Cree un anillo de paquetes flexible con cuatro nodos mediante tarjeta ML en Cisco ONS 15454

Contenido

Introducción Prerequisites Requirements Componentes Utilizados Convenciones Topología Creación de una RPR de cuatro nodos Verificación Paso 1 Paso 2 Paso 3 Paso 4 Información Relacionada

Introducción

Este documento describe la configuración para crear un anillo de paquetes flexible (RPR) con cuatro nodos a través de tarjetas de varias capas (ML) en Cisco ONS 15454.

Prerequisites

Requirements

Cisco recomienda que tenga conocimiento sobre estos temas:

- Cisco ONS 15454
- Tarjetas Ethernet ONS de Cisco serie 15454 ML
- Software Cisco IOS®
- Bridging and IP Routing

Componentes Utilizados

La información que contiene este documento se basa en las siguientes versiones de software y hardware.

Cisco ONS 15454 que ejecuta ONS Release 5.02

• ML (incluido como parte de la versión ONS 5.02) que ejecuta la versión 12.2 del software del IOS de Cisco.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Convenciones

Consulte <u>Convenciones de Consejos TécnicosCisco para obtener más información sobre las</u> <u>convenciones del documento.</u>

Topología

Este documento utiliza una configuración de laboratorio con cuatro nodos ONS 15454, a saber, nodo Studio 1, nodo Studio 2, nodo Studio 3 y nodo Studio 4 (consulte la <u>Figura 1</u>). Estos cuatro nodos forman un anillo conmutado de ruta unidireccional (UPSR) OC48.

Nota: Para facilitar la comprensión, el resto de este documento se refiere a estos nodos como nodo 1, nodo 2, nodo 3 y nodo 4.

Figura 1: Topología

Cada nodo tiene una tarjeta ML 100T instalada en la ranura 6 (consulte la Figura 2).

Figura 2: Vista de nodos: Tarjeta ML 100T en la ranura 6

La Figura 3 muestra la topología RPR Ring. La configuración de RPR se basa en esta topología.

Figura 3: Topología del anillo RPR

Creación de una RPR de cuatro nodos

Complete estos pasos para construir un RPR con cuatro nodos:

1. Cree un circuito entre POS 1 en el nodo 1 y POS 0 en el nodo 2.Complete estos pasos:Elija Circuito > Crear.Aparece el cuadro de diálogo Creación del circuito:Figura 4: Creación del circuito

👸 Circuit Creation		×
CISCO SYSTEMS	Circuit Type: STS VT VT Tunnel VT Aggregation Point STS-V VT-V OCHNC	
	Num. of circuits: 1	T Auto-ranged
	Next>	Cancel Help

Seleccione STS y

haga clic en **Next**.Aparece la ventana Atributos del circuito (consulte la <u>Figura 5</u>).Escriba el nombre del circuito en el campo Nombre.**Figura 5: Ventana Atributos de Circuito**

😥 Circuit Creation						×
CISCO SYSTEMS	Circuit Attributes Circuit Name: DATAN1N2 Type: STS Size: STS-24c ✓ Bidirectional Create cross-connects of State State: IS Apply to drop ports	rnly (TL1-like)	UPSR Provision Revert SF th SD th	on working go ive Reversio reshold: 1E-4 reshold: 1E-6 J Switch d Drops (non-E	& return on pi on time (min): 4 6 on PDI-P Ethernet)	imary path
		<back< td=""><td>Next></td><td>Finish</td><td>Cancel</td><td>Help</td></back<>	Next>	Finish	Cancel	Help

Seleccione el tamaño pertinente del circuito de la lista Tamaño y el estado correspondiente

de la lista Estado.Haga clic en Next (Siguiente).Aparece la ventana Origen (consulte la <u>Figura 6</u>).Seleccione **Studio Node 1** como nodo de origen de la lista Node.Seleccione **6** (**ML100T**) de la lista Ranura y elija **1 (POS)** de la lista Puerto.**Nota:** Siempre inicie el anillo desde pos 0 hasta pos 1.**Figura 6**: **Ventana de origen**

Haga clic en Next (Siguiente). Aparece la ventana Destino (consulte la <u>Figura 7</u>). Seleccione **Studio Node 2** como el nodo de destino de la lista Node. Seleccione 6 (ML100T) de la lista Ranura y elija 1 (POS) de la lista Puerto. **Figura 7: Ventana de destino**

