Comment ajouter, modifier et supprimer les VLAN sur Catalyst à l'aide de SNMP

Contenu

Introduction Conditions préalables **Conditions requises Composants Conventions** Fond Détails des variables MIB, y compris les identifiants d'objet (OID) Ajouter un réseau VLAN à un commutateur Cisco Catalyst avec SNMP **Step-by-Step Instructions** Ajouter un réseau VLAN à un commutateur Cisco Catalyst avec SNMP Instructions en une étape Supprimer un réseau VLAN d'un commutateur Cisco Catalyst avec SNMP Step-by-Step Instructions Ajouter un port à un réseau VLAN sur un commutateur Cisco Catalyst avec SNMP Comment changer un port d'un réseau VLAN à un autre Informations connexes

Introduction

Ce document explique comment créer et supprimer des VLAN sur un commutateur Cisco Catalyst qui utilise le protocole SNMP. Il décrit également comment ajouter des ports à un VLAN avec le protocole SNMP.

Conditions préalables

Conditions requises

Avant d'utiliser le contenu de ce document, assurez-vous de maîtriser ce qui suit :

- Le fonctionnement de l'ifTable et de l'ifIndex
- Le fonctionnement des réseaux VLAN sur les commutateurs Cisco Catalyst
- L'affichage des renseignements du réseau VLAN sur les commutateurs Cisco Catalyst
- L'utilisation générale des commandes SNMP get, set et walk

Composants

Ce document traite des commutateurs Catalyst qui exécutent des systèmes d'exploitation Catalyst OS ou Catalyst IOS compatibles avec IF-MIB, CISCO-VTP-MIB et CISCO-VLAN-MEMBERSHIP-MIB. Les informations contenues dans ce document sont basées sur les versions de matériel et de logiciel suivantes :

- Catalyst 3524XL exécutant CatIOS 12.0(5)WC5a
- NET-SNMP version 5.0.6 disponible au http://www.net-snmp.org/

Les informations présentées dans ce document ont été créées à partir de périphériques dans un environnement de laboratoire spécifique. All of the devices used in this document started with a cleared (default) configuration. Si vous travaillez sur un réseau qui fonctionne en permanence, assurez-vous de bien comprendre l'incidence possible d'une commande avant de l'utiliser.

Conventions

Pour plus d'informations sur les conventions des documents, référez-vous aux <u>Conventions</u> <u>utilisées pour les conseils techniques de Cisco</u>.

