(%) (Mbps)	O Weighted by Bandwi	dth (For Load-Ba	lance)
1	WAN WAN Settings Multi-WAN		Interface ¢	Precedence (For Failover) ¢	Weighted by Percentage (For Load-Balance)(%) (Mbps)	O Weighted by Bandwi	dth (For Load-Ba	lance)
1	WAN WAN Settings Multi-WAN Mobile Network		3 Interface ¢ WAN1 WAN2	Precedence (For Failover) \$	Weighted by Percentage (For Load-Balance)(%) (Mbps)	O Weighted by Bandwi	dth (For Load-Ba	lance)
1	WAN WAN Settings Multi-WAN Mobile Network Dynamic DNS		3 Interface ¢ WAN1 WAN2 USB1	Precedence (For Failover) \$	Weighted by Percentage (For Load-Balance)(%) ((Mbps)	 Weighted by Bandwi 	dth (For Load-Ba	lance)

Étape 11

Cliquez sur l'icône Enregistrer.

Vérification de l'accès à Internet sur le routeur Cisco RV34x

Étape 1

Accédez à **Status and Statistics > System Summary**. Assurez-vous que l'état de Multi-WAN est en ligne.

8	Getting Started	System Sum	many			
1	Status and Statistics	System Sum	indi y			
2	System Summary					
Ĩ	TCP/IP Services	IPv4 IPv6				
	Port Traffic	Interfaces	MAN'S	MANO	LICPA	11682
	WAN QoS Statistics	IP Address	192.168.100.147	10.226.255.225		
	ARP Table	Default Gateway	192.168.100.1	10.226.255.1		
	Routing Table	DNS	192.168.100.1	172.26.38.1		
	DUCD Bindiana	3 Dynamic DNS	Disabled	Disabled	Disabled	Disabled
	DHCP Bindings	Multi-WAN Status	Online	Online	Offline	Offline
	Mobile Network		Release	Release	(Not Attached)	(Not Attached)
	View Logs		Renew	Renew		
Ét	ape 2					

Vérifiez en ouvrant votre navigateur pour vérifier un site Internet valide.

Vérification de la sauvegarde Internet WAN 2

Étape 1

Vérifiez que la requête ping est toujours en cours d'exécution.

۲	• •		Downlo	ads — R2 — pin	g 192.168	.100.1 - 80×2	5
64	bytes	from	192.168.100.1:	icmp_seq=73	tt1=63	time=1.921	8.8
64	bytes	from	192.168.100.1:	icmp_seq=74	ttl=63	time=2.069	25
64	bytes	from	192.168.100.1:	icmp_seq=75	tt1=63	time=1.600	ns.
64	bytes	from	192.168.100.1:	icmp_seq=76	tt1=63	time=2.329	ma.
64	bytes	from	192.168.100.1:	icmp_seq=77	tt1=63	time=1.653	85
64	bytes	from	192.168.100.1:	icmp_seq=78	tt1=63	time=2.076	ms.
64	bytes	from	192.168.100.1:	icnp_seq=79	tt1=63	time=1.794	85
64	bytes	from	192.168.100.1:	icmp_seq=80	tt1=63	time=1.583	28
64	bytes	from	192.168.100.1:	icmp_seq=81	tt1=63	time=1.782	ns
64	bytes	from	192.168.100.1:	icmp_seq=82	tt1=63	time=1.567	85
64	bytes	from	192.168.100.1:	icmp_seq=83	tt1=63	time=1.734	8.8
64	bytes	from	192.168.100.1:	icmp_seq=84	ttl=63	time=2.429	25
64	bytes	from	192.168.100.1:	icmp_seq=85	tt1=63	time=3.014	8.0
64	bytes	from	192.168.100.1:	icnp_seq=86	tt1=63	time=2.362	B.S
64	bytes	from	192.168.100.1:	icmp_seq=87	tt1=63	time=1.803	85
64	bytes	from	192.168.100.1:	icmp_seq=88	tt1=63	time=1.832	88
64	bytes	from	192.168.100.1:	icmp_seq=89	tt1=63	time=1.884	8.0
64	bytes	from	192.168.100.1:	icmp_seq=90	tt1=63	time=1.885	88
64	bytes	from	192.168.100.1:	icmp_seq=91	ttl=63	time=1.918	85
64	bytes	from	192.168.100.1:	icmp_seq=92	ttl=63	time=1.802	88
64	bytes	from	192.168.100.1:	icmp_seq=93	tt1=63	time=1.828	8.8
64	bytes	from	192.168.100.1:	icmp_seq=94	ttl=63	time=2.194	25
64	bytes	from	192.168.100.1:	icmp_seq=95	tt1=63	time=2.010	8.8
64	bytes	from	192.168.100.1:	icmp_seq=96	tt1=63	time=1.853	ns

Tirez le câble sur WAN 1. Les requêtes ping commencent à échouer. Cliquez sur **control + c** pour que les requêtes ping s'arrêtent.

