Table Of Contents
Virtual Route Forwarding Design Guide for VRF-Aware Cisco Unified
Communications Manager ExpressSCCP Controlled Analog Endpoints
Cisco IOS Global Configuration
Cisco Unified CME SCCP Phone Configuration
Cisco Unified CME SIP Phone Configuration
VRF-Aware Configuration Example
Configuring Cisco Unified CME 1
Configuring Cisco Unified CME 2
Configuring Cisco Unity Express for Cisco Unified CME Voice Mail
Virtual Route Forwarding Design Guide for VRF-Aware Cisco Unified
Communications Manager Express
First Published: October 10, 2008
This document provides an overview, a sample configuration, and other information for connecting and using Virtual Route Forwarding (VRF) with your network.
Contents
Introduction
Virtualization is a technique for hiding the physical characteristics of computing resources from the way in which other systems, applications, or end users interact with those resources. This includes making a single physical resource (such as a server, an operating system, an application, storage device, or network) appear to function as multiple logical resources; or it can include making multiple physical resources (such as storage devices or servers) appear as a single logical resource.
Virtual networks is a generic term that uses many different technologies to provide virtualization. Fundamentally, virtual networks all provide a mechanism to deploy what looks and operates like multiple networks, and are actually all using the same hardware and physical connectivity.
A distinction needs to be made among the types of virtualization and which layer this network virtualization occurs at:
•Physical (Layer 1)—A Time Division Multiplexer (TDM) provides a way to make a single physical connection look like many physical connections, while still maintaining separation.
•Datalink (Layer 2)—Frame Relay, Asynchronous Transfer Mode (ATM), and Ethernet switches are all examples of how a single physical link may provide multiple logical or virtual connections per physical connection.
•Network (Layer 3)—Routers are examples of how multiple sessions can be carried over a single connection using IP addresses as the identifier. Routers use IP addresses to direct the data to the correct destination. When an IP packet is received the destination address is looked up in a route table to determine the next hop to send the packet to. Normally all packets within a physical router use the same route table or global table.
Virtualization of Networks
If we needed IP networks that are isolated as they were used by different companies, departments, or organizations, we would normally deploy multiple IP networks made up of separate physical routers that were not connected to each other. They may still be using a shared Layer 2 or Layer 1 infrastructure, however at Layer 3 they are not connected and do not form a network.
Network virtualization allows a single physical router to have multiple route tables. The global table contains all IP interfaces that are not part of a specific virtual network and route tables are for each unique virtual network assigned to an IP interface.
In its basic form this allows a FastEthernet 0/0 IP interface to be in virtual network 10 and FastEthernet 0/1 IP interface to be in virtual network 20. Packets arriving on FastEthernet 0/0 are only forwarded to other interfaces in virtual network 10 and do not use FastEthernet 0/1, because it is not in its virtual network: virtual network 10 has no routing knowledge of other virtual networks.
Additional virtualization can be provided by allowing multiple virtual networks per physical connection. This is enabled by using Layer 2 logical connections. For a FastEthernet physical port, the use of multiple virtual LANs (VLANs) allows each VLAN to use a different virtual network.
Virtual Route Forward (VRF) is a technique which creates multiple virtual networks within a single network entity (Figure 1). In a single network component, multiple VRF resources create the isolation between virtual networks.
Figure 1
Virtual Route Forwarding
VRF implementations in Cisco Unified Communications Manager Express (Cisco Unified CME) include:
•Single voice network and multiple data networks, which consolidate voice communication into one logically partitioned network to separate voice and data communication on a converged multimedia network.
•Enable Cisco Unified CME on an MPLS provider edge router.
•Enable Cisco Unified CME on multiple CE (VRF Lite) routers.
•Multiple voice networks and multiple data networks, which share a Cisco Unified CME by multiple closed users group with different requirements. Check the feature restrictions for details; VRF does not support identical IP addresses or shared-lines.
Topology
With an increased adoption of IP communications, the data and voice networks co-exist. VLAN is the existing virtualization technique that is used to separate voice networks from data networks. However, in a case where a softphone from a PC (in a data VLAN) wants to talk to a hard-phone in a voice VLAN, the current solution is to allow routing between these two networks through a global routing table. As a result, it creates a potential security threat since the voice VLAN is now visible from the data network.
With the old TDM telephony model, these two were independent networks and have no visibility to each other. A customer talking to an agent on a voice network has no access to the data world of that agent. However, with IP communications, since both are on the same network, security is a significant concern.
Security can be improved by deploying virtualization at the network level. VRF technology can be used with the rules and policies so that each VRF network achieves the expected level of security. The system allow only the softphone application to talk to the hard-phone in a voice VRF, or allow different soft phones within data VRF resources to talk to each other, however, do not allow other applications to communicate with each other.
Figure 2 shows the traditional deployment of Cisco Unified CME, where multiple departments are connected to Cisco Unified CME for voice and data communication. In this deployment, we see both PSTN and WAN connectivity, allowing for interbranch communication through the WAN link. They can reach the rest of the world through the PSTN. In a real life deployment, we may not see that all the phones and PCs directly connected to Ethernet ports of the Cisco Unified CME router. There may be a lot of Ethernet switches in between the Cisco Unified CME and IP devices.
Whatever way the phones and computers are connected to the Cisco Unified CME router, the voice and data network is always separated by VLANs. Usually, all the IP phones are part of the voice VLAN and all other IP devices are in the regular data VLAN. IP phones are not accessible from the data network, although they may share the same physical layers. Virtualization is created through VLANs. To accommodate multiple departments, multiple VLANs are created for security purposes.
Figure 2 Typical Deployment of Cisco Unified Communications Manager Express
To explain the deployment scenario, we show the detail connectivity in Figure 3, where all the devices from "Finance" and "Sales" departments are connected directly to the Ethernet ports of the Cisco Unified CME. In Figure 3, there are 3 different VLANs:
•VLAN ID 201: Used for phones. All the IP phones belong to this VLAN, regardless of the department. That means that both the finance and sales departments have the same VLAN ID for phones.
