Surveiller l'utilisation du processeur sur la gamme ISR4300

Table des matières

Introduction Conditions préalables Exigences Composants utilisés Architecture Utilisation du processeur sur Cisco IOSd Utilisation du processeur par trafic Coeurs de processeur installés Répartition des coeurs du processeur Meilleures pratiques de surveillance du processeur

Introduction

Ce document décrit comment lire l'utilisation de l'unité centrale (UC) sur les routeurs à services intégrés (ISR) de la gamme 4300.

Conditions préalables

Exigences

Cisco vous recommande de prendre connaissance des rubriques suivantes :

- Cisco IOS® XE
- ISR43XX

Composants utilisés

Les informations contenues dans ce document sont basées sur la version matérielle et logicielle :

- ISR4321/K9
- ISR4331/K9
- ISR4351/K9
- 03.16.01a.S // 15.5(3)S1a
- 03.16.04b.S // 15.5(3)S4b
- 16.9.7
- 16.12.4

The information in this document was created from the devices in a specific lab environment. All of

the devices used in this document started with a cleared (default) configuration. Si votre réseau est en ligne, assurez-vous de bien comprendre l'incidence possible des commandes.

Architecture

Les plates-formes de la gamme Cisco ISR 4000 exécutent Cisco IOS XE qui possède une architecture logicielle distribuée qui exécute un noyau Linux où Cisco IOS® s'exécute comme l'un des nombreux processus Linux. Cisco IOS s'exécute en tant que démon, appelé démon Cisco IOS (IOSd).

Utilisation du processeur sur Cisco IOSd

Afin de surveiller l'utilisation du CPU sur IOSd, exécutez la commande show process cpu :

#shov	/ process cpu							
CPU ι	tilization for	five seconds:	1%/0%;	one mi	nute: 19	%; five	e mir	nutes: 0%
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
1	2	8	250	0.00%	0.00%	0.00%	0	Chunk Manager
2	5	18	277	0.07%	0.00%	0.00%	0	Load Meter
3	0	2	0	0.00%	0.00%	0.00%	0	DiagCard4/-1
4	0	1	0	0.00%	0.00%	0.00%	0	Retransmission o
5	0	1	0	0.00%	0.00%	0.00%	0	IPC ISSU Dispatc

Le résultat affiche deux valeurs pour l'utilisation du CPU, la première valeur est la quantité totale d'utilisation du CPU et la seconde valeur est la quantité de CPU par les interruptions envoyées à IOSd :

	To	otal CPU usage		CPU (usage by I	nterrupts	;	
Router#	show process	cpu sorted						
CPU uti	lization for	five seconds	18/08	ne mi	nute: 0	לא; five	mi	nutes: 0%
PID Ru	ntime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
64	995	46	21630	0.47%	0.05%	0.00%	0	Licensing Auto U
182	1207	41371	29	0.07%	0.05%	0.05%	0	VRRS Main thread
363	78	5172	15	0.07%	0.00%	0.00%	0	Inspect process
249	3678	262284	14	0.07%	0.10%	0.11%	0	Inline Power
129	476	2653	179	0.07%	0.02%	0.00%	0	Per-Second Jobs
5	0	1	0	0.00%	0.00%	0.00%	0	IPC ISSU Dispate
6	21	12	1750	0.00%	0.00%	0.00%	0	RF Slave Main Th

La différence entre la quantité totale de CPU et la quantité de CPU par interruptions sont les valeurs de CPU consommées par les processus ; afin de corroborer ajouter toute l'utilisation des processus pour les cinq dernières secondes :

 Consommation CPU des processus = 1 % - 0 % = 1 % = Tous les processus Consommation CPU indiquée dans la commande

Afin d'afficher les processus qui consomment le plus de CPU sur le dessus, exécutez la commande show process cpu sorted :