۲	••		Downlo	ads - R2 - ping 192.168.100.1 - 80×25
64	bytes	from	192.168.100.1:	icmp_seq=90 ttl=63 time=1.885 ms
64	bytes	from	192.168.100.1:	icmp_seq=91 ttl=63 time=1.918 ms
64	bytes	from	192.168.100.1:	icmp_seq=92 ttl=63 time=1.802 ms
64	bytes	from	192.168.100.1:	icmp_seq=93 ttl=63 time=1.828 ms
64	bytes	from	192.168.100.1:	icmp_seq=94 ttl=63 time=2.194 ms
64	bytes	from	192.168.100.1:	icmp_seq=95 ttl=63 time=2.010 ms
64	bytes	from	192.168.100.1:	icmp_seq=96 ttl=63 time=1.853 ms
64	bytes	from	192.168.100.1:	icmp_seq=97 ttl=63 time=1.609 ms
64	bytes	from	192.168.100.1:	icmp_seq=98 ttl=63 time=1.761 ms
64	bytes	from	192.168.100.11	icmp_seq=99 ttl=63 time=3.376 ms
64	bytes	from	192.168.100.1:	icmp_seq=100 ttl=63 time=1.804 ms
64	bytes	from	192.168.100.1:	icmp_seq=101 ttl=63 time=1.416 ms
64	bytes	from	192.168.100.1:	icmp_seq=102 ttl=63 time=1.615 ns
64	bytes	from	192.168.100.1:	icmp_seq=103 ttl=63 time=3.400 ms
64	bytes	from	192.168.100.1:	icmp_seq=104 ttl=63 time=1.855 ms
64	bytes	from	192.168.100.1:	icmp_seq=105 ttl=63 time=2.057 ms
64	bytes	from	192.168.100.1:	icnp_seq=106 ttl=63 time=2.233 ns
64	bytes	from	192.168.100.1:	icmp_seq=107 ttl=63 time=1.739 ns
64	bytes	from	192.168.100.1:	icmp_seq=108 ttl=63 time=2.482 ms
Red	quest t	timeou	at for icmp_seq	109
Ree	quest (timeou	at for icmp_seq	110
Ree	quest (timeou	at for icmp_seq	111
Red	quest t	timeou	at for icmp_seq	112
Ree	quest (timeou	at for icmp_seq	113

Étape 3

Accédez à **Status and Statistics > System Summary**. Notez que le WAN 1 est hors connexion.

		E	cisco P	RV345P-rout	ter445788	
8	Getting Started	Sve	tem Sum	many		
1	Status and Statistics	Oyc	com oum	indi y		
2	System Summary			-		
	TCP/IP Services	Int	erface	WAN1	WAN	2
		IP	Address		10.22	6.255.225
	Port Traffic	De	fault Gateway		10.22	26.255.1
	WAN QoS Statistics	DI	VS		172.2	26.38.1
		Dy	namic DNS	Disabled	Disab	led
	ARP Table	3 M	ulti-WAN Status	Offline	Online	•
	Routing Table			Renew	F	Release
	DHCP Bindings					Renew
	Mobile Network					

Étape 4

Envoyez une requête ping à l'adresse IP du WAN 2. Les réponses indiquent que vous avez une connectivité au WAN de secours LTE (routeur LTE).

C: |USETS| ping [adresse IP WAN 2]

Dans ce scénario, l'adresse IP est 10.226.255.1.

Downloads — R2 — -bash — 80×25
icmp_seq 146
icmp_seg 147
icmp_seq 148
icmp_seq 149
icmp_seg 150
icmp_seq 151
icmp_seq 152
ng statistics
ted, 109 packets received, 29.2% packet los
ax/stddev = 1.416/1.949/3.526/0.365 ms
ping 10.226.255.1
255 1. (orr corrol thla62 birocl 500 re
255 1: icmp_seq=0 tt1=63 time=1.300 ms
255 1: icmp_seq=1 tt1=63 time=2.271 ms
255.1. (cmp_seq=2 ttl=63 time=1.810 ms
255 1: icmp_seg=5 cc1=05 cime=1.010 ms
ressiri remp_bed-4 cer-es erme-ri4se mb
g statistics
d. 5 packets received, 0.0% packet loss
ax/stddey = 1.345/1.673/2.271/0.337 ms

Étape 5

C:\Users\ ping 1

Ouvrez un navigateur Web et vérifiez un site Internet valide. Cela permet également de vérifier que vous disposez de la fonctionnalité WAN de sauvegarde appropriée sur le WAN (routeur LTE).

Excellent travail, vous avez maintenant configuré votre réseau avec la connectivité de sauvegarde. Votre réseau est désormais plus fiable, ce qui convient à tous !