Fond

Détails des variables MIB, y compris les identifiants d'objet (OID)

```
1.3.6.1.4.1.9.9.46.1.3.1.1.2 (CISCO-VTP-MIB)
vtpVlanState OBJECT-TYPE
   SYNTAX INTEGER { operational(1),
                        suspended(2),
                        mtuTooBigForDevice(3),
                       mtuTooBigForTrunk(4) }
   MAX-ACCESS read-only
   STATUS current
                         "The state of this VLAN.
   DESCRIPTION
           The state 'mtuTooBigForDevice' indicates that this device
           cannot participate in this VLAN because the VLAN's MTU is
           larger than the device can support.
           The state 'mtuTooBigForTrunk' indicates that while this
           VLAN's MTU is supported by this device, it is too large for
           one or more of the device's trunk ports."
   ::= { vtpVlanEntry 2 }
1.3.6.1.4.1.9.9.46.1.4.1.1.1 (CISCO-VTP-MIB)
vtpVlanEditOperation OBJECT-TYPE
   SYNTAX INTEGER { none(1),
                       copy(2),
                       apply(3),
                       release(4),
                       restartTimer(5)
                      }
   MAX-ACCESS read-create
   STATUS current
   DESCRIPTION
                         "This object always has the value 'none' when read. When
           written, each value causes the appropriate action:
            'copy' - causes the creation of rows in the
```

```
vtpVlanEditTable exactly corresponding to the current global
           VLAN information for this management domain. If the Edit
           Buffer (for this management domain) is not currently empty,
           a copy operation fails. A successful copy operation starts
           the deadman-timer.
             'apply' - first performs a consistent check on the the
           modified information contained in the Edit Buffer, and if
           consistent, then tries to instanciate the modified
           information as the new global VLAN information. Note that
           an empty Edit Buffer (for the management domain) would
           always result in an inconsistency since the default VLANs
           are required to be present.
             'release' - flushes the Edit Buffer (for this management
           domain), clears the Owner information, and aborts the
           deadman-timer. A release is generated automatically if the
           deadman-timer ever expires.
             'restartTimer' - restarts the deadman-timer.
             'none' - no operation is performed."
    ::= { vtpEditControlEntry 1 }
1.3.6.1.4.1.9.9.46.1.4.1.1.3 (CISCO-VTP-MIB)
vtpVlanEditBufferOwner OBJECT-TYPE
   SYNTAX
             OwnerString
   MAX-ACCESS read-create
    STATUS
              current
   DESCRIPTION
                           "The management station which is currently using the Edit
           Buffer for this management domain. When the Edit Buffer for
           a management domain is not currently in use, the value of
           this object is the zero-length string. Note that it is also
           the zero-length string if a manager fails to set this object
           when invoking a copy operation."
    ::= { vtpEditControlEntry 3 }
1.3.6.1.4.1.9.9.46.1.4.2.1.11 (CISCO-VTP-MIB)
vtpVlanEditRowStatus OBJECT-TYPE
   SYNTAX
             RowStatus
1:active
2:notInService
3:notReady
4:createAndGo
5:createAndWait
6:destrov
   MAX-ACCESS read-create
    STATUS current
                           "The status of this row. Any and all columnar objects in an
   DESCRIPTION
           existing row can be modified irrespective of the status of
           the row.
           A row is not qualified for activation until instances of at
           least its vtpVlanEditType, vtpVlanEditName and
           vtpVlanEditDot10Said columns have appropriate values.
           The management station should endeavor to make all rows
           consistent in the table before 'apply'ing the buffer. An
           inconsistent entry in the table will cause the entire
           buffer to be rejected with the vtpVlanApplyStatus object
           set to the appropriate error value."
    ::= { vtpVlanEditEntry 11 }
```

```
1.3.6.1.4.1.9.9.46.1.4.2.1.3.1.48 (CISCO-VTP-MIB)
vtpVlanEditType OBJECT-TYPE
    SYNTAX
            VlanType
   MAX-ACCESS read-create
   STATUS current
   DESCRIPTION
                           "The type which this VLAN would have.
           An implementation may restrict access to this object."
   DEFVAL { ethernet }
    ::= { vtpVlanEditEntry 3 }
1.3.6.1.4.1.9.9.46.1.4.2.1.4.1.48 (CISCO-VTP-MIB)
vtpVlanEditName OBJECT-TYPE
    SYNTAX
             DisplayString (SIZE (1..32))
   MAX-ACCESS read-create
   STATUS current
   DESCRIPTION
                          "The name which this VLAN would have. This name would be
           used as the ELAN-name for an ATM LAN-Emulation segment of
           this VLAN.
           An implementation may restrict access to this object."
    ::= { vtpVlanEditEntry 4 }
1.3.6.1.4.1.9.9.46.1.4.2.1.6.1.48 (CISCO-VTP-MIB)
vtpVlanEditDot10Said OBJECT-TYPE
    SYNTAX
             OCTET STRING (SIZE (4))
   MAX-ACCESS read-create
           current
   STATUS
   DESCRIPTION
                          "The value of the 802.10 SAID field which would be used for
           this VLAN.
           An implementation may restrict access to this object."
    ::= { vtpVlanEditEntry 6 }
1.3.6.1.4.1.9.9.46.1.4.1.1.2.1 (CISCO-VTP-MIB)
vtpVlanApplyStatus OBJECT-TYPE
    SYNTAX
              INTEGER { inProgress(1),
                        succeeded(2),
                        configNumberError(3),
                        inconsistentEdit(4),
                        tooBig(5),
                        localNVStoreFail(6),
                        remoteNVStoreFail(7),
                        editBufferEmpty(8),
                        someOtherError(9)
                       }
   MAX-ACCESS read-only
    STATUS
           current
   DESCRIPTION
                          "The current status of an 'apply' operation to instanciate
           the Edit Buffer as the new global VLAN information (for this
           management domain). If no apply is currently active, the
           status represented is that of the most recently completed
           apply. The possible values are:
              inProgress - 'apply' operation in progress;
              succeeded - the 'apply' was successful (this value is
                     also used when no apply has been invoked since the
                      last time the local system restarted);
```

```
configNumberError - the apply failed because the value of
                     vtpVlanEditConfigRevNumber was less or equal to
                      the value of current value of
                     managementDomainConfigRevNumber;
               inconsistentEdit - the apply failed because the modified
                      information was not self-consistent;
               tooBig - the apply failed because the modified
                      information was too large to fit in this VTP
                      Server's non-volatile storage location;
               localNVStoreFail - the apply failed in trying to store
                      the new information in a local non-volatile
                      storage location;
               remoteNVStoreFail - the apply failed in trying to store
                     the new information in a remote non-volatile
                     storage location;
               editBufferEmpty - the apply failed because the Edit
                      Buffer was empty (for this management domain).
               someOtherError - the apply failed for some other reason
                      (e.g., insufficient memory)."
    ::= { vtpEditControlEntry 2 }
1.3.6.1.4.1.9.9.68.1.2.2.1.2 (CISCO-VLAN-MEMBERSHIP-MIB)
vmVlan OBJECT-TYPE
       SYNTAX INTEGER(0..4095)
       MAX-ACCESS read-write
       STATUS
               current
       DESCRIPTION
                                   "The VLAN id of the VLAN the port is assigned to
                 when vmVlanType is set to static or dynamic.
                 This object is not instantiated if not applicable.
                 The value may be 0 if the port is not assigned
                 to a VLAN.
                 If vmVlanType is static, the port is always
                 assigned to a VLAN and the object may not be
                 set to 0.
                 If vmVlanType is dynamic the object's value is
                 0 if the port is currently not assigned to a VLAN.
                 In addition, the object may be set to 0 only."
        ::= { vmMembershipEntry 2 }
```

