Dans le cadre de la documentation associée à ce produit, nous nous efforçons d’utiliser un langage exempt de préjugés. Dans cet ensemble de documents, le langage exempt de discrimination renvoie à une langue qui exclut la discrimination en fonction de l’âge, des handicaps, du genre, de l’appartenance raciale de l’identité ethnique, de l’orientation sexuelle, de la situation socio-économique et de l’intersectionnalité. Des exceptions peuvent s’appliquer dans les documents si le langage est codé en dur dans les interfaces utilisateurs du produit logiciel, si le langage utilisé est basé sur la documentation RFP ou si le langage utilisé provient d’un produit tiers référencé. Découvrez comment Cisco utilise le langage inclusif.
Cisco a traduit ce document en traduction automatisée vérifiée par une personne dans le cadre d’un service mondial permettant à nos utilisateurs d’obtenir le contenu d’assistance dans leur propre langue. Il convient cependant de noter que même la meilleure traduction automatisée ne sera pas aussi précise que celle fournie par un traducteur professionnel.
Ce document décrit le Global Table Multicast (GTM) non segmenté pour mVPN.
Aucune exigence spécifique n'est associée à ce document.
Ce document n'est pas limité à des versions de matériel et de logiciel spécifiques.
The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. Si votre réseau est en ligne, assurez-vous de bien comprendre l’incidence possible des commandes.
NG mVPN (RFC 6513/6514) a de nombreux profils. La plupart des profils disposent d'un réseau privé virtuel (VPN) ou d'un routage/transfert virtuel (VRF) au niveau des routeurs PE. Certains profils (profils 7 et
Tant le RFC 7524 que le brouillon-ietf-bess-mvpn-global-table-mcast (RFC 7716) exigent que les adresses source GTM soient accessibles via les routes de monodiffusion BGP (soit la monodiffusion ipv4 de la famille d'adresses, soit la multidiffusion ipv4 de la famille d'adresses).
L'avantage de la version préliminaire de la norme RFC 7524 est que les mêmes procédures sont conservées que celles utilisées pour le protocole RFC 6514 mVPN standard (NG mVPN).
Avec GTM, le mVPN peut être non segmenté ou segmenté.
Dans cet article, le terme « routeurs périphériques » est utilisé pour désigner un routeur ABR, ASBR ou un routeur d’agrégation qui connecte deux segments du réseau. En général, l'ABR est dans des réseaux MPLS transparents. L'ASBR est utilisé lorsque le VPN MPLS inter-AS est utilisé. De plus, le routeur d'agrégation est utilisé lorsqu'un routeur non segmenté superposé GTM connecte les deux parties du réseau principal, lorsque l'une des parties exécute un protocole d'arborescence principale multicast différent. Par exemple, le routeur d'agrégation peut connecter la partie PIM du réseau principal à la partie mLDP du réseau principal.
Pour n'importe quel modèle, SAFI 2 peut être utilisé. L'avantage est que SAFI 2 peut avoir une topologie différente de SAFI 1. Par conséquent, le RPF pour la multidiffusion peut être modifié sans modifier le transfert de monodiffusion.
Un routeur périphérique ne prend pas en charge l’encapsulation double. Cela signifie que le routeur ne peut pas transmettre la multidiffusion sur deux protocoles ou mode core-tree en même temps. Cela peut généralement être utilisé lorsque vous migrez d'un arbre central à un autre. Lors de la migration, le PE d'entrée est transféré sur les deux arbres centraux. Cela n’est pas possible sur les routeurs périphériques.
L'architecture GTM prend en charge les GTM non segmentés et segmentés. Ce document couvre uniquement la GTM non segmentée.
Les procédures de superposition GTM non segmentée sont celles décrites dans draft-ietf-bess-mvpn-global-table-mcast. Les mêmes procédures sont suivies que dans la RFC 6513/6514 avec quelques modifications.
Avec GTM, les points suivants s'appliquent. Certaines sont identiques à celles de la RFC 6513/6514 ; d'autres sont différentes.
Les routes de type 1, 3 et 5 ont des RT. Dans Cisco IOS® XR, ces RT doivent être présents pour GTM, même si cela n'est pas requis selon le brouillon. Vous devez configurer les RT sous BGP pour que GTM puisse les utiliser. Ces RT sont similaires aux RT utilisés dans les VRF pour les mVPN standard, mais s'appliquent maintenant au contexte global.
Les routeurs de type 4, 6 et 7 transportent un RT qui identifie le routeur PE en amont. Le champ d'administrateur global est l'adresse IP du PE en amont. Le champ de l'administrateur local est défini sur 0 pour GTM (il identifie le VRF dans le non-GTM ou le mVPN normal).
Les routeurs PE deviennent les routeurs d'interconnexion entre un protocole d'arborescence principale LSM (Label Switched Multicast) (mLDP, P2MP Traffic Engineering, Ingress Replication (IR)) et PIM. Il y a donc une partie du coeur de réseau qui exécute LSM et nous avons une partie du coeur de réseau qui exécute PIM. Appelons les routeurs principaux qui agissent comme interface entre la partie LSM du réseau et la partie PIM du réseau, les routeurs périphériques. Dans certains des exemples suivants, ils sont appelés routeurs C-PE (C pour Core).
Ces routeurs périphériques sont les routeurs avec la configuration requise pour le GTM. Aucun des autres routeurs n'est compatible GTM.
La configuration de GTM est similaire à la configuration requise pour les profils mVPN standard. C'est juste que les interfaces vers la périphérie ne sont pas dans un VRF.
Il n'existe pas de distingueur de route standard, car il n'existe pas de VRF. Puisqu'il n'y a pas de Distinguishers de route (RD) réguliers, mais que les RD sont utilisés lors de la signalisation avec BGP, les RD à zéro et les RD à un sont utilisés pour la signalisation dans GTM. Pour avoir cette fonctionnalité, la commande BGP global-table-multicast doit être configurée.
Avec GTM, les routes de monodiffusion ne sont pas dans VPNv4/6. Par conséquent, l'accessibilité de monodiffusion doit être fournie dans BGP dans AF IPv4 ou AF IPv6 et SAFI 1 ou SAFI 2. Cela signifie que le protocole BGP doit toujours être utilisé entre les routeurs périphériques (routeurs PE sans VRF).Reportez-vous à l'image 1.