•VLAN ID 202: Created to pass data within finance department.
•VLAN ID 203: Created to support data within sales department.
This is layer-2 virtualization. The limitations are:
•Softphones cannot communicate with IP phones, because they belong to different VLANS (data and voice VLANs, respectively).
•There is no separation of traffic when it flows towards the WAN link.
•This box cannot be shared by different organizations. For example, if this box is located in a superstore and then a bank wants to setup a small booth inside that superstore, the bank cannot use this box. The reason is security: there would be no separation between the networks.
Figure 3
Typical Deployment of Cisco Unified Communications Manager Express with VLAN
Now, in the same network, we can introduce Layer-3 virtualization by using Virtual Route Forward (VRF). With VRF the Cisco Unified CME can be virtually partitioned into multiple Cisco Unified CME routers. An example for this application is a single Cisco Unified CME being shared by both a supermarket and a Coffee shop/Bank in a campus, but as networks, they can not talk to each other except over a PSTN or through restricted route leaks.
Another example of the VRF in voice networks is to split Cisco Unified CME into different VRF networks, one for each department, such as finance, sales, HR, marketing, guest network, employees, and so on. The actual call processing rules can be applied by voice on a per VRF basis in this case.
Each of the virtual Cisco Unified CME routers handles the phones registered under that virtual Cisco Unified CME. Figure 4 shows two virtual Cisco Unified CME routers hosted in a single Cisco Unified CME platform. They work like independent Cisco Unified CME routers.
Figure 4
Typical Deployment of Cisco Unified Communications Manager Express with VRF
In this example, we have both data and voice together where:
•Finance Virtual — Cisco Unified CME has its own voice and data network (VRF: Finance)
•Sales Virtual — Cisco Unified CME has its own voice and data network (VRF: Sales)
•The Finance department has its own secured server, where only the Finance department can access those resources. Similarly, the Sales department has its own server, which is accessible to only the Sales department.
•Finance should not be able to access Sales servers/resources and vice versa.
•Both the Finance and Sales departments have IP telephones controlled by Cisco Unified CME. Those phones should be able to communicate among each other, including sharing the common voice gateways, voice mail servers, and so on. In Figure 4, the Finance department has 3 IP phones and few computers. The Sales department has 2 IP phones, softphones, and computers.
•Softphones from both data VRF resources (Finance and Sales) can communicate with IP phones.
A VRF is assigned to an interface. The devices behind this interface are all under a particular VRF and all phones behind this VRF interface can communicate with its server in the same VRF. In this case, the Cisco Unified CME router is the server. In a device with multiple interfaces, each of the interfaces can be assigned a VRF. The interfaces that are not assigned to a VRF use the global routing table as the default routing table (for example, the VRF table ID is 0).
Elements Description
Voice network virtualization adds VRF support for Cisco Unified CME, conferencing, transcoding, and so on. Enabling VRF-awareness in Cisco Unified CME and SRST (Survivable Remote Site Telephony) allows the SCCP phone or SIP IP phones associated with Cisco Unified CME or SRST to be assigned a VRF-ID. Cisco Unified CME IP phones and conferencing/transcoding/TRP (Media Termination Functionality) voice components can be assigned to the voice VRF. It also allows softphones in data VRF resources to communicate with hard phones in a voice VRF.
The overall components for Cisco Unified CME deployment include:
•SIP/SCCP phones under Cisco Unified CME
•Internal Xcoder/Conference/TRP (Media Termination Functionality)
•Hard/analog phone in a single voice VRF and a softphone in multiple data VRF resources
In this solution, we assume that the softphones (SCCP only) from PCs register through a data VRF. We also assume that all hard phones are registered through a voice VRF (a global and default VRF). Like softphones, the TAPI client from PCs also register to the SCCP server through a data VRF.
We recommend that you use a TRP device (controlled by a Cisco Unified CME server process, internal TRP) when interVRF communication needs to be done. For SCCP Cisco Unified CME, the TRP device handles media transmit functions for both media streams in order to flow through Cisco Unified CME. You must set correct VRF IDs for both media streams through this TRP functionality in the Cisco Unified CME router.
SIP Cisco Unified CME
The SIP layer is made VRF aware. Cisco IOS software supports single voice VRF for SIP, which is based on global voice VRF configuration.
SCCP Cisco Unified CME
Cisco Unified CME behaves like an independent Cisco Unified CME for each of the VRF endpoints. In Figure 5, endpoints shown in blue register and communicate with Cisco Unified CME, which is listening on a standard socket in the blue Cisco Unified CME address space. This is the same for other VRF resources —green endpoints send their registration and other communications to their advertised green Cisco Unified CME address.
Figure 5
Different Components Register to Cisco Unified CME
The endpoints themselves contact Cisco Unified CME as they did before. No software change is required on the endpoint itself. The Cisco Unified CME ephone server process is now be able to receive registration from different interfaces, (each representing a separate VRF) then to verify and accept the calls coming in from different VRFs.
In the case of SCCP Cisco Unified CME, the VRF ID information is configured for each ephone or a group of ephones, and configuration is used in the routing process. When a call is being routed, depending on the VRF of the outgoing interface, the VRF ID is set on that interface and the call is routed accordingly. The Cisco Unified CME server process determines the VRF of the outgoing interface and sets it accordingly. This applies to both inter and intraVRF form signaling.
For the SCCP Cisco Unified CME TAPI client, the VRF ID information is configured and verified when the TAPI client registers. Registration request for the phone or TAPI client from a different VRF interface other than configured will be rejected.
For media, in a SCCP Cisco Unified CME, two modes are supported. In one mode, media always flows between the endpoints. This is still true for inter-VRF communication, because each of these end devices is capable of reaching the other directly. The second mode is currently to force the media to go through the Cisco Unified CME router. This is achieved using the "TRP" configuration under ephone. This will continue to work for intraVRF media flow-through also without "TRP" configuration.