Ajouter un réseau VLAN à un commutateur Cisco Catalyst avec SNMP

Step-by-Step Instructions

Dans l'exemple ci-dessous, le réseau VLAN 11 est ajouté au commutateur :

1. Pour vérifier quels réseaux VLAN sont actuellement configurés sur le commutateur, émettez un **snmpwalk** sur l'OID de **vtpVlanState** :**Remarque** : Le dernier numéro de l'OID est le

snmpwalk -c public crumpy vtpVlanState

```
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.1
.1 : INTEGER: operational
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.1
.48 : INTEGER: operational
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.1
.1002 : INTEGER: operational
```

- 2. Vérifiez si l'édition est utilisée par une autre station ou un autre appareil NMS. L'édition n'est pas utilisée si vous voyez ce message : Aucun objet MIB contenu dans la sous-arborescence : snmpwalk -c public crumpy vtpVlanEditTable no MIB objects contained under subtree.
- 3. L'édition n'est pas utilisée, il est donc prudent de commencer à la modifier. Réglez l'état de copie de vtpVlanEditOperation (nombre entier 2). Vous pourrez ainsi créer le réseau VLAN. snmpset -c private crumpy vtpVlanEditOperation.1 integer 2 cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanEdit.vtpEditControlTable.vtpEditControlEntry. vtpVlanEditOperation.1 : INTEGER: copy
- 4. Pour que soit visible le propriétaire actuel de l'autorisation de modification, vous pouvez définir le propriétaire lorsque vous saisissez la commande vtpVlanEditBufferOwner. snmpset -c private crumpy vtpVlanEditBufferOwner.1 octetstring "Gerald" cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanEdit.vtpEditControlTable.vtpEditControlEntry. vtpVlanEditBufferOwner.1 : OCTET STRING- (ascii): Gerald
- 5. Cet exemple montre comment vérifier que la table existe :