Image 1
Entre les routeurs de périphérie et CE, il n'y a pas de BGP. Le routeur périphérique ajoute les attributs de multidiffusion lorsqu'il annonce les routes dans iBGP aux autres routeurs périphériques.
Il est important de noter que le protocole BGP peut être présent entre les routeurs CE et PE. Reportez-vous à l'image 2.
Image 2
Dans ce cas, le routeur PE ajoute les attributs de multidiffusion lorsqu'il transfère les routes de monodiffusion d'eBGP vers iBGP, vers les autres routeurs PE. Si le CE a annoncé les routes de monodiffusion avec des attributs de multidiffusion déjà au routeur PE, alors le routeur PE conserve les attributs de multidiffusion tels qu'ils sont et transfère les routes de monodiffusion aux autres routeurs PE. Par défaut, pour les sessions eBGP, les attributs de multidiffusion sont supprimés. Ainsi, lorsque les routes PE annoncent les routes de monodiffusion d'iBGP en eBGP aux routes CE, il n'y a pas d'attributs de multidiffusion.
Lorsque le routeur PE annonce le préfixe de monodiffusion via iBGP, il joint le VRF Route Import (VRF-RI) de la communauté étendue (EC) et le VRF-AS de la source EC. L'autre routeur PE supprime ces routes avant de les propager dans eBGP.
Lorsque la session eBGP est établie entre deux routeurs ASBR, il existe un VPN MPLS inter-AS et un VPN mAS inter-AS. Dans ce cas, les attributs de multidiffusion peuvent être conservés. Puisque le comportement par défaut est de les supprimer sur la session eBGP, vous devriez configurer la commande send-multicast-attributes sur la session eBGP entre les deux ASBR.
Dans les cas où nous avons un RR, il peut y avoir une propagation iBGP à iBGP. C'est le cas sur l'ABR en ligne (il y a next-hop-self) du MPLS transparent. Comme le comportement par défaut est de conserver les attributs de multidiffusion pour les sessions iBPG, l'ABR en ligne doit avoir la commande send-multicast-attributes-disable afin de les supprimer.
Vous devez configurer global-table-multicast sous la famille d'adresses (AF) ipv4 mVPN sous le routeur BGP. Cela permet le fonctionnement de la distance annoncée uniquement par des zéros et de la distance annoncée uniquement par des uns.
Vous devez configurer import-rt et export-rt sous le routage de multidiffusion pour AF ipv4 dans le contexte global. En effet, il n'y a plus de RT configurés pour les VRF, car GTM n'a pas de VRF. Ces RT ne doivent pas chevaucher les RT utilisés pour les mVPN standard.
Les commandes pim du routeur (topologie rpf et commandes mdt) sont désormais configurées dans un contexte global.
Les commandes multicast-routing (commandes bgp auto-discovery et mdt) sont maintenant configurées dans un contexte global.
Entre les routeurs périphériques, il y a iBGP qui annonce les préfixes sources. Comment le routeur de périphérie d’entrée peut-il apprendre le préfixe source ? Il y a trois possibilités.
L'image 3 montre ces trois scénarios possibles.
Image 3
Lorsque le routeur périphérique annonce un préfixe iBGP reçu d'un autre routeur périphérique, il supprime les attributs de multidiffusion avant d'envoyer le préfixe au routeur PE. La commande send-multicast-attributes disable doit être exécutée sur les routeurs périphériques sous le routeur BGP pour que cela se produise.
En voici quelques exemples. Le premier exemple commence par une transformation du profil 12 en déploiement GTM.
L'image 4 illustre ce réseau. Il n'y a pas de VRF sur le routeur PE vers le routeur CE.
Image 4
Notez que le coeur de réseau interne exécute mLDP. Le réseau principal externe exécute le protocole PIM. Ainsi, les routeurs périphériques qui connectent le PIM au coeur mLDP doivent traduire le PIM en mLDP et vice versa.
La source ne peut pas être apprise en tant que route IGP sur le routeur périphérique, le routeur C-PE2. L'IGP, c'est ISIS. Si tel est le cas, le RPF sur le routeur périphérique utiliserait la route ISIS, qui pointe vers P1. Si c'est le cas, alors RPF échoue car il n'y a pas de voisinage PIM. Vous voulez que le routeur C-PE2 utilise RPF pour 10.2.1.8 et qu'il pointe vers MDT comme interface RPF. Il peut s'agir d'un MDT basé sur mLDP, P2MP ou IR.
La solution est d'utiliser SAFI 2. Il est utilisé pour que la source soit apprise comme route AFI 2 dans BGP. Ainsi, le routeur périphérique (C-PE2) a la source comme route BGP SAFI 2 (show route ipv4 multicast). Le RPF de la source pointe vers l'interface MDT.
L'utilisation de SAFI 2 modifie le RPF, et RPF pour toutes les sources utilise maintenant SAFI 2. Cela signifie que RPF pour toutes les sources dans le global utilise SAFI 2, qui inclut RPF pour le PE d'entrée par exemple, pour le service VPN. Une fois que SAFI 2 est activé, tous les RPF s'exécutent uniquement via SAFI 2. Puisque seules les sources sont dans SAFI 2, le RPF pour les routeurs PE d'entrée échoue. Pour que cela fonctionne, vous pouvez configurer la commande rump always-replicate sous router rib. Étant donné que seul RPF pour les préfixes source dans global et le RPF pour les routeurs PE doivent fonctionner, vous pouvez configurer une liste d'accès pour la commande rump always-replicate et spécifier uniquement les sources dans global et les routeurs PE d'entrée dans la liste d'accès. De cette façon, si le routeur périphérique exécute déjà BGP pour SAFI 1 et que ce SAFI 1 transportait un grand nombre de préfixes, ces préfixes ne seraient pas tous redistribués dans le RIB SAFI 2 et utiliseraient inutilement la mémoire.
Vous pouvez également configurer la distance bgp 20 20 20 pour la multidiffusion ipv4 de la famille d'adresses sous le routeur BGP. Cela permet de s'assurer que si les Sources dans global sont également apprises par l'intermédiaire de l'AFI 2 de l'IGP, les sources apprises par le BGP sont préférées en raison de la distance inférieure de l'iBGP par rapport à la distance de l'IGP.