SCCP Controlled Analog Endpoints
Figure 5 also shows an analog voice gateway with an FXS interface to analog phones. The VGW (Cisco VG224) talks to Cisco Unified CME using SCCP. The media path between analog VGW and Cisco Unified CME is flow-through when a call goes through the H323/SIP trunk. If the call is between two SCCP endpoints, the path is directly between endpoints. For all practical purposes, the Cisco VG224 acts like an SCCP endpoint. All the phones map 1:1 between a voice port and the ephone. In order for VRF awareness to be extended to these phones, we assume that all the analog phones registering to Cisco Unified CME through the Cisco VG224 are similar to hard ephones and are in the same VRF as hard phones. In order for interVRF calls between phones from analog phones behind analog VGW and data, VRF is the same as interVRF described earlier.
Configuring a Voice VRF
To configure a voice VRF, you must shutdown voice services on the gateway, assign a previously defined VPN VRF to the VoIP SPI, and then restart voice services.
This section describes the tasks required to configure VRF-aware voice gateways.
Note If a voice VRF is not configured, signaling and media packets are sent using the default routing table.
Prerequisites
Be sure to check the following prerequisites before configuring a voice VRF:
•To ensure there are no active calls on the voice gateway during a VRF change, you must shut down the voice gateway before you configure or make changes to a voice VRF.
•If your configuration uses address binding, use the h323-gateway voip bind srcaddr ip-address command to bind the gateway to an interface that belongs to the voice VRF.
•If the voice gateway configuration has H.323 RAS enabled, use the h323-gateway voip interface command to configure RAS on the interface that belongs to the voice VRF.
Restrictions
Restrictions for configuring VRF-aware H.323 and SIP are as follows:
•If the voice gateway configuration has H.323 RAS enabled, the gatekeeper must be accessible to the gateway in the configured voice VRF.
•When voice VRF is configured, the H.323 gateway and gatekeeper cannot communicate with each other if they are on the same router.
Voice VRF supports only the following call types:
•A single VRF for SIP-to-SIP calls
•A single VRF for H323-to-SIP calls
•A single VRF for H323-to-H323 calls
•A single VRF in IP-to-IP gateway calls with a gatekeeper involved, however the gatekeeper is not on the same router.
•A SIP SRST call
•A SCCP SRST call
•A SCCP Cisco Unified CME call
•A SIP Cisco Unified CME call
SUMMARY STEPS
1. enable
2. configure terminal
3. ip vrf vrfname
4. rd route-distinguisher
5. route-target {import | export | both} route-target-ext-community
6. exit
7. voice service voip
8. shutdown
9. exit
10. voice vrf vrfname
11. voice service voip
12. no shutdown
13. end
DETAILED STEPS
Examples
!ip vrf vrf1rd 1:1route-target export 1:2route-target import 1:2!voice vrf vrf1!voice service voip!Cisco IOS Global Configuration
The following example is part of a Cisco Unified CME/SRST configuration. There are two VRF resources, VPN801 and VPN802, defined for two groups of phones. Cisco Unified CME belongs to the third VRF and is named ccm.
VRF resources VPN801 and VPN802 import routes from and import routes to VRF ccm. VPN801 and VPN802 can access VRF ccm, but their routes are independent of each other.
The default voice VRF is ccm, where SIP phones must belong to and be registered with Cisco Unified CME.
Initially, phones belonging to VRF VPN801 and VPN802 register to Cisco Unified CME.
voice vrf ccmip vrf VPN801rd 801:1route-target export 801:1route-target import 1000:1!ip vrf VPN802rd 802:1route-target export 802:1route-target import 1000:1!ip vrf ccmrd 1000:1route-target export 1000:1route-target import 801:1route-target import 802:1!interface FastEthernet0/0no ip addressduplex autospeed auto!interface FastEthernet0/0.801encapsulation dot1Q 801ip vrf forwarding VPN801ip address 21.22.21.1 255.255.255.0ip helper-address global 21.20.10.11!interface FastEthernet0/0.802encapsulation dot1Q 802ip vrf forwarding VPN802ip address 21.22.22.1 255.255.255.0ip helper-address 21.20.10.11VoIP and POTS Dial Peers
The dial peers are a global resource and belongs to voice VRF, which are shared and accessible from any VRF. There is no need to specify a dial peer for an individual VRF.
The following example shows how to configure one outgoing ISDN PRI trunk, SIP trunk, and H.323 trunk to any service provider or another Cisco Unified CME.
dial-peer voice 2822 potscorlist outgoing PSTN-TRUNKdestination-pattern 7....direct-inward-dialport 1/0/0:23forward-digits 4!dial-peer voice 2821 voipcorlist outgoing SIP-TRUNKdestination-pattern 8....voice-class codec 1session protocol sipv2session target ipv4:11.2.0.1dtmf-relay sip-notifyno vad!dial-peer voice 1000 voipvoice-class codec 1!dial-peer voice 2823 voipcorlist outgoing H323-TRUBKdestination-pattern 9....voice-class codec 1session target ipv4:11.2.0.1!dial-peer voice 28211 voiptranslation-profile incoming STRIPvoice-class codec 1incoming called-number.%no vad!DHCP Configurations
The three ways to define DHCP address allocation are shown below. Duplicate IP addresses, even with VRF specified, are not supported.