snmpwalk -c public crumpy vtpVlanEditTable
vtpVlanEditState.1.1 : INTEGER: operational
vtpVlanEditState.1.2 : INTEGER: operational
vtpVlanEditState.1.3 : INTEGER: operational
..

6. Cet exemple est VLAN 11 et vous montre comment créer une ligne et définir le type et le nom :

snmpset -c private crumpy vtpVlanEditRowStatus.1.11 integer 4
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanEdit.vtpVlanEditTable.vtpVlanEditEntry.vtpVla
nEditRowStatus.1.11 : INTEGER: createAndGo

snmpset -c private crumpy vtpVlanEditType.1.11 integer 1
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanEdit.vtpVlanEditTable.vtpVlanEditEntry.vtpVla
nEditType.1.11 : INTEGER: ethernet

snmpset -c private crumpy vtpVlanEditName.1.11 octetstring "test_11_gerald"
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanEdit.vtpVlanEditTable.vtpVlanEditEntry.vtpVla
nEditName.1.11 : DISPLAY STRING- (ascii): test_11_gerald

7. Définissez vtpVlanEditDot10Said. Il s'agit du numéro de VLAN + 100000 converti en

hexadécimal. Cet exemple crée le réseau VLAN 11, donc **vtpVlanEditDot10Said** devrait être : 11 + 100000 = 100011 -> Hex : 000186AB

- 8. Une fois que vous avez créé le réseau VLAN 11, vous devez appliquer les modifications. Utilisez de nouveau l'OID vtpVlanEditOperation. Cliquez cette fois sur le bouton Apply [appliquer] pour confirmer les paramètres : snmpset -c private crumpy vtpVlanEditOperation.1 integer 3 cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanEdit.vtpEditControlTable.vtpEditControlEntry. vtpVlanEditOperation.1 : INTEGER: apply
- 9. Vérifiez que le réseau VLAN a été créé avec succès. Utilisez l'OID vtpVlanApplyStatus. Vérifiez le processus jusqu'à ce que l'état indique succeeded :

snmpget -c public crumpy vtpVlanApplyStatus.1
vtpVlanApplyStatus.1 : INTEGER: inProgress
snmpget -c public crumpy vtpVlanApplyStatus.1
vtpVlanApplyStatus.1 : INTEGER: inProgress
snmpget -c public crumpy vtpVlanApplyStatus.1
vtpVlanApplyStatus.1 : INTEGER: succeeded

 La dernière action consiste à valider les modifications et à octroyer les autorisations afin que les autres utilisateurs puissent, dans leur système NMS, ajouter, modifier ou supprimer des réseaux VLAN.

```
snmpset -c private crumpy vtpVlanEditOperation.1 integer 4
vtpVlanEditOperation.1 : INTEGER: release
```

- 11. Vérifiez que la mémoire tampon est vide : snmpwalk -c public crumpy vtpVlanEditTable no MIB objects contained under subtree.
- 12. Vérifiez que le réseau VLAN 11 a été créé sur le commutateur au moyen de la commande CLI **show vlan** ou d'un **snmpwalk** : snmpwalk -c public crumpy vtpVlanState

```
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.
1.1 : INTEGER: operational
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.
1.11 : INTEGER: operational
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.
1.48 : INTEGER: operational
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.
1.102 : INTEGER: operational
...
```

Ajouter un réseau VLAN à un commutateur Cisco Catalyst avec SNMP

Instructions en une étape

Le processus en une étape utilise les numéros OID au lieu des noms OID comme le processus étape par étape précédent. Consultez les <u>détails de la MIB</u> pour la traduction. Cet exemple illustre la création du réseau VLAN 6 :