Il s’agit de la configuration du routeur périphérique.
hostname C-PE1
router rib
address-family ipv4
rump always-replicate
!
route-policy global-one
set core-tree mldp-default
end-policy
!
route-policy sources-in-ISIS
if destination in (10.2.1.0/24) then
pass
endif
end-policy
!
router isis 1
is-type level-1
net 49.0001.0000.0000.0003.00
address-family ipv4 unicast
metric-style wide
mpls traffic-eng level-1
mpls traffic-eng router-id Loopback0
!
interface Loopback0
address-family ipv4 unicast
!
address-family ipv4 multicast
!
!
interface GigabitEthernet0/0/0/0
address-family ipv4 unicast
!
address-family ipv4 multicast
!
!
interface GigabitEthernet0/0/0/1
address-family ipv4 unicast
!
address-family ipv4 multicast
!
!
!
router bgp 1
address-family ipv4 unicast
!
address-family ipv4 multicast
redistribute connected route-policy loopback
redistribute isis 1 route-policy sources-in-ISIS
!
address-family ipv4 mvpn
global-table-multicast
!
neighbor 10.100.1.5
remote-as 1
update-source Loopback0
address-family ipv4 multicast
next-hop-self
!
address-family ipv4 mvpn
!
!
mpls ldp
mldp
address-family ipv4
rib unicast-always
!
!
router-id 10.100.1.3
address-family ipv4
!
interface GigabitEthernet0/0/0/0
address-family ipv4
!
!
interface GigabitEthernet0/0/0/1
address-family ipv4
!
!
!
multicast-routing
address-family ipv4
interface Loopback0
enable
!
interface GigabitEthernet0/0/0/1
enable
!
mdt source Loopback0
export-rt 1:1
import-rt 1:1
bgp auto-discovery mldp
!
mdt default mldp p2mp
mdt data mldp 10 immediate-switch
!
!
router pim
address-family ipv4
rpf topology route-policy global-one
mdt c-multicast-routing bgp
interface Loopback0
enable
!
interface GigabitEthernet0/0/0/1
!
!
!
Remarque : au lieu de GTM avec mLDP, vous pouvez utiliser le protocole Global In-band mLDP. Les raisons de ne pas faire cela sont l'utilisation de BGP comme protocole de signalisation de superposition ou l'utilisation du MDT par défaut pour l'agrégation des flux. Avec le modèle GTM, vous pouvez utiliser les MDT par défaut et de données, alors qu'avec le mLDP intrabande global, il y a un flux de multidiffusion par état mLDP. En outre, avec GTM, il est beaucoup plus facile de prendre en charge le mode Sparse, alors qu'avec le mLDP intrabande, il y a des restrictions (par exemple, où le RP est placé). Le mode intermédiaire est le plus facile à prendre en charge avec PIM comme protocole de signalisation de superposition.
Vous devez disposer de la configuration suivante sur les routeurs périphériques :
En option, le SAFI 2 doit être activé sous le routeur BGP
L’interface de sortie du routeur périphérique d’entrée est l’interface Lmdt.
RP/0/0/CPU0:C-PE1#show mrib route 203.0.113.1 10.2.1.8
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary
MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
LD - Local Disinterest, DI - Decapsulation Interface
EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
IRMI - IR MDT Interface
(10.2.1.8,203.0.113.1) RPF nbr: 10.1.2.2 Flags: RPF
Up: 00:08:58
Incoming Interface List
GigabitEthernet0/0/0/1 Flags: A, Up: 00:08:58
Outgoing Interface List
Lmdtdefault Flags: F LMI MA, Up: 00:08:58
RP/0/0/CPU0:C-PE1#show mfib route 203.0.113.1 10.2.1.8
IP Multicast Forwarding Information Base
Entry flags: C - Directly-Connected Check, S - Signal, D - Drop,
IA - Inherit Accept, IF - Inherit From, EID - Encap ID,
ME - MDT Encap, MD - MDT Decap, MT - MDT Threshold Crossed,
MH - MDT interface handle, CD - Conditional Decap,
DT - MDT Decap True, EX - Extranet, RPFID - RPF ID Set,
MoFE - MoFRR Enabled, MoFS - MoFRR State, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
EG - Egress, EI - Encapsulation Interface, MI - MDT Interface,
EX - Extranet, A2 - Secondary Accept
Forwarding/Replication Counts: Packets in/Packets out/Bytes out
Failure Counts: RPF / TTL / Empty Olist / Encap RL / Other
(10.2.1.8,203.0.113.1), Flags:
Up: 01:47:24
Last Used: 00:00:00
SW Forwarding Counts: 1197/1197/239400
SW Replication Counts: 1197/0/0
SW Failure Counts: 0/0/0/0/0
Lmdtdefault Flags: F LMI, Up:01:47:24
GigabitEthernet0/0/0/1 Flags: A, Up:01:47:24
RP/0/0/CPU0:C-PE1#show route ipv4 multicast
Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, su - IS-IS summary null, * - candidate default
U - per-user static route, o - ODR, L - local, G - DAGR, l - LISP
A - access/subscriber, a - Application route
M - mobile route, r - RPL, (!) - FRR Backup path
Gateway of last resort is not set
i L1 10.1.1.0/24 [255/20] via 10.1.2.2, 1d21h, GigabitEthernet0/0/0/1
C 10.1.2.0/24 is directly connected, 1d21h, GigabitEthernet0/0/0/1
L 10.1.2.3/32 is directly connected, 3d19h, GigabitEthernet0/0/0/1
i L1 10.1.3.0/24 [115/20] via 10.1.3.4, 3d13h, GigabitEthernet0/0/0/0
L 10.1.3.3/32 is directly connected, 3d19h, GigabitEthernet0/0/0/0
i L1 10.1.4.0/24 [115/20] via 10.1.3.4, 3d13h, GigabitEthernet0/0/0/0
i L1 10.1.5.0/24 [115/30] via 10.1.3.4, 3d12h, GigabitEthernet0/0/0/0
i L1 10.1.6.0/24 [255/40] via 10.1.3.4, 1d21h, GigabitEthernet0/0/0/0
i L1 10.2.1.0/24 [255/30] via 10.1.2.2, 1d21h, GigabitEthernet0/0/0/1
i L1 10.2.2.0/24 [255/50] via 10.1.3.4, 1d21h, GigabitEthernet0/0/0/0
i L1 10.100.1.1/32 [255/30] via 10.1.2.2, 1d21h, GigabitEthernet0/0/0/1
i L1 10.100.1.2/32 [255/20] via 10.1.2.2, 1d21h, GigabitEthernet0/0/0/1
L 10.100.1.3/32 is directly connected, 1d21h, Loopback0
i L1 10.100.1.4/32 [115/20] via 10.1.3.4, 3d13h, GigabitEthernet0/0/0/0
i L1 10.100.1.5/32 [115/30] via 10.1.3.4, 3d12h, GigabitEthernet0/0/0/0
i L1 10.100.1.6/32 [255/40] via 10.1.3.4, 1d21h, GigabitEthernet0/0/0/0
i L1 10.100.1.7/32 [255/50] via 10.1.3.4, 1d21h, GigabitEthernet0/0/0/0
RP/0/0/CPU0:C-PE1#show pim rpf 10.2.1.8
Table: IPv4-Multicast-default
* 10.2.1.8/32 [255/30]
via GigabitEthernet0/0/0/1 with rpf neighbor 10.1.2.2
Pour la route source, les CE d'importation de route VRF et les CE d'AS source sont associées au préfixe de monodiffusion ou de multidiffusion IPv4. Ici, il s'agit d'une route de multidiffusion IPv4 :
RP/0/0/CPU0:C-PE2#show bgp ipv4 multicast 10.2.1.0/24
BGP routing table entry for 10.2.1.0/24
Versions:
Process bRIB/RIB SendTblVer
Speaker 32 32
Last Modified: Sep 12 08:34:56.441 for 15:09:58
Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
10.100.1.3 (metric 30) from 10.100.1.3 (10.100.1.3)
Origin incomplete, metric 30, localpref 100, valid, internal, best, group-best
Received Path ID 0, Local Path ID 1, version 32
Extended community: VRF Route Import:10.100.1.3:0 Source AS:1:0
Remarque : si, pour une raison quelconque, le VRF RI EC et le Source AS EC ne sont pas présents, le RPF sur le routeur périphérique de sortie échoue.