CPU utilization for five seconds: 1%/0%; one minute: 0%; five minutes: 0% PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process 64 103 10 10300 0.33% 0.02% 0.00% 0 Licensing Automic 83 26 231 112 0.27% 0.00% 0 PuntInject Ke 235 555 48176 11 0.11% 0.09% 0.07% 0 Inline Power 1 2 8 250 0.00% 0.00% 0 Chunk Manager	#sho	w process cpu so	orted						
PID Runtime(ms)InvokeduSecs5Sec1Min5MinTTYProcess6410310103000.33%0.02%0.00%0Licensing Aut83262311120.27%0.00%0.00%0PuntInject Ke23555548176110.11%0.09%0.07%0Inline Power1282500.00%0.00%0.00%0Chunk Manager	CPU	utilization for	five seconds:	1%/0%;	one mi	nute: 0%	6; five	mir	nutes: 0%
6410310103000.33%0.02%0.00%0Licensing Aut83262311120.27%0.00%0.00%0PuntInject Ke23555548176110.11%0.09%0.07%0Inline Power1282500.00%0.00%0.00%0Chunk Manager	PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
83 26 231 112 0.27% 0.00% 0.00% 0 PuntInject Ke 235 555 48176 11 0.11% 0.09% 0.07% 0 Inline Power 1 2 8 250 0.00% 0.00% 0 Chunk Manager	64	103	10	10300	0.33%	0.02%	0.00%	0	Licensing Auto U
235 555 48176 11 0.11% 0.09% 0.07% 0 Inline Power 1 2 8 250 0.00% 0.00% 0 Chunk Manager	83	26	231	112	0.27%	0.00%	0.00%	0	PuntInject Keepa
1 2 8 250 0.00% 0.00% 0.00% 0 Chunk Manager	235	555	48176	11	0.11%	0.09%	0.07%	0	Inline Power
-	1	. 2	8	250	0.00%	0.00%	0.00%	0	Chunk Manager

Remarque : l'ajout de tous les processus peut aboutir à des valeurs en virgule flottante, IOSd arrondit le résultat à l'entier suivant.

Utilisation du processeur par trafic

La conception de la gamme ISR4300, afin de transférer le trafic, est basée sur un élément appelé QuantumFlow Processor (QFP).

Attention : QFP se trouve sur ASR1K comme une ou plusieurs puces physiques, sur I'ISR4400 la même fonctionnalité est faite avec les coprocesseurs Cavium Octeon, sur I'ISR4300 cette fonctionnalité est faite sur certains coeurs du processeur Intel principal. Vous pouvez considérer le QFP de la gamme ISR4300 comme un logiciel qui transfère les paquets.

Afin de déterminer la quantité de CPU consommée par le trafic, vous pouvez exécuter la commande show platform hardware qfp active datapath use :

<pre>#show platform ha</pre>	ardware qfp	active da	tapath utilizati	on	
CPP 0: Subdev ()	5 secs	1 min	5 min	60 min
Input: Priority	(pps)	0	0	0	0
	(bps)	0	0	0	0
Non-Priority	(pps)	3	2	2	1
	(bps)	1448	992	992	568
Total	(pps)	3	2	2	1
	(bps)	1448	992	992	568
Output: Priority	(pps)	0	0	0	0
	(bps)	0	0	0	0
Non-Priority	(pps)	3	2	2	1
	(bps)	12216	8024	8024	4576
Total	(pps)	3	2	2	1
	(bps)	12216	8024	8024	4576
Processing: Load	(pct)	0	0	0	1

La commande répertorie l'utilisation du CPU en entrée et en sortie pour les paquets prioritaires et non prioritaires. Les informations sont affichées avec des paquets par seconde (PPS) et des bits par seconde (BPS). La dernière ligne affiche la quantité totale de charge du CPU due à l'acheminement des paquets en valeurs de pourcentage (PCT).

Coeurs de processeur installés

La gamme ISR4300 a une quantité différente de coeurs de CPU installés qui dépend du modèle, pour identifier le nombre de coeurs installés sur votre périphérique exécutez la commande show processes cpu platform :

#show pr	<pre>#show processes cpu platform</pre>												
CPU util	lization	for five	e seconds	: 30%, or	ne min	ute:	29%, fi	ve mi	nutes:	29%			
Core 0:	CPU util	ization	for five	seconds	: 13%,	one	minute:	13%,	five	minutes:	13%		
Core 1:	CPU util	ization	for five	seconds	: 2%,	one	minute:	3%,	five	minutes:	3%		
Core 2:	CPU util	ization	for five	seconds	: 0%,	one	minute:	0%,	five	minutes:	0%		
Core 3:	CPU util	ization	for five	seconds	: 99%,	one	minute:	99%,	five	minutes:	99%		
Pid	PPid	5Sec	1Min	5Min S	Status		Size	Name	e				
1	0	0%	0%	0%	5		1863680	ini	 t				
2	0	0%	0%	0% 5	5		0	kth	readd				

Vous pouvez également exécuter la commande show platform software status control-processor :

```
#show platform software status control-processor
<output omitted>
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
User: 4.80, System: 10.30, Nice: 0.00, Idle: 84.50
IRQ: 0.40, SIRQ: 0.00, IOwait: 0.00
CPU1: CPU Utilization (percentage of time spent)
User: 2.00, System: 3.40, Nice: 0.00, Idle: 94.59
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU2: CPU Utilization (percentage of time spent)
User: 0.50, System: 0.00, Nice: 0.00, Idle: 99.49
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU3: CPU Utilization (percentage of time spent)
User: 24.72, System: 75.27, Nice: 0.00, Idle: 0.00
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
```