1.3.6.1.4.1.9.9.46.1.4.1.1.3.1 octetstring "gcober"

```
snmpset -c private gooroo 1.3.6.1.4.1.9.9.46.1.4.2.1.11.1.6 integer 4
1.3.6.1.4.1.9.9.46.1.4.2.1.3.1.6 integer 1 1.3.6.1.4.1.9.9.46.1.4.2.1.4.1.6 octetstring "vlan6"
1.3.6.1.4.1.9.9.46.1.4.2.1.6.1.6 octetstringhex 000186A6 1.3.6.1.4.1.9.9.46.1.4.1.1.1.1 integer
3
```

snmpset -c private gooroo 1.3.6.1.4.1.9.9.46.1.4.1.1.1.1 integer 4

snmpwalk -c public crumpy 1.3.6.1.4.1.9.9.46.1.3.1.1.2

cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.1.1 : INTEGER: operational cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.1.6 : INTEGER: operational cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.1.11 : INTEGER: operational

Remarque : Certaines versions de SNMP exigent l'utilisation d'un (.) avant l'OID dans les commandes SNMP SET.

Supprimer un réseau VLAN d'un commutateur Cisco Catalyst avec SNMP

Step-by-Step Instructions

Dans cet exemple, le réseau VLAN 48 est supprimé du commutateur. Consultez la section <u>Ajouter</u> <u>un réseau VLAN à un commutateur Cisco Catalyst avec SNMP</u> pour en savoir plus. La différence entre la section où vous supprimez un réseau VLAN et celle où vous ajoutez un réseau VLAN est que vous utilisez la commande **destroy** au lieu de la commande **CreateAndGo** pour **vtpVlanEditRowStatus** :

```
1. Saisissez la commande pour supprimer le réseau VLAN 48 :
snmpset -c private crumpy vtpVlanEditOperation.1 integer 2
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanEdit.vtpEditControlTable.vtpEditControlEntry.
vtpVlanEditOperation.1 : INTEGER: copy
snmpset -c private crumpy vtpVlanEditRowStatus.1.48 integer 6
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanEdit.vtpVlanEditTable.vtpVlanEditEntry.vtpVla
nEditRowStatus.1.48 : INTEGER: destroy
```

 Pour vérifier que le réseau VLAN 48 a été supprimé, utilisez vtpVlanState ou show vlan sur la CLI :

```
snmpwalk -c public crumpy vtpVlanState
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.1
.1 : INTEGER: operational
cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanInfo.vtpVlanTable.vtpVlanEntry.vtpVlanState.1
.1002 : INTEGER: operational
...
```

Ajouter un port à un réseau VLAN sur un commutateur Cisco Catalyst avec SNMP

Cet exemple montre comment ajouter un port Fast Ethernet 0/5 au VLAN 48.

Vous pouvez également vérifier ce qui suit sur le commutateur :

1. Pour vérifier quel ifIndex a le Fast Eth 0/5, saisissez la commande **snmpwalk** d'**ifDescr** : snmpwalk -c public crumpy ifDescr

```
interfaces.ifTable.ifEntry.ifDescr.6 : DISPLAY STRING- (ascii): FastEthernet0/5
...
```

2. Comme vous savez que le port Fast Eth 0/5 a un ifIndex de 6, ajoutez le port au VLAN 48 : snmpset -c private crumpy vmVlan.6 integer 48

cisco.ciscoMgmt.ciscoVlanMembershipMIB.ciscoVlanMembershipMIBObjects.vmMembership.vmMembershipEntry.vmVlan.6 : INTEGER: 48