1. With a global address allocation scheme, you must use the no ip dhcp use vrf connected command.
no ip dhcp use vrf connectedip dhcp pool vcme1network 20.1.10.0 255.255.255.0option 150 ip 20.1.10.1default-router 20.1.10.1class vcme1address range 20.1.10.10 20.1.10.250!2. The following example shows how to assign addresses from VRF pool VPN801.
ip dhcp use vrf connected!ip dhcp pool vcme1vrf VPN801network 20.1.10.0 255.255.255.0option 150 ip 20.1.10.1default-router 20.1.10.1class vcme1address range 20.1.10.10 20.1.10.250!3. The following example show how to assign an address by an individual host. You must replace the first two hexadecimal digits of a host MAC address with 01.
ip dhcp pool phone3host 20.2.10.11 255.0.0.0client-identifier 0100.0ed7.4ce6.3ddefault-router 20.2.10.1option 150 ip 20.2.10.1!Cisco Unified CME SCCP Phone Configuration
The following example shows how to define telephony-service with up to two VRF resources and two groups of phones.
telephony-servicesdspfarm conference mute-on # mute-off #sdspfarm units 4sdspfarm transcode sessions 10sdspfarm tag 1 xcode101sdspfarm tag 2 conf103group 1 vrf VPN801ip source-address 20.1.10.1 port 2000url directories http://20.1.10.1/localdirectory!group 2 vrf VPN802ip source-address 20.2.10.1 port 2000!load 7960-7940 P00308000400load 7941 SCCP41.8-2-1Sload 7970 SCCP70.8-3-1Smax-ephones 52max-dn 192auto assign 100 to 167 type 7960auto assign 168 to 192 type anlcalling-number initiatorsystem message vcme 2821time-zone 5max-conferences 1 gain 6call-park system redirectcall-forward pattern .Tcall-forward system redirecting-expandedmoh music-on-hold.auweb admin system name cisco secret 5 $1$3.ZT$q0g3MXmIP8doZmA7v1mXz.dn-webedittime-webedittransfer-system full-consult dsstransfer-pattern 9.Tsecondary-dialtone 9directory last-name-firstcreate cnf-files version-stamp 7960 Jan 15 2008 22:32:06!ephone-dn 1number 7483001description 7483001name 7483001!!ephone-dn 2number 7493001description 7493001name 7493001!!ephone 1description cme-2801 srst : Aug 27 2007 18:18:20mac-address 0012.8055.D2EEgroup phone 1button 1:1!!!ephone 2description cme-2801 srst : Aug 27 2007 18:18:20mac-address 000E.D710.9F4Agroup phone 2button 1:2!Cisco Unified CME SIP Phone Configuration
The following example shows SIP phone registration and definition. A SIP phone must belong to voice VRF. Otherwise, SIP phones do not register properly.
voice register globalmode cmesource-address 20.2.10.1 port 5060max-dn 192max-pool 48create profile sync 0111955967541377!voice register dn 5number 2002allow watchlabel vcme2!voice register pool 5id mac 0014.698C.5D9Ftype 7960number 1 dn 5presence call-listvoice-class codec 1username xxxx password xxxxblf-speed-dial 2 2001 label "group2"blf-speed-dial 3 3001 label "group3"blf-speed-dial 4 1001 label "group1"blf-speed-dial 5 5001 label "group5"!CME Supplementary Services
These services are shared among groups of phones and you must specify a VRF for each service. Phones in VPN801 and VPN802 are controlled by the same set of parameters.
voice service voipallow-connections h323 to h323allow-connections h323 to sipallow-connections sip to h323allow-connections sip to sipsupplementary-service h450.12h323sipregistrar server expires max 3600 min 3600VRF-Aware Configuration Example
Figure 6 shows a configuration topology for VRF-Aware SIP call flows on Cisco Unified CME.
Figure 6
Topology for Cisco Unified CME
Configuring Cisco Unified CME 1
Here is the full configuration of the Cisco Unified CME 1 running on a Cisco ISR 3845 router:
!version 12.4no service timestamps debug uptimeno service timestamps log uptimeno service password-encryption!hostname Router!boot-start-markerboot-end-marker!card type t1 3 1logging message-counter syslogno logging bufferedno logging consoleenable password xxxx!no aaa new-modelclock timezone PST -8clock summer-time pdt recurringno network-clock-participate slot 3!dot11 syslogip source-routeip auth-proxy max-nodata-conns 3ip admission max-nodata-conns 3ip cef!!no ip dhcp use vrf connected!ip dhcp pool phonenetwork 10.10.10.0 255.255.255.0default-router 10.10.10.1option 150 ip 10.10.10.1!ip dhcp pool vrf1network 10.1.10.0 255.255.255.0default-router 10.1.10.1option 150 ip 10.1.10.1class vrf1address range 10.1.10.10 10.1.10.250!ip dhcp pool vrf2network 10.2.10.0 255.255.255.0default-router 10.2.10.1option 150 ip 10.2.10.1class vrf2address range 10.2.10.10 10.2.10.250!ip dhcp pool vrf3network 10.3.10.0 255.255.255.0option 150 ip 10.3.10.1default-router 10.3.10.1class vrf3address range 10.3.10.10 10.3.10.250!ip dhcp pool vrf4network 10.4.10.0 255.255.255.0default-router 10.4.10.1option 150 ip 10.4.10.1class vrf4address range 10.4.10.10 10.4.10.250!ip dhcp pool vrf5network 10.5.10.0 255.255.255.0default-router 10.5.10.1option 150 ip 10.5.10.1class vrf5address range 10.5.10.10 10.5.10.250!ip dhcp pool subcme4network 11.4.10.0 255.255.255.0default-router 11.4.10.1option 150 ip 11.4.10.1class