Un exemple lorsque la route n'a pas ces EC :
RP/0/0/CPU0:C-PE2#show bgp ipv4 multicast 10.2.1.0/24
BGP routing table entry for 10.2.1.0/24
Versions:
Process bRIB/RIB SendTblVer
Speaker 277 277
Last Modified: Sep 13 04:08:37.441 for 00:00:02
Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
10.100.1.3 (metric 30) from 10.100.1.3 (10.100.1.1)
Origin incomplete, metric 0, localpref 100, valid, internal, best, group-best
Received Path ID 0, Local Path ID 1, version 277
Originator: 10.100.1.1, Cluster list: 10.100.1.3
Pour cette raison, le RPF échoue :
RP/0/0/CPU0:C-PE2#show pim rpf 10.2.1.8
Table: IPv4-Multicast-default
* 10.2.1.8/32 [200/30]
via Null with rpf neighbor 0.0.0.0
RP/0/0/CPU0:C-PE2#show bgp ipv4 mvpn
BGP router identifier 10.100.1.5, local AS number 1
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 0
BGP main routing table version 56
BGP NSR Initial initsync version 4 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
Global table multicast is enabled
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 0:0:0
*>i[1][10.100.1.3]/40 10.100.1.3 100 0 i
*> [1][10.100.1.5]/40 0.0.0.0 0 i
*>i[3][32][10.2.1.8][32][203.0.113.1][10.100.1.3]/120
10.100.1.3 100 0 i
*> [7][0:0:0][1][32][10.2.1.8][32][203.0.113.1]/184
0.0.0.0 0 i
Processed 4 prefixes, 4 paths
La commande peut être spécifiée avec les mots-clés rd all-zero-rd. Il affiche ensuite toutes les entrées avec la RD composée uniquement de zéros.
RP/0/0/CPU0:C-PE2#show bgp ipv4 mvpn rd all-zero-rd
BGP router identifier 10.100.1.5, local AS number 1
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 0
BGP main routing table version 56
BGP NSR Initial initsync version 4 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
Global table multicast is enabled
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 0:0:0
*>i[1][10.100.1.3]/40 10.100.1.3 100 0 i
*> [1][10.100.1.5]/40 0.0.0.0 0 i
*>i[3][32][10.2.1.8][32][203.0.113.1][10.100.1.3]/120
10.100.1.3 100 0 i
*> [7][0:0:0][1][32][10.2.1.8][32][203.0.113.1]/184
0.0.0.0 0 i
Processed 4 prefixes, 4 paths
La route de type 1 :
RP/0/0/CPU0:C-PE2#show bgp ipv4 mvpn rd all-zero-rd [1][10.100.1.3]/40
BGP routing table entry for [1][10.100.1.3]/40, Route Distinguisher: 0:0:0
Versions:
Process bRIB/RIB SendTblVer
Speaker 43 43
Last Modified: Sep 8 07:42:43.786 for 1d17h
Paths: (1 available, best #1, not advertised to EBGP peer)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
10.100.1.3 (metric 30) from 10.100.1.3 (10.100.1.3)
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 43
Community: no-export
Extended community: RT:1:1
PMSI: flags 0x00, type 2, label 0, ID 0x060001040a640103000701000400000001
Source AFI: IPv4 MVPN, Source VRF: default, Source Route Distinguisher: 0:0:0
Le PMSI décodé :
PMSI : indicateurs 0x00, type 2, étiquette 0, ID 0x060001040a640103000701000400000001
Le PMSI décodé de la commande précédente est :
The PMSI Tunnel Type is : 2 : mLDP P2MP LSP
The PMSI Tunnel ID is : 0x060001040a640103000701000400000001
FEC Element
FEC Element Type : 6 : P2MP
AF Type : 1
Address Length : 4
Root Node Address : 10.100.1.3
MP Opaque Length : 7
MP Opaque Value Element
Opaque Type : 1 : LSP ID Global
Opaque Length : 4
Global ID (Generic LSP Identifier) : 1
Le MDT de données est signalé par une route AD de type 3 à partir de C-PE1.
RP/0/0/CPU0:C-PE2#show bgp ipv4 mvpn rd all-zero-rd [3][32][10.2.1.8] [32][203.0.113.1][10.100.1.3]/120
BGP routing table entry for [3][32][10.2.1.8][32][203.0.113.1][10.100.1.3]/120, Route Distinguisher: 0:0:0
Versions:
Process bRIB/RIB SendTblVer
Speaker 56 56
Last Modified: Sep 10 00:51:52.786 for 00:04:57
Paths: (1 available, best #1, not advertised to EBGP peer)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
10.100.1.3 (metric 30) from 10.100.1.3 (10.100.1.3)
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 56
Community: no-export
Extended community: RT:1:1
PMSI: flags 0x00, type 2, label 0, ID 0x060001040a640103000701000400000007
Source AFI: IPv4 MVPN, Source VRF: default, Source Route Distinguisher: 0:0:0
Le code PMSI indique que l'identificateur LSP global est 7. Il est ensuite utilisé pour l'entrée de base de données mLDP pour ce MDT de données.