D'autre part, exécutez la commande show platform software status control-processor brief, et l'une de ces commandes affiche la quantité de coeurs installés :

#show platform software status control-processor brief <output omitted> CPU Utilization Slot CPU User System Nice Idle IRQ SIRQ IOwait RP0 0 4.30 9.80 0.00 85.90 0.00 0.00 0.00 1 0.79 0.99 0.00 98.20 0.00 0.00 0.00 2 0.50 0.00 0.00 99.50 0.00 0.00 0.00 3 24.60 75.40 0.00 0.00 0.00 0.00 0.00

Répartition des coeurs du processeur

La conception de la gamme ISR4300 génère des coeurs spécifiques utilisés pour le traitement des paquets. Les coeurs 4 à 7 sont réservés au traitement des paquets sur ISR4331 et 4351, tandis que les coeurs 2 et 3 sont utilisés pour ISR4321.

Jusqu'à la version 16.5.x de Cisco IOS XE incluse pour des raisons de performances, le cadre de file d'attente hiérarchique (HQF) dispose d'un thread qui tourne toujours à chaud et s'exécute avec une utilisation CPU élevée, quelle que soit la configuration prête à l'emploi ou la quantité de trafic transitant par le système. Sur les plates-formes ISR4300, cela peut apparaître comme une utilisation CPU élevée sur un ou plusieurs coeurs, car le logiciel QFP s'exécute sur le processeur principal.

Cependant, après et avec les versions 16.6.x de Cisco IOS XE, une modification a été implémentée afin que ces plates-formes ne fassent pas tourner les threads à chaud. Dans ce cas, l'utilisation du CPU est plus distribuée par les coeurs.

Pour afficher l'utilisation du spin à chaud, exécutez la commande show processes cpu platform sorted, avant Cisco IOS XE 16.6.x :

#show pr	rocesses	cpu plat	tform sort	ted								
CPU util	lization	for five	e seconds:	: 28%, or	e min	ute:	29%, fiv	ve min	nutes:	29%		
Core 0:	CPU util	ization	for five	seconds:	12%,	one	minute:	13%,	five	minutes:	14%	
Core 1:	CPU util	ization	for five	seconds:	2%,	one	minute:	3%,	five	minutes:	3%	
Core 2:	CPU util	ization	for five	seconds:	0%,	one	minute:	0%,	five	minutes:	0%	
Core 3:	CPU util	ization	for five	seconds:	99%,	one	minute:	99%,	five	minutes:	99% <	<< hot-spin
Pid	PPid	5Sec	1Min	5Min S	status		Size	Name	e			
2541	 1955	99%	 99%	99% S	 ;	10	 73807360	qfp	 -ucode		 < high	CPU process
1551	929	7%	7%	7% S	5	203	38525952	fmar	n_fp_i	mage		

Sur une architecture à huit coeurs, vous pouvez voir le même résultat, avec un coeur différent sur la rotation à chaud, avant Cisco IOS XE 16.6.x :

#show p	#show processes cpu platform sorted												
CPU uti	lization	for five	e seconds	: 15%, or	e min	ute:	14%, fiv	/e mi	nutes:	15%			
Core 0:	CPU uti	lization	for five	seconds:	6%,	one	minute:	4%,	five	minutes:	8%		
Core 1:	CPU uti	lization	for five	seconds:	1%,	one	minute:	0%,	five	minutes:	2%		
Core 2:	CPU uti	lization	for five	seconds:	9%,	one	minute:	10%,	five	minutes:	7%		
Core 3:	CPU uti	lization	for five	seconds:	1%,	one	minute:	2%,	five	minutes:	1%		
Core 4:	CPU uti	lization	for five	seconds:	1%,	one	minute:	1%,	five	minutes:	1%		
Core 5:	CPU uti	lization	for five	seconds:	0%,	one	minute:	0%,	five	minutes:	0%		
Core 6:	CPU uti	lization	for five	seconds:	99%,	one	minute:	99%,	five	minutes:	99%	<<< hot-spin	
Core 7:	CPU uti	lization	for five	seconds:	0%,	one	minute:	0%,	five	minutes:	0%		
Pid	PPid	5Sec	1Min	5Min S	status		Size	Nam	e				
3432	2779	 00%	 00%	 ۵۵% ۲		109		afn			 / hic	h CPU process	
2612	1803	55% 7%	7%	7% 9	,	203	22607024	fmai	n fn i		< mg	gir cro process	
26114	25122	1%	5%	770 S	,	20.	12803200	hmai	n_ip_i n	maye			
20114	27772	4/0	J/0	J/0 P			+2003200	iiiiai					