😫 Circuit Creation						×
Circuit Attributes	Destination					
Name: DATAN1N2 Type: STS Size: STS-24c Direction: 2-way State: IS Ckt state to drops: false Protected Drops: No Auto-ranging: false Source Studio Node 1/s6/pPOS-1	Nor Destination Slot: 6 (ML1 Port: 0 (POS) STS:	de: Studio N DOT)	lode 2	Use	Secondary Des	tination
		<back< td=""><td>Next></td><td>Finish</td><td>Cancel</td><td>Help</td></back<>	Next>	Finish	Cancel	Help

Haga clic en Next (Siguiente). Aparece la ventana Circuit Routing Preferences (consulte la <u>Figura 8</u>). Desmarque la casilla de verificación **Ruta totalmente protegida** ya que la protección la realiza el RPR. Puede verificar **Ruta Automáticamente** o rutear manualmente el circuito. Si decide rutear manualmente, vaya al paso m. Desmarque la casilla de verificación **Ruta totalmente protegida**. **Figura 8**: **Ventana de preferencias de routing de circuito**.

Haga clic en Next (Siguiente). Aparece la ventana Route Review/Edit (consulte la Figura 9). Seleccione el nodo de origen y haga clic en **Agregar extensión**. Haga clic en Finish (Finalizar). La creación del circuito ha finalizado. La figura 9 muestra el circuito entre POS 1 en el nodo 1 y POS 0 en el nodo 2. **Figura 9: Circuito entre POS1 en el nodo 1 y POS0 en el nodo 2**

 Cree un circuito entre POS 1 en el nodo 2 y POS 0 en el nodo 3.Utilice el mismo procedimiento detallado descrito en el <u>Paso 1</u>. La figura 10 muestra el circuito entre POS 1 en el nodo 2 y POS 0 en el nodo 3.**Figura 10: Circuito entre POS 1 en el nodo 2 y POS 0 en** el nodo 3

 De manera similar, construya un circuito entre POS 1 en el nodo 3 y POS 0 en el nodo 4.Utilice el mismo procedimiento detallado descrito en el Paso 1. La figura 11 muestra el circuito entre POS 1 en el nodo 3 y POS 0 en el nodo 4.Figura 11: Circuito entre POS 1 en el nodo 3 y POS 0 en el nodo 4

4. Finalmente, cree un circuito entre POS 1 en el nodo 4 y POS 0 en el nodo 1.Utilice el mismo procedimiento detallado descrito en el Paso 1. La figura 12 muestra el circuito entre POS 1 en el nodo 4 y POS 0 en el nodo 1.Figura 12: Circuito entre POS 1 en el nodo 4 y POS 0 en el nodo 1.Figura 12: Circuito entre POS 1 en el nodo 4 y POS 0 en el nodo 1

5. Configure la tarjeta ML100T en el nodo 1.Complete estos pasos:Active el puente y el routing integrados (IRB).

bridge irb

Configure la interfaz SRP:

interface SPR1
ip address 10.1.1.1 255.0.0.0
carrier-delay msec 50
no keepalive
spr station-id 1
spr wrap delayed
hold-queue 150 in

Configuración de la interfaz POSO:

```
interface POS0
no ip address
carrier-delay msec 50
spr-intf-id 1
crc 32
```

Configuración de la interfaz POS1:

```
!
interface POS1
no ip address
spr-intf-id 1
crc 32
```

6. Configure la tarjeta ML100T en el nodo 2. Complete estos pasos: Active el puente y el routing

```
integrados (IRB).
  bridge irb
  Configure la interfaz SRP:
  interface SPR1
   ip address 10.1.1.2 255.0.0.0
   carrier-delay msec 50
   no keepalive
   spr station-id 2
   spr wrap delayed
   hold-queue 150 in
  Configuración de la interfaz POS0:
  interface POS0
   no ip address
   carrier-delay msec 50
   spr-intf-id 1
   crc 32
  Configuración de la interfaz POS1:
  Т
  interface POS1
   no ip address
   spr-intf-id 1
   crc 32
  !
7. Configure la tarjeta ML100T en el nodo 3. Complete estos pasos: Active el puente y el routing
  integrados (IRB).
  bridge irb
  Configure la interfaz SRP:
  interface SPR1
   ip address 10.1.1.3 255.0.0.0
   carrier-delay msec 50
   no keepalive
   spr station-id 3
   spr wrap delayed
   hold-queue 150 in
  Configuración de la interfaz POSO:
  interface POS0
   no ip address
   carrier-delay msec 50
   spr-intf-id 1
   crc 32
  Configuración de la interfaz POS1:
  interface POS1
   no ip address
   spr-intf-id 1
   crc 32
  Т
Configure la tarjeta ML100T en el nodo 4.Complete estos pasos: Active el puente y el routing
  integrados (IRB).
  bridge irb
  Configure la interfaz SRP:
  interface SPR1
   ip address 10.1.1.4 255.0.0.0
   carrier-delay msec 50
   no keepalive
```

spr station-id 4 spr wrap delayed

```
hold-queue 150 in
```

Configuración de la interfaz POSO:

```
interface POS0
no ip address
carrier-delay msec 50
spr-intf-id 1
crc 32
Configuración de la interfaz POS1:
!
interface POS1
no ip address
spr-intf-id 1
crc 32
!
```

Verificación

Para verificar la configuración, debe hacer un ping exitoso a cada nodo de cada otro nodo. Esta sección proporciona un procedimiento de verificación paso a paso para asegurarse de que la configuración es correcta.