PMSI : indicateurs 0x00, type 2, étiquette 0, ID 0x060001040a640103000701000400000007
Le PMSI décodé de la commande précédente est :
The PMSI Tunnel Type is : 2 : mLDP P2MP LSP
The PMSI Tunnel ID is : 0x060001040a640103000701000400000007
FEC Element
FEC Element Type : 6 : P2MP
AF Type : 1
Address Length : 4
Root Node Address : 10.100.1.3
MP Opaque Length : 7
MP Opaque Value Element
Opaque Type : 1 : LSP ID Global
Opaque Length : 4
Global ID (Generic LSP Identifier) : 7
Avec les commandes suivantes, vous pouvez vérifier ce que le PE d'entrée annonce à propos du MDT de données. Notez qu'il s'agit de GTM, de sorte qu'il n'y a pas de VRF dans la commande suivante.
RP/0/0/CPU0:C-PE2#show pim mdt mldp remote
Core MDT Cache Max DIP Local VRF Routes
Identifier Source Count Agg Entry Using Cache
[global-id 7] 10.100.1.3 1 255 N N 1
RP/0/0/CPU0:C-PE2#show pim mdt mldp cache
Core Source Cust (Source, Group) Core Data Expires
10.100.1.3 (10.2.1.8, 203.0.113.1) [global-id 7] never
Le type de route 7 n'est pas associé à un PMSI :
RP/0/0/CPU0:C-PE2#show bgp ipv4 mvpn rd all-zero-rd [7][0:0:0][1][32][10.2.1.8][32][203.0.113.1]/184
BGP routing table entry for [7][0:0:0][1][32][10.2.1.8][32][203.0.113.1]/184, Route Distinguisher: 0:0:0
Versions:
Process bRIB/RIB SendTblVer
Speaker 52 52
Last Modified: Sep 10 00:51:51.786 for 00:07:37
Paths: (1 available, best #1)
Advertised to peers (in unique update groups):
10.100.1.3
Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
10.100.1.3
Local
0.0.0.0 from 0.0.0.0 (10.100.1.5)
Origin IGP, localpref 100, valid, redistributed, best, group-best, import-candidate
Received Path ID 0, Local Path ID 1, version 52
Extended community: RT:10.100.1.3:0
Le RT identifie le routeur PE en amont. Le champ d'administrateur global est l'adresse IP du PE en amont. Le champ de l'administrateur local est défini sur 0 pour GTM.
RP/0/0/CPU0:C-PE2#show mrib route 203.0.113.1 10.2.1.8
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary
MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
LD - Local Disinterest, DI - Decapsulation Interface
EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
IRMI - IR MDT Interface
(10.2.1.8,203.0.113.1) RPF nbr: 10.100.1.3 Flags: RPF
Up: 00:52:34
Incoming Interface List
Lmdtdefault Flags: A LMI, Up: 00:52:34
Outgoing Interface List
GigabitEthernet0/0/0/0 Flags: F NS, Up: 00:52:34
L'interface entrante doit être une interface Lmdt.
RP/0/0/CPU0:C-PE2#show mfib route 203.0.113.1 10.2.1.8
IP Multicast Forwarding Information Base
Entry flags: C - Directly-Connected Check, S - Signal, D - Drop,
IA - Inherit Accept, IF - Inherit From, EID - Encap ID,
ME - MDT Encap, MD - MDT Decap, MT - MDT Threshold Crossed,
MH - MDT interface handle, CD - Conditional Decap,
DT - MDT Decap True, EX - Extranet, RPFID - RPF ID Set,
MoFE - MoFRR Enabled, MoFS - MoFRR State, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
EG - Egress, EI - Encapsulation Interface, MI - MDT Interface,
EX - Extranet, A2 - Secondary Accept
Forwarding/Replication Counts: Packets in/Packets out/Bytes out
Failure Counts: RPF / TTL / Empty Olist / Encap RL / Other
(10.2.1.8,203.0.113.1), Flags:
Up: 02:31:00
Last Used: never
SW Forwarding Counts: 0/2037/407400
SW Replication Counts: 0/2037/407400
SW Failure Counts: 0/0/0/0/0
Lmdtdefault Flags: A LMI, Up:02:31:00
GigabitEthernet0/0/0/0 Flags: NS EG, Up:02:31:00
Vérifiez les routes SAFI 2 :
RP/0/0/CPU0:C-PE2#show route ipv4 multicast
Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, su - IS-IS summary null, * - candidate default
U - per-user static route, o - ODR, L - local, G - DAGR, l - LISP
A - access/subscriber, a - Application route
M - mobile route, r - RPL, (!) - FRR Backup path
Gateway of last resort is not set
i L1 10.1.2.0/24 [115/30] via 10.1.4.4, 3d12h, GigabitEthernet0/0/0/1
i L1 10.1.3.0/24 [115/20] via 10.1.4.4, 3d12h, GigabitEthernet0/0/0/1
C 10.1.4.0/24 is directly connected, 1d21h, GigabitEthernet0/0/0/1
L 10.1.4.5/32 is directly connected, 3d12h, GigabitEthernet0/0/0/1
C 10.1.5.0/24 is directly connected, 1d21h, GigabitEthernet0/0/0/0
L 10.1.5.5/32 is directly connected, 3d12h, GigabitEthernet0/0/0/0
B 10.2.1.0/24 [200/30] via 10.100.1.3, 1d17h
i L1 10.100.1.3/32 [115/30] via 10.1.4.4, 3d12h, GigabitEthernet0/0/0/1
i L1 10.100.1.4/32 [115/20] via 10.1.4.4, 3d12h, GigabitEthernet0/0/0/1
L 10.100.1.5/32 is directly connected, 1d21h, Loopback0
Notez que la route pour la source est SAFI 2 (elle est en multidiffusion IPv4 AF), car elle est en multidiffusion IPv4 RIB AF.