Après et y compris Cisco IOS XE 16.6.x, cependant vous pouvez voir qu'il y a une distribution de charge entre Core 2 et Core 3 :

	show process cpu platform sorted													
CPU uti	PU utilization for five seconds: 31%, one minute: 32%, five minutes: 29%													
Core 0:	CPU uti	lization	for five	seconds	5: 3%,	one minute	e: 3%, five minutes: 3%							
Core 1:	CPU uti	lization	for five	seconds	5: 3%,	one minute	e: 2%, five minutes: 2%							
Core 2:	CPU uti	lization	for five	seconds	5: 39%,	one minute	e: 41%, five minutes: 34% <<< load distributed							
Core 3:	CPU uti	lization	for five	seconds	5: 84%,	one minute	e: 83%, five minutes: 79% <<< load distributed							
Pid	PPid	5Sec	1Min	5Min	Status	Siz	ze Name							
26939	26344	127%	126%	116%	S	119531110	04 qfp-ucode-utah <<< high CPU process							

Après et y compris Cisco IOS XE 16.6.x, le même résultat que le précédent s'applique, mais pour les coeurs 4 à 7 :

	show process cpu platform sorted													
CPU uti	lization	n for five	e seconds	: 30%, c	one min	ute:	24%, fi	ve min	nutes: 27%					
Core 0:	CPU uti	lization	for five	seconds	: 41%,	one	minute:	13%,	five minutes:	13%				
Core 1:	CPU uti	lization	for five	seconds	: 23%,	one	minute:	11%,	five minutes:	13%				
Core 2:	CPU uti	lization	for five	seconds	s: 19%,	one	minute:	10%,	five minutes:	12%				
Core 3:	CPU uti	lization	for five	seconds	38%,	one	minute:	12%,	five minutes:	12%				
Core 4:	CPU uti	lization	for five	seconds	: 28%,	one	minute:	26%,	five minutes:	28% <<<	load	distributed		
Core 5:	CPU uti	lization	for five	seconds	5: 53%,	one	minute:	40%,	five minutes:	37% <<<	load	distributed		
Core 6:	CPU uti	lization	for five	seconds	: 18%,	one	minute:	16%,	five minutes:	17% <<<	load	distributed		
Core 7:	CPU uti	lization	for five	seconds	s: 93%,	one	minute:	81%,	five minutes:	81% <<<	load	distributed		
Pid	PPid	5Sec	1Min	5Min	Status		Size	Name	e					
26049	25462	164%	165%	170%	S		394128	qfp	-ucode-utah <<	 < high C∣	PU pro	ocess		

Attention : si vous suspectez un problème d'utilisation du processeur principal, ouvrez un <u>dossier TAC (Technical Assistance Center)</u> afin d'obtenir de l'aide et de confirmer la stabilité du périphérique.

Meilleures pratiques de surveillance du processeur

Il est préférable d'utiliser les commandes spécifiques pour l'utilisation du chemin de données ou de l'IOSd. Le résultat des commandes d'affichage principales peut entraîner des alertes de faux positifs.

La commande permettant de surveiller l'utilisation du chemin de données est la suivante :

• show platform hardware qfp active datapath utilisation

La commande permettant de surveiller l'utilisation de l'IOSd est :

show process cpu sorted

Utilisez l'un de ces Identificateurs d'objet (OID) pour surveiller l'utilisation du CPU IOSd avec le protocole SNMP (Simple Network Management Protocol) :

- <u>busyPer</u> = pourcentage d'occupation du processeur IOSd au cours des 5 dernières secondes
- <u>avgBusy1</u> = IOSd moyenne mobile exponentiellement décroissante d'une minute du pourcentage d'occupation du processeur
- <u>avgBusy5</u> = IOSd Moyenne mobile exponentiellement décroissante de cinq minutes du pourcentage d'occupation du processeur

À propos de cette traduction

Cisco a traduit ce document en traduction automatisée vérifiée par une personne dans le cadre d'un service mondial permettant à nos utilisateurs d'obtenir le contenu d'assistance dans leur propre langue.

Il convient cependant de noter que même la meilleure traduction automatisée ne sera pas aussi précise que celle fournie par un traducteur professionnel.