Paso 1

Complete estos pasos:

```
1. Ping node 2, node 3 y node 4 desde el nodo 1:
  Node_1_Slot_6#ping 10.1.1.2
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/11/32 ms
  Node_1_Slot_6#ping 10.1.1.3
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.3, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/8/24 ms
  Node_1_Slot_6#ping 10.1.1.4
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.4, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms
2. Ejecute el comando show cdp neighbor.
  Node_1_Slot_6#show cdp neighbor
  Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
                  S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
              Local Intrfce Holdtme Capability Platform Port ID
  Device ID
  Node_4_Slot_6 SPR1
                                  137
                                              R
                                                       ONS-ML100TSPR1
                                  162
                                              RТ
  Node_3_Slot_6 SPR1
                                                       ONS-ML100TSPR1
  Node_2_Slot_6 SPR1
                                  128
                                              R
                                                      ONS-ML100TSPR1
```

Paso 2

A continuación, siga estos pasos:

1. Desde el nodo 2, haga ping exitosamente al nodo 1, al nodo 3 y al nodo 4.

```
Node_2_Slot_6#ping 10.1.1.1
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/12 ms
  Node_2_Slot_6#ping 10.1.1.3
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.3, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms
  Node_2_Slot_6#ping 10.1.1.4
  Type escape sequence to abort.
  Sending 5, 100-byte ICMP Echos to 10.1.1.4, timeout is 2 seconds:
  11111
  Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms
2. Ejecute el comando show cdp neighbor.
  Node_2_Slot_6#show cdp neighbor
  Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
```

	S - Switch	H - Host, I	– IGMP, r –	Repeater, P - Phone
Device ID	Local Intrfce	e Holdtme	Capability	Platform Port ID
Node_4_Slot_6	SPR1	175	R	ONS-ML100TSPR1
Node_1_Slot_6	SPR1	171	RТ	ONS-ML100TSPR1
Node_3_Slot_6	SPR1	141	RТ	ONS-ML100TSPR1

Paso 3

Complete estos pasos:

1. Desde el nodo 3, haga ping exitosamente al nodo 1, al nodo 2 y al nodo 4. Node_3_Slot_6#ping 10.1.1.1

```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/8/12 ms
Node_3_Slot_6#ping 10.1.1.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/12 ms
Node_3_Slot_6#ping 10.1.1.4
Type escape sequence to abort.
```

Sending 5, 100-byte ICMP Echos to 10.1.1.4, timeout is 2 seconds: !!!!! Success rate is 80 percent (4/5), round-trip min/avg/max = 4/5/8 ms

2. Ejecute el comando show cdp neighbor.

```
Node_3_Slot_6#show cdp neighbor
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
               S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
             Local Intrfce Holdtme Capability Platform Port ID
Device ID
Node_4_Slot_6 SPR1
                               170
                                                    ONS-ML100TSPR1
                                           R
                                           RТ
Node_1_Slot_6 SPR1
                               166
                                                   ONS-ML100TSPR1
Node_2_Slot_6 SPR1
                               161
                                           R
                                                   ONS-ML100TSPR1
```

Por último, complete estos pasos:

1. Desde el nodo 4, haga ping exitosamente al nodo 1, al nodo 2 y al nodo 3. Node_4_Slot_6#ping 10.1.1.1

Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.1.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/12 ms Node_4_Slot_6#**ping 10.1.1.2** Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms Node_4_Slot_6#**ping 10.1.1.3** Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.1.3, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/12 ms

2. Ejecute el comando show cdp neighbor.

Node_4_Slot_6#show cdp neighbor Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone Device ID Local Intrfce Holdtme Capability Platform Port ID Node_1_Slot_6 SPR1 152 R T ONS-ML100TSPR1 Node_3_Slot_6 SPR1 122 R T ONS-ML100TSPR1 Node_2_Slot_6 SPR1 147 R ONS-ML100TSPR1

Información Relacionada

Soporte Técnico y Documentación - Cisco Systems