Notez que le tronçon suivant est 10.100.1.3, le bouclage de C-PE1, car ce routeur a next-hop-self sous AF ipv4 multicast sous le routeur BGP.
RP/0/0/CPU0:C-PE2#show bgp ipv4 multicast 10.2.1.0/24
BGP routing table entry for 10.2.1.0/24
Versions:
Process bRIB/RIB SendTblVer
Speaker 34 34
Last Modified: Sep 8 07:42:18.786 for 1d17h
Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
10.100.1.3 (metric 30) from 10.100.1.3 (10.100.1.3)
Origin incomplete, metric 30, localpref 100, valid, internal, best, group-best
Received Path ID 0, Local Path ID 1, version 34
Extended community: VRF Route Import:10.100.1.3:0 Source AS:1:0
Le RPF de la source pointe vers l'interface Lmdt et le voisin PIM à travers elle. Le protocole RPF est exécuté dans la table de multidiffusion IPv4.
RP/0/0/CPU0:C-PE2#show pim rpf 10.2.1.8
Table: IPv4-Multicast-default
* 10.2.1.8/32 [200/30]
via Lmdtdefault with rpf neighbor 10.100.1.3
Vérifiez que le routeur périphérique d'entrée est reconnu comme routeur PE.
RP/0/0/CPU0:C-PE2#show pim pe
MVPN Provider Edge Router information
PE Address : 10.100.1.3 (0x1071da64)
RD: 0:0:0 (valid), RIB_HLI 0, RPF-ID 3, Remote RPF-ID 0, State: 1, S-PMSI: 2
PPMP_LABEL: 0, MS_PMSI_HLI: 0x00000, Bidir_PMSI_HLI: 0x00000, MLDP-added: [RD 0, ID 0, Bidir ID 0, Remote Bidir ID 0], Counts(SHR/SRC/DM/DEF-MD): 0, 1, 0, 0, Bidir: GRE RP Count 0, MPLS RP Count 0RSVP-TE added: [Leg 0, Ctrl Leg 0, Part tail 0 Def Tail 0, IR added: [Def Leg 0, Ctrl Leg 0, Part Leg 0, Part tail 0, Part IR Tail Label 0
bgp_i_pmsi: 1,0/0 , bgp_ms_pmsi/Leaf-ad: 0/0, bgp_bidir_pmsi: 0, remote_bgp_bidir_pmsi: 0, PMSIs: I 0x106a2d50, 0x0, MS 0x0, Bidir Local: 0x0, Remote: 0x0, BSR/Leaf-ad 0x0/0, Autorp-disc/Leaf-ad 0x0/0, Autorp-ann/Leaf-ad 0x0/0
IIDs: I/6: 0x1/0x0, B/R: 0x0/0x0, MS: 0x0, B/A/A: 0x0/0x0/0x0
Bidir RPF-ID: 4, Remote Bidir RPF-ID: 0
I-PMSI: MLDP-P2MP, Opaque: [global-id 1] (0x106a2d50)
I-PMSI rem: (0x0)
MS-PMSI: (0x0)
Bidir-PMSI: (0x0)
Remote Bidir-PMSI: (0x0)
BSR-PMSI: (0x0)
A-Disc-PMSI: (0x0)
A-Ann-PMSI: (0x0)
RIB Dependency List: 0x1016446c
Bidir RIB Dependency List: 0x0
Sources: 1, RPs: 0, Bidir RPs: 0
Le PMSI inclusif (I-PMSI) est là.
Vous voyez les deux entrées mLDP P2MP qui forment le MDT par défaut entre les deux routeurs périphériques dans la base de données mLDP. Il existe également une entrée mLDP P2MP avec C-PE1 comme racine pour le MDT de données.
RP/0/0/CPU0:C-PE2#show mpls mldp database brief
LSM ID Type Root Up Down Decoded Opaque Value
0x00007 P2MP 10.100.1.3 1 1 [global-id 1]
0x00008 P2MP 10.100.1.5 0 2 [global-id 1]
0x0000B P2MP 10.100.1.3 1 1 [global-id 7]
Ceci est très similaire à l'exemple 1. Maintenant, il y a P2MP TE dans le coeur. Les tunnels sont configurés en tant que tunnels automatiques. Les routeurs finaux sont découverts via BGP AD. Une autre différence avec l'exemple 1 est que le protocole de superposition est maintenant PIM. Regardez l'image 5.
Image 5
Voici la configuration du routeur périphérique :
hostname C-PE1
logging console debugging
router rib
address-family ipv4
rump always-replicate
!
!
line default
timestamp disable
exec-timeout 0 0
!
ipv4 unnumbered mpls traffic-eng Loopback0
interface Loopback0
ipv4 address 10.100.1.3 255.255.255.255
!
interface MgmtEth0/0/CPU0/0
shutdown
!
interface GigabitEthernet0/0/0/0
ipv4 address 10.1.3.3 255.255.255.0
load-interval 30
!
interface GigabitEthernet0/0/0/1
ipv4 address 10.1.2.3 255.255.255.0
!
interface GigabitEthernet0/0/0/2
shutdown
!
interface GigabitEthernet0/0/0/3
shutdown
!
interface GigabitEthernet0/0/0/4
shutdown
!
interface GigabitEthernet0/0/0/5
shutdown
!
interface GigabitEthernet0/0/0/6
shutdown
!
interface GigabitEthernet0/0/0/7
shutdown
!
interface GigabitEthernet0/0/0/8
shutdown
!
route-policy loopback
if destination in (10.100.1.3/32) then
pass
endif
end-policy
!
route-policy global-one
set core-tree p2mp-te-default
end-policy
!
route-policy sources-in-ISIS
if destination in (10.2.1.0/24) then
pass
endif
end-policy
!
router isis 1
is-type level-1
net 49.0001.0000.0000.0003.00
address-family ipv4 unicast
metric-style wide
mpls traffic-eng level-1
mpls traffic-eng router-id Loopback0
!
interface Loopback0
address-family ipv4 unicast
!
address-family ipv4 multicast
!
!
interface GigabitEthernet0/0/0/0
address-family ipv4 unicast
!
address-family ipv4 multicast
!
!
interface GigabitEthernet0/0/0/1
address-family ipv4 unicast
!
address-family ipv4 multicast
!
!