3. Vérifiez que le port a été correctement ajouté en interrogeant de nouveau le même OID. snmpget -c public crumpy vmVlan.6

cisco.ciscoMgmt.ciscoVlanMembershipMIB.ciscoVlanMembershipMIBObjects.vmMembership.vmMembershipEntry.vmVlan.6 : INTEGER: 48

```
crumpy#sh vlan
VLAN Name
                              Status
                                     Ports
_____ _____
  default
                                     Fa0/1, Fa0/2, Fa0/3, Fa0/4,
1
                              active
                                     Fa0/6, Fa0/7, Fa0/8, Fa0/9,
                                     Fa0/10, Fa0/11, Fa0/12, Fa0/13,
                                      Fa0/14, Fa0/15, Fa0/16, Fa0/17,
                                      Fa0/18, Fa0/19, Fa0/20, Fa0/21,
                                      Fa0/22, Fa0/23, Fa0/24, Gi0/1,
                                      Gi0/2
48 VLAN0048
                             active Fa0/5
```

Comment changer un port d'un réseau VLAN à un autre

Cet exemple montre comment le port Fast Eth 0/3 appartient au VLAN 48 et comment le déplacer vers le VLAN 1 (VLAN par défaut) :

1. Pour vérifier quel ifIndex a le Fast Eth 0/3, saisissez la commande **snmpwalk** de l'**ifDescr** : snmpwalk -c public crumpy ifDescr

```
interfaces.ifTable.ifEntry.ifDescr.4 : DISPLAY STRING- (ascii): FastEthernet0/3
...
```

2. Comme vous savez que le port Fast Eth 0/3 a un ifIndex de 4, vous pouvez vérifier à quel VLAN appartient le port actuellement :

```
snmpget -c public crumpy vmVlan.4
cisco.ciscoMgmt.ciscoVlanMembershipMIB.ciscoVlanMembershipMIBObjects.vmMembership.vmMembers
hipTable.vmMembershipEntry.vmVlan.4 : INTEGER: 48
```

- 3. Le port appartient au réseau VLAN 48.
 snmpset -c private crumpy vmVlan.4 integer 1
 cisco.ciscoMgmt.ciscoVlanMembershipMIB.ciscoVlanMembershipMIBObjects.vmMembership.vmMembershipTable.vmMembershipEntry.vmVlan.4 : INTEGER: 1
- 4. Pour déplacer le port du réseau VLAN 48 au réseau VLAN 1, saisissez la commande

snmpset de vmVlan.

5. Pour vérifier si le port a été remplacé par un autre réseau VLAN, interrogez de nouveau **vmVlan** :

snmpget -c public crumpy vmVlan.4

```
cisco.ciscoMgmt.ciscoVlanMembershipMIB.ciscoVlanMembershipMIBObjects.vmMembership.vmMembershipTable.vmMembershipEntry.vmVlan.4 : INTEGER: 1
```

Vous pouvez également vérifier ceci sur le commutateur : Avant la modification :

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/4, Fa0/5, Fa0/6, Fa0/7, Fa0/8, Fa0/9, Fa0/10, Fa0/11, Fa0/12, Fa0/13, Fa0/14, Fa0/15, Fa0/16, Fa0/17, Fa0/18, Fa0/19, Fa0/20, Fa0/21, Fa0/22, Fa0/23, Fa0/24, Gi0/1, Gi0/2
48 Aprè crumy	vlan0048 es la modification : py#sh vlan	active	Fa0/3
VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4, Fa0/5, Fa0/6, Fa0/7, Fa0/8, Fa0/9, Fa0/10, Fa0/11, Fa0/12, Fa0/13, Fa0/14, Fa0/15, Fa0/16, Fa0/17, Fa0/18, Fa0/19, Fa0/20, Fa0/21, Fa0/22, Fa0/23, Fa0/24, Gi0/1, Gi0/2

Remarque : Vous pouvez apporter d'autres modifications notamment au nom du VLAN ou au propriétaire. Consultez l'ensemble de la MIB pour en savoir plus sur l'OID.

Informations connexes

<u>Support technique - Cisco Systems</u>