subcme4address range 11.4.10.10 11.4.10.250!ip dhcp pool subcme5network 11.5.10.0 255.255.255.0default-router 11.5.10.1option 150 ip 11.5.10.1class subcme5address range 11.5.10.10 11.5.10.250!ip dhcp pool subcme3network 11.3.10.0 255.255.255.0default-router 11.3.10.1option 150 ip 11.3.10.1class subcme3address range 11.3.10.10 11.3.10.250!ip dhcp pool subcme2network 11.2.10.0 255.255.255.0default-router 11.2.10.1option 150 ip 11.2.10.1class subcme2address range 11.2.10.10 11.2.10.250!ip dhcp pool subcme1network 11.1.10.0 255.255.255.0option 150 ip 11.1.10.1default-router 11.1.10.1class subcme1address range 11.1.10.10 11.1.10.250!!ip dhcp class vrf1!ip dhcp class vrf2!ip dhcp class vrf3!ip dhcp class vrf4!ip dhcp class vrf5!ip dhcp class subcme4!ip dhcp class subcme5!ip dhcp class subcme3!ip dhcp class subcme2!ip dhcp class subcme1!ip vrf vrf1rd 100:1route-target export 100:1route-target import 100:1!ip vrf vrf2rd 100:2route-target export 100:2route-target import 100:2!ip vrf vrf3rd 100:3route-target export 100:3route-target import 100:3!ip vrf vrf4rd 100:4route-target export 100:4route-target import 100:4!ip vrf vrf5rd 100:5route-target export 100:5route-target import 100:5!no ipv6 cef!multilink bundle-name authenticated!!!!!!ctl-clientvoice-card 0dsp services dspfarm!voice-card 3no dspfarm!!voice rtp send-recvvoice vrf vrf2!voice service voipallow-connections h323 to h323allow-connections h323 to sipallow-connections sip to h323allow-connections sip to sipsupplementary-service h450.12h323h225 timeout keepalivesipregistrar server expires max 3600 min 3600!!voice class codec 1codec preference 1 g711ulawcodec preference 2 g711alawcodec preference 3 g729r8!!!!!!!!!!!!!voice register dn 10number 2098!voice register pool 10id mac 0017.E014.2473number 1 dn 10voice-class codec 1!!voice translation-rule 1rule 1 /81098/ /1098/rule 2 /84099/ /4099/rule 3 /91098/ /1098/rule 4 /94099/ /4099/rule 5 /82099/ /2099/rule 6 /81098/ /1098/rule 7 /82098/ /2098/!!voice translation-profile STRIPtranslate called 1!!!!!!username xxxx password xxxxarchivelog confighidekeys!!!!!controller T1 3/0!controller T1 3/1!ip ftp username Administratorip ftp password xxxx!class-map match-all L3-to-L2_VoIP-Cntrlmatch dscp af31class-map match-all L3-to-L2_VoIP-RTPmatch dscp efclass-map match-all SIPmatch protocol sipclass-map match-all RTPmatch protocol rtp!!policy-map EthOutclass RTPpolicy-map output-L3-to-L2class L3-to-L2_VoIP-RTPset cos 5class L3-to-L2_VoIP-Cntrlset cos 3!!!!!interface Loopback5ip address 12.5.10.1 255.255.255.255!interface Loopback101ip vrf forwarding vrf1ip address 11.1.0.1 255.255.255.255!interface Loopback102ip vrf forwarding vrf2ip address 11.2.0.1 255.255.255.255!interface Loopback103ip vrf forwarding vrf3ip address 11.3.0.1 255.255.255.255!interface Loopback104ip vrf forwarding vrf4ip address 11.4.0.1 255.255.255.255!interface Loopback105ip vrf forwarding vrf5ip address 11.5.0.1 255.255.255.255!interface GigabitEthernet0/0no ip addressduplex autospeed automedia-type rj45no keepalive!interface GigabitEthernet0/0.301encapsulation dot1Q 301ip vrf forwarding vrf1ip address 10.1.10.1 255.255.255.0!interface GigabitEthernet0/0.302encapsulation dot1Q 302ip vrf forwarding vrf2ip address 10.2.10.1 255.255.255.0!interface GigabitEthernet0/0.303encapsulation dot1Q 303ip vrf forwarding vrf3ip address 10.3.10.1 255.255.255.0!interface GigabitEthernet0/0.304encapsulation dot1Q 304ip vrf forwarding vrf4ip address 10.4.10.1 255.255.255.0!interface GigabitEthernet0/0.305encapsulation dot1Q 305ip vrf forwarding vrf5ip address 10.5.10.1 255.255.255.0!interface GigabitEthernet0/1no ip addressduplex autospeed automedia-type rj45no keepalive!interface GigabitEthernet0/1.101encapsulation dot1Q 101ip vrf forwarding vrf1ip address 11.1.10.1 255.255.255.0!interface GigabitEthernet0/1.102encapsulation dot1Q 102ip vrf forwarding vrf2ip address 11.2.10.1 255.255.255.0!interface GigabitEthernet0/1.103encapsulation dot1Q 103ip vrf forwarding vrf3ip address 11.3.10.1 255.255.255.0!interface GigabitEthernet0/1.104encapsulation dot1Q 104ip vrf forwarding vrf4ip address 11.4.10.1 255.255.255.0!interface GigabitEthernet0/1.105encapsulation dot1Q 105ip vrf forwarding vrf5ip address 11.5.10.1 255.255.255.0!interface FastEthernet0/1/0!interface FastEthernet0/1/1!interface FastEthernet0/1/2!interface FastEthernet0/1/3!interface Service-Engine1/0no ip addressshutdown!interface Vlan1no ip address!router ospf 101 vrf vrf1log-adjacency-changesnetwork 10.1.0.0 0.0.255.255 area 0network 11.1.0.1 0.0.0.0 area 0network 11.0.0.0 0.255.255.255 area 0!router ospf 102 vrf vrf2log-adjacency-changesnetwork 10.2.0.0 0.0.255.255 area 0network 11.2.0.1 0.0.0.0 area 0network 11.0.0.0 0.255.255.255 area 0!router ospf 103 vrf vrf3log-adjacency-changesnetwork 10.3.0.0 0.0.255.255 area 0network 11.3.0.1 0.0.0.0 area 0network 11.0.0.0 0.255.255.255 area 0!router ospf 104 vrf vrf4log-adjacency-changesnetwork 10.4.0.0 0.0.255.255 