!
router bgp 1
address-family ipv4 unicast
!
address-family ipv4 multicast
redistribute connected route-policy loopback
redistribute ospf 1
redistribute isis 1 route-policy sources-in-ISIS
!
address-family ipv4 mvpn
global-table-multicast
!
neighbor 10.100.1.5
remote-as 1
update-source Loopback0
address-family ipv4 multicast
next-hop-self
!
address-family ipv4 mvpn
!
!
!
mpls oam
!
rsvp
interface GigabitEthernet0/0/0/0
bandwidth 1000000
!
interface GigabitEthernet0/0/0/1
bandwidth 1000000
!
!
mpls traffic-eng
interface GigabitEthernet0/0/0/0
auto-tunnel backup
!
!
interface GigabitEthernet0/0/0/1
auto-tunnel backup
!
!
auto-tunnel p2mp
tunnel-id min 1000 max 2000
!
!
mpls ldp
log
neighbor
!
mldp
logging notifications
address-family ipv4
rib unicast-always
!
!
router-id 10.100.1.3
address-family ipv4
!
interface GigabitEthernet0/0/0/0
address-family ipv4
!
!
interface GigabitEthernet0/0/0/1
address-family ipv4
!
!
!
multicast-routing
address-family ipv4
interface Loopback0
enable
!
interface GigabitEthernet0/0/0/1
enable
!
mdt source Loopback0
export-rt 1:1
import-rt 1:1
bgp auto-discovery p2mp-te
!
mdt default p2mp-te
mdt data p2mp-te 100 immediate-switch
!
!
router pim
address-family ipv4
rpf topology route-policy global-one
interface Loopback0
enable
!
interface GigabitEthernet0/0/0/1
!
!
!
Vérifiez que la distance RD entièrement nulle est présente. Les routes de type de route 1 doivent y être pour construire le TE P2MP basé sur les tunnels TE P2MP.
RP/0/0/CPU0:C-PE1#show bgp ipv4 mvpn rd all-zero-rd
BGP router identifier 10.100.1.3, local AS number 1
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 0
BGP main routing table version 140
BGP NSR Initial initsync version 4 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
Global table multicast is enabled
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 0:0:0
*> [1][10.100.1.3]/40 0.0.0.0 0 i
*>i[1][10.100.1.5]/40 10.100.1.5 100 0 i
Processed 2 prefixes, 2 paths
Vérifiez la route de type 1 plus en détail :
RP/0/0/CPU0:C-PE1#show bgp ipv4 mvpn rd all-zero-rd [1][10.100.1.5]/40
BGP routing table entry for [1][10.100.1.5]/40, Route Distinguisher: 0:0:0
Versions:
Process bRIB/RIB SendTblVer
Speaker 135 135
Last Modified: Sep 12 08:21:42.207 for 00:20:14
Paths: (1 available, best #1, not advertised to EBGP peer)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
10.100.1.5 (metric 30) from 10.100.1.5 (10.100.1.5)
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 135
Community: no-export
Extended community: RT:1:1
PMSI: flags 0x00, type 1, label 0, ID 0x000003e8000003e80a640105
Source AFI: IPv4 MVPN, Source VRF: default, Source Route Distinguisher: 0:0:0
Vérifiez les voisins PIM sur la valeur par défaut MDT :
RP/0/0/CPU0:C-PE1#show pim neighbor
PIM neighbors in VRF default
Flag: B - Bidir capable, P - Proxy capable, DR - Designated Router,
E - ECMP Redirect capable
* indicates the neighbor created for this router
Neighbor Address Interface Uptime Expires DR pri Flags
10.1.2.2 GigabitEthernet0/0/0/1 6d02h 00:01:16 1 B
10.1.2.3* GigabitEthernet0/0/0/1 6d02h 00:01:15 1 (DR) B E
10.100.1.3* Loopback0 6d02h 00:01:32 1 (DR) B E
10.100.1.3* Tmdtdefault 00:36:21 00:01:40 1
10.100.1.5 Tmdtdefault 00:17:37 00:01:26 1 (DR)
Vérifiez la route MRIB. L'interface de sortie doit être Tmdt :
RP/0/0/CPU0:C-PE1#show mrib route 203.0.113.1
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary
MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
LD - Local Disinterest, DI - Decapsulation Interface
EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
IRMI - IR MDT Interface
(10.2.1.8,203.0.113.1) RPF nbr: 10.1.2.2 Flags: RPF
Up: 00:09:10
Incoming Interface List
GigabitEthernet0/0/0/1 Flags: A, Up: 00:09:10
Outgoing Interface List
Tmdtdefault Flags: F NS TMI, Up: 00:09:10
Vérifiez qu'il existe un tunnel TE P2MP par routeur périphérique en tant que routeur de tête de réseau :
RP/0/0/CPU0:C-PE1#show mpls traffic-eng tunnels tabular
Tunnel LSP Destination Source FRR LSP Path
Name ID Address Address State State Role Prot
----------------- ----- --------------- --------------- ------ ------ ---- -----
^tunnel-mte1001 10004 10.100.1.5 10.100.1.3 up Inact Head
auto_C-PE2_mt1000 10005 10.100.1.3 10.100.1.5 up Inact Tail
^ = automatically created P2MP tunnel
Une fois le MDT de données déclenché, nous sélectionnons les routes de type 3 et 4 :
RP/0/0/CPU0:C-PE1#show bgp ipv4 mvpn rd all-zero-rd
BGP router identifier 10.100.1.3, local AS number 1
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0x0 RD version: 0
BGP main routing table version 143
BGP NSR Initial initsync version 4 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
Global table multicast is enabled
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
Route Distinguisher: 0:0:0
*> [1][10.100.1.3]/40 0.0.0.0 0 i
*>i[1][10.100.1.5]/40 10.100.1.5 100 0 i
*> [3][32][10.2.1.8][32][203.0.113.1][10.100.1.3]/120
0.0.0.0 0 i
*>i[4][3][0:0:0][32][10.2.1.8][32][203.0.113.1][10.100.1.3][10.100.1.5]/224
10.100.1.5 100 0 i
Processed 4 prefixes, 4 paths
Le type de route 3, annonce à tous les routeurs de queue qu'un MDT de données est signalé :
RP/0/0/CPU0:C-PE1#show bgp ipv4 mvpn rd all-zero-rd [3][32][10.2.1.8][32][203.0.113.1][10.100.1.3]/120
BGP routing table entry for [3][32][10.2.1.8][32][203.0.113.1][10.100.1.3]/120, Route Distinguisher: 0:0:0
Versions:
Process bRIB/RIB SendTblVer
Speaker 141 141
Last Modified: Sep 12 08:46:17.207 for 00:00:41
Paths: (1 available, best #1, not advertised to EBGP peer)
Advertised to peers (in unique update groups):
10.100.1.5
Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
10.100.1.5
Local
0.0.0.0 from 0.0.0.0 (10.100.1.3)
Origin IGP, localpref 100, valid, redistributed, best, group-best, import-candidate
Received Path ID 0, Local Path ID 1, version 141
Community: no-export
Extended community: RT:1:1
PMSI: flags 0x01, type 1, label 0, ID 0x000003ed000003ed0a640103
Le PMSI décodé :
PMSI : indicateurs 0x01, type 1, étiquette 0, ID 0x000003ed000003ed0a640103
Le PMSI décodé de la commande précédente est :
The PMSI Tunnel Type is : 1 : RSVP-TE P2MP LSP
The PMSI Tunnel ID is : 0x000003ed000003ed0a640103
Extended Tunnel ID : 1005
Reserved part (should be zero): 0X0000
Tunnel ID : 1005
P2MP ID : 10.100.1.3
On peut également le voir ici :
RP/0/0/CPU0:C-PE1#show pim mdt cache
Core Source Cust (Source, Group) Core Data Expires
10.100.1.3 (10.2.1.8, 203.0.113.1) [p2mp 6] never
Leaf AD: 10.100.1.5
Le type de route 4 annonce au routeur de tête de réseau quel routeur est le routeur de queue de réseau :
RP/0/0/CPU0:C-PE1#show bgp ipv4 mvpn rd all-zero-rd [4][3][0:0:0][32][10.2.1.8][32][203.0.113.1][10.100.1.3][10.100.1.5]/224
BGP routing table entry for [4][3][0:0:0][32][10.2.1.8][32][203.0.113.1][10.100.1.3][10.100.1.5]/224, Route Distinguisher: 0:0:0
Versions:
Process bRIB/RIB SendTblVer
Speaker 143 143
Last Modified: Sep 12 08:46:17.207 for 00:01:25
Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
10.100.1.5 (metric 30) from 10.100.1.5 (10.100.1.5)
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 143
Extended community: SEG-NH:10.100.1.5:0 RT:10.100.1.3:0
Source AFI: IPv4 MVPN, Source VRF: default, Source Route Distinguisher: 0:0:0
Vérifiez que le Data MDT du tunnel TE P2MP est configuré :
RP/0/0/CPU0:C-PE1#show mpls traffic-eng tunnels tabular
Tunnel LSP Destination Source FRR LSP Path
Name ID Address Address State State Role Prot
----------------- ----- --------------- --------------- ------ ------ ---- -----
^tunnel-mte1001 10004 10.100.1.5 10.100.1.3 up Inact Head
^tunnel-mte1005 10002 10.100.1.5 10.100.1.3 up Inact Head
auto_C-PE2_mt1000 10005 10.100.1.3 10.100.1.5 up Inact Tail
^ = automatically created P2MP tunnel
Vérifiez que l'interface entrante est l'interface Tmdt :
RP/0/0/CPU0:C-PE2#show mrib route 203.0.113.1
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
IF - Inherit From, D - Drop, ME - MDT Encap, EID - Encap ID,
MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
CD - Conditional Decap, MPLS - MPLS Decap, EX - Extranet
MoFE - MoFRR Enabled, MoFS - MoFRR State, MoFP - MoFRR Primary
MoFB - MoFRR Backup, RPFID - RPF ID Set, X - VXLAN
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
NS - Negate Signal, DP - Don't Preserve, SP - Signal Present,
II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
LD - Local Disinterest, DI - Decapsulation Interface
EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
EX - Extranet, A2 - Secondary Accept, MT - MDT Threshold Crossed,
MA - Data MDT Assigned, LMI - mLDP MDT Interface, TMI - P2MP-TE MDT Interface
IRMI - IR MDT Interface
(10.2.1.8,203.0.113.1) RPF nbr: 10.100.1.3 Flags: RPF
Up: 00:18:03
Incoming Interface List
Tmdtdefault Flags: A TMI, Up: 00:18:00
Outgoing Interface List
GigabitEthernet0/0/0/0 Flags: F NS, Up: 00:18:03
Le RPF sur le routeur périphérique de sortie pointe vers le routeur périphérique d'entrée. L'interface d'entrée est Tmdtdefault. Notez la lettre T pour le tunnel TE :
RP/0/0/CPU0:C-PE2#show pim rpf 10.2.1.8
Table: IPv4-Multicast-default
* 10.2.1.8/32 [200/30]
via Tmdtdefault with rpf neighbor 10.100.1.3
Regardez l'image 6.
Image 6
Nous voyons une configuration asymétrique où nous avons un réseau central avec mLDP d'un côté et PIM toujours de l'autre côté et GTM. Cela peut se produire lors de la migration des arbres centraux. Le routeur C-PE1 doit être un RR pour la multidiffusion BGP IPv4 et le mVPN BGP IPv4. La configuration pour le PIM et le routage multicast que nous avions sur C-PE1 dans l'exemple 1 est maintenant nécessaire sur PE1.
Nous déployons GTM sur MPLS (Unified MPLS) transparent. Le routeur PE doit comprendre GTM, ce que seul un routeur Cisco IOS XR peut faire, et le routeur PE doit émettre le vecteur PIM RPF-Proxy dans le domaine PIM. Ce vecteur PIM RPF-Proxy est nécessaire pour que les routeurs IP puissent envoyer un RPF à l'adresse IP proxy (l'ABR). Depuis Cisco IOS XR 5.3.2, Cisco IOS XR peut créer le vecteur RPF-Proxy dans un contexte global. Ainsi, GTM peut avoir le vecteur RPF-Proxy.
Pour créer le vecteur proxy PIM RPF, le routeur PE doit avoir la configuration suivante :
router pim
address-family [ipv4|ipv6]
rpf-vector
!
!
Remarque : la prise en charge de l'interprétation du PIM RPF-Proxy Vector (c'est ce que le routeur IP doit faire) a été introduite dans les versions antérieures de Cisco IOS XR.
Cela permet le déploiement de GTM sur MPLS transparent.
Révision | Date de publication | Commentaires |
---|---|---|
1.0 |
14-Dec-2022 |
Première publication |