area 0network 11.4.0.1 0.0.0.0 area 0network 11.0.0.0 0.255.255.255 area 0!router ospf 105 vrf vrf5log-adjacency-changesnetwork 10.5.0.0 0.0.255.255 area 0network 11.5.0.1 0.0.0.0 area 0network 11.0.0.0 0.255.255.255 area 0!router ospf 109log-adjacency-changesnetwork 11.9.0.0 0.0.255.255 area 0!router ospf 210log-adjacency-changesnetwork 21.10.0.0 0.0.255.255 area 0!ip forward-protocol ndip http serverip http authentication localno ip http secure-serverip http path flash:!!!access-list 101 permit ip host 10.1.10.251 anyaccess-list 102 permit ip host 21.10.10.6 anyaccess-list 103 permit ip any host 21.10.10.6access-list 104 permit ip any host 12.5.10.1access-list 105 permit ip host 12.5.10.1 any!!!!!!!control-plane!!!voice-port 0/0/0!voice-port 0/0/1!voice-port 0/0/2!voice-port 0/0/3!ccm-manager fax protocol cisco!mgcp fax t38 ecm!sccp local Loopback5sccp ccm 12.5.10.1 identifier 2 version 4.1sccp!sccp ccm group 2bind interface Loopback5associate ccm 2 priority 1associate profile 103 register conf103associate profile 101 register xcode101!dspfarm profile 101 transcodecodec g711ulawcodec g711alawcodec g729ar8codec g729abr8codec g729r8maximum sessions 1associate application SCCP!dspfarm profile 103 conferencecodec g711ulawcodec g711alawcodec g729ar8codec g729abr8codec g729r8codec g729br8maximum sessions 1associate application SCCP!!dial-peer voice 3845 voipdestination-pattern 8....voice-class codec 1session protocol sipv2session target ipv4:20.2.10.1dtmf-relay rtp-nteno vad!dial-peer voice 3847 voipdestination-pattern 9....voice-class codec 1session target ipv4:20.2.10.1!dial-peer voice 3851 voipdestination-pattern 51022.....voice-class codec 1session target ipv4:20.2.10.1dtmf-relay h245-alphanumeric!dial-peer voice 3850 potsdestination-pattern 51012.....direct-inward-dialforward-digits 10!!gatewaytimer receive-rtp 1200!!!telephony-servicesdspfarm conference mute-on # mute-off #sdspfarm units 4sdspfarm transcode sessions 10sdspfarm tag 1 xcode101sdspfarm tag 2 conf103group 1 vrf vrf1ip source-address 10.1.10.1 port 2000!group 2 vrf vrf2ip source-address 10.2.10.1 port 2000!group 3 vrf vrf3ip source-address 10.3.10.1 port 2000!group 4 vrf vrf4ip source-address 10.4.10.1 port 2000!group 5ip source-address 12.5.10.1 port 2000!conference hardwareno auto-reg-ephoneem logout 0:0 0:0 0:0max-ephones 240max-dn 480auto assign 1 to 100 type 7960auto assign 204 to 230calling-number initiatorsystem message vcme3845load 7941 SCCP41.8-3-3-13Sload 7970 SCCP70.8-3-3-13Stime-zone 5voicemail 7710max-conferences 8 gain -6call-forward pattern .Tcall-forward system redirecting-expandedmoh music-on-hold.audn-webedittime-webedittransfer-system full-consult dsstransfer-pattern 9.Tsecondary-dialtone 9create cnf-files version-stamp Jan 01 2002 00:00:00!!ephone-dn 186 dual-linenumber 3333conference ad-hocpreference 5!!ephone-dn 187 dual-linenumber 3333conference ad-hocpreference 4no huntstop!!ephone-dn 188 dual-linenumber 3333conference ad-hocpreference 3no huntstop!!ephone-dn 189 dual-linenumber 3333conference ad-hocpreference 2no huntstop!!ephone-dn 190 dual-linenumber 3333conference ad-hocpreference 1no huntstop!!ephone-dn 231 dual-linenumber 2099label vrf2description 2099name 2099!!ephone-dn 232 dual-linenumber 70098label vrf1description 70098name 70098!!ephone-dn 233 dual-linenumber 3099label vrf3description 3099name 3099call-forward noan 7710 timeout 10!!ephone 59device-security-mode none!!!ephone 231device-security-mode nonemac-address 000B.5FC2.2C23group phone 2type 7960keep-conferencebutton 1:231!!ephone 232device-security-mode nonemac-address 001A.A246.05ACgroup phone 1type 7941keep-conferencebutton 1:232!!ephone 233device-security-mode nonemac-address 000E.D748.5DE3group phone 3type 7960keep-conferencebutton 1:233!!line con 0exec-timeout 0 0line aux 0line 66no activation-characterno exectransport preferred nonetransport input alltransport output pad telnet rlogin lapb-ta mop udptn v120line vty 0 4password xxxxlogin!exception protocol ftpexception dump 9.20.20.253exception data-corruption buffer truncatescheduler allocate 20000 1000endRouter#Configuring Cisco Unified CME 2
This is the full configuration of the Cisco Unified CME 2 running on a Cisco ISR 2821 router:
!! Last configuration change at 22:45:41 pdt Mon Jun 9 2008!version 12.4no service timestamps debug uptimeno service timestamps log uptimeno service password-encryption!hostname Router!boot-start-markerboot-end-marker!logging message-counter syslogno logging bufferedno logging consoleenable password xxxx!no aaa new-modelclock timezone PST -8clock summer-time pdt recurringno network-clock-participate slot 1!voice-card 0no dspfarm!voice-card 1!ip source-route!!ip cefno ip dhcp use vrf connected!ip dhcp pool vrf1network 20.1.10.0 255.255.255.0default-router 20.1.10.1option 150 ip 20.1.10.1class vrf1address range 20.1.10.10 20.1.10.250!ip dhcp pool vrf2network 20.2.10.0 255.255.255.0default-router 20.2.10.1option 150 ip 20.2.10.1class vrf2address range 20.2.10.10 20.2.10.250!ip dhcp pool vrf3network 20.3.10.0 255.255.255.0option 150 ip 20.3.10.1default-router 20.3.10.1class vrf3address range 20.3.10.10 20.3.10.250!ip dhcp pool vrf4network 20.4.10.0 255.255.255.0default-router 20.4.10.1option 150 ip 20.4.10.1class vrf4address range 20.4.10.10 20.4.10.250!ip dhcp pool vrf5network 20.5.10.0 255.255.255.0default-router 20.5.10.1option 150 ip 20.5.10.1class vrf5address range 20.5.10.10 20.5.10.250!ip dhcp pool phone3host 20.2.10.11 255.0.0.0client-identifier 0100.0ed7.4ce6.3ddefault-router 20.2.10.1option 150 ip 20.2.10.1!ip dhcp pool phone4host 20.3.10.11 255.0.0.0client-identifier 0100.1280.55d3.cddefault-router 20.3.10.1option 150 ip 20.3.10.1!ip dhcp pool subcme4network 21.4.10.0 255.255.255.0default-router 21.4.10.1option 150 ip 21.4.10.1class subcme4address range 21.4.10.10 21.4.10.250!ip dhcp pool subcme5network 21.5.10.0 255.255.255.0default-router 21.5.10.1option 150 ip 21.5.10.1class subcme5address range 21.5.10.10 21.5.10.250!ip dhcp pool subcme3network 21.3.10.0 255.255.255.0default-router 21.3.10.1option 150 ip 21.3.10.1class subcme3address range 21.3.10.10 21.3.10.250!ip dhcp pool subcme2network 21.2.10.0 255.255.255.0default-router 21.2.10.1option 150 ip 21.2.10.1class subcme2address range 21.2.10.10 21.2.10.250!ip dhcp pool subcme1network 21.1.10.0 255.255.255.0option 150 ip 21.1.10.1default-router 21.1.10.1class subcme1address range 21.1.10.10 21.1.10.250!!ip dhcp class vrf1!ip dhcp class vrf2!ip dhcp class vrf3!ip dhcp class vrf4!ip dhcp class vrf5!ip dhcp class subcme4!ip dhcp class subcme5!ip dhcp class subcme3!ip dhcp class subcme2!ip dhcp class subcme1!ip vrf servicerd 210:1route-target export 210:1route-target import 201:1route-target import 202:1route-target import 203:1route-target import 204:1route-target import 205:1!ip vrf vrf1rd 201:1route-target export 201:1route-target import 201:1route-target import 210:1!ip vrf vrf2rd 202:1route-target export 202:1route-target import 202:1route-target import 210:1!ip vrf vrf3rd 203:1route-target export 203:1route-target import 203:1route-target import 210:1!ip vrf vrf4rd 204:1route-target export 204:1route-target import 204:1route-target import 210:1!ip vrf vrf5rd 205:1route-target export 205:1route-target import 205:1route-target import 210:1!no ipv6 cefmultilink bundle-name authenticated!!!!!voice rtp send-recvvoice vrf vrf2!voice service voipallow-connections h323 to h323allow-connections h323 to sipallow-connections sip to h323allow-connections sip to sipsupplementary-service h450.12h323h225 timeout keepalivesipregistrar server expires max 3600 min 3600!!voice class codec 1codec preference 1 g711ulawcodec preference 2 g711alawcodec preference 3 g729r8!!!!!archivelog confighidekeys!!controller T1 1/0/0!controller T1 1/0/1!ip ftp username Administratorip ftp password xxxx!!interface Loopback201ip vrf forwarding vrf1ip address 21.1.0.1 255.255.255.255!interface Loopback202ip vrf forwarding vrf2ip address 21.2.0.1 255.255.255.255!interface Loopback203ip vrf forwarding vrf3ip address 21.3.0.1 255.255.255.255!interface Loopback204ip vrf forwarding vrf4ip address 21.4.0.1 255.255.255.255!interface Loopback205ip vrf forwarding vrf5ip address 21.5.0.1 255.255.255.255!interface GigabitEthernet0/0no ip addressduplex autospeed autono keepalive!interface GigabitEthernet0/0.301encapsulation dot1Q 401ip vrf forwarding vrf1ip address 20.1.10.1 255.255.255.0!interface GigabitEthernet0/0.302encapsulation dot1Q 402ip vrf forwarding vrf2ip address 20.2.10.1 255.255.255.0!interface GigabitEthernet0/0.303encapsulation dot1Q 403ip vrf forwarding vrf3ip address 20.3.10.1 255.255.255.0!interface GigabitEthernet0/0.304encapsulation dot1Q 404ip vrf forwarding vrf4ip address 20.4.10.1 255.255.255.0!interface GigabitEthernet0/0.305encapsulation dot1Q 405ip vrf forwarding vrf5ip address 20.5.10.1 255.255.255.0!interface GigabitEthernet0/1no ip addressduplex autospeed autono keepalive!interface GigabitEthernet0/1.101encapsulation dot1Q 201ip vrf forwarding vrf1ip address 21.1.10.1 255.255.255.0!interface GigabitEthernet0/1.102encapsulation dot1Q 202ip vrf forwarding vrf2ip address 21.2.10.1 255.255.255.0!interface GigabitEthernet0/1.103encapsulation dot1Q 203ip vrf forwarding vrf3ip address 21.3.10.1 255.255.255.0!interface GigabitEthernet0/1.104encapsulation dot1Q 204ip vrf forwarding vrf4ip address 21.4.10.1 255.255.255.0!interface GigabitEthernet0/1.105encapsulation dot1Q 205ip vrf forwarding vrf5ip address 21.5.10.1 255.255.255.0!interface GigabitEthernet0/1.209encapsulation dot1Q 209ip address 21.9.10.1 255.255.255.0!interface GigabitEthernet0/1.210encapsulation dot1Q 210ip vrf forwarding serviceip address 21.10.10.1 255.255.255.0!router ospf 201 vrf vrf1log-adjacency-changesnetwork 20.1.0.0 0.0.255.255 area 0network 21.1.0.1 0.0.0.0 area 0network 21.0.0.0 0.255.255.255 area 0!router ospf 202 vrf vrf2log-adjacency-changesnetwork 20.2.0.0 0.0.255.255 area 0network 21.2.0.1 0.0.0.0 area 0network 21.0.0.0 0.255.255.255 area 0!router ospf 203 vrf vrf3log-adjacency-changesnetwork 20.3.0.0 0.0.255.255 area 0network 21.3.0.1 0.0.0.0 area 0network 21.0.0.0 0.255.255.255 area 0!router ospf 204 vrf vrf4log-adjacency-changesnetwork 20.4.0.0 0.0.255.255 area 0network 21.4.0.1 0.0.0.0 area 0network 21.0.0.0 0.255.255.255 area 0!router ospf 205 vrf vrf5log-adjacency-changesnetwork 20.5.0.0 0.0.255.255 area 0network 21.5.0.1 0.0.0.0 area 0network 21.0.0.0 0.255.255.255 area 0!router ospf 210 vrf servicelog-adjacency-changesredistribute bgp 100 metric-type 1 subnetsnetwork 21.10.0.0 0.0.255.255 area 0!router ospf 209log-adjacency-changesnetwork 21.9.0.0 0.0.255.255 area 0!router bgp 100no synchronizationbgp router-id 28.21.0.0bgp log-neighbor-changesno auto-summary!address-family ipv4 vrf vrf5redistribute connectedno synchronizationexit-address-family!address-family ipv4 vrf vrf4redistribute connectedno synchronizationexit-address-family!address-family ipv4 vrf vrf3redistribute connectedno synchronizationexit-address-family!address-family ipv4 vrf vrf2redistribute connectedno synchronizationexit-address-family!address-family ipv4 vrf vrf1redistribute connectedno synchronizationexit-address-family!address-family ipv4 vrf serviceredistribute connectedno synchronizationexit-address-family!ip forward-protocol ndip route 223.255.254.254 255.255.255.255 2.8.0.1!!ip http server!access-list 101 permit ip host 11.2.10.1 host 20.2.10.1access-list 102 permit ip any host 223.255.254.254access-list 103 permit ip any host 20.1.10.1!!!!control-plane!!!ccm-manager fax protocol cisco!mgcp fax t38 ecm!!dial-peer cor customname PSTNname SIPname H323!!dial-peer cor list PSTN-TRUNKmember PSTN!dial-peer cor list SIP-TRUNKmember SIP!dial-peer cor list H323-TRUBKmember H323!dial-peer cor list user-sipmember SIP!dial-peer cor list user-pstnmember PSTN!dial-peer cor list user-h323member H323!!dial-peer voice 2821 potscorlist outgoing PSTN-TRUNKdestination-pattern 70007direct-inward-dialforward-digits 10!dial-peer voice 2822 potscorlist outgoing PSTN-TRUNKdestination-pattern 70017direct-inward-dialforward-digits 10!dial-peer voice 2823 voipcorlist outgoing H323-TRUBKdestination-pattern 70008voice-class codec 1session target ipv4:11.2.10.1dtmf-relay h245-alphanumeric!dial-peer voice 2824 voipcorlist outgoing H323-TRUBKdestination-pattern 70018voice-class codec 1session target ipv4:11.2.10.1dtmf-relay h245-alphanumeric!dial-peer voice 282145 voipdestination-pattern 70009voice-class codec 1session protocol sipv2session target ipv4:11.2.10.1dtmf-relay rtp-nteno vad!dial-peer voice 282146 voipdestination-pattern 70019voice-class codec 1session protocol sipv2session target ipv4:11.2.10.1dtmf-relay rtp-nteno vad!!presencepresence call-listwatcher all!gatewaytimer receive-rtp 1200!sip-uapresence enable!!telephony-servicesdspfarm conference mute-on # mute-off #sdspfarm units 4sdspfarm transcode sessions 10sdspfarm tag 1 xcode101sdspfarm tag 2 conf103group 1 vrf vrf1ip source-address 20.1.10.1 port 2000!group 2 vrf vrf2ip source-address 20.2.10.1 port 2000url directories http://20.2.10.1//localdirectory!group 3 vrf vrf3ip source-address 20.3.10.1 port 2000url directories http://20.3.10.1//localdirectory!group 4 vrf vrf4ip source-address 20.4.10.1 port 2000!group 5 vrf vrf5ip source-address 20.5.10.1 port 2000!conference hardwareno auto-reg-ephoneem logout 0:0 0:0 0:0max-ephones 52max-dn 192auto assign 100 to 167 type 7960auto assign 168 to 192 type anlcalling-number initiatorsystem message vcme 2821time-zone 5max-conferences 1 gain 6call-park system redirectcall-forward pattern .Tcall-forward system redirecting-expandedmoh music-on-hold.audn-webedittime-webedittransfer-system full-consult dsstransfer-pattern 9.Tsecondary-dialtone 9directory last-name-firstcreate cnf-files version-stamp 7960 Jun 09 2008 22:45:03!!ephone-template 2conference admingroup phone 2!!ephone-template 3conference admingroup phone 3!!ephone-dn 132 dual-linenumber 1001label vrf1name 1001!!ephone-dn 152 dual-linenumber 2001label vrf2name dc linallow watchcall-forward busy 2002call-forward noan 3001 timeout 15!!ephone-dn 153 dual-linenumber 3001label vrf3name dd linallow watch!!ephone-dn 186 dual-linenumber 3333conference ad-hocpreference 5!!ephone-dn 187 dual-linenumber 3333conference ad-hocpreference 4no huntstop!!ephone-dn 188 dual-linenumber 3333conference ad-hocpreference 3no huntstop!!ephone-dn 189 dual-linenumber 3333conference ad-hocpreference 2no huntstop!!ephone-dn 190 dual-linenumber 3099label vrf3description 3099name 3099conference ad-hocpreference 1no huntstop!!ephone 132mac-address 0018.BA14.B129group phone 1type 7941button 1:132!!!ephone 152mac-address 000E.D74C.E63Dephone-template 2type 7960keep-conference endcallbutton 1:152!!!ephone 153videomac-address 0012.8055.D3CDephone-template 3type 7970keep-conference endcallbutton 1:153!!!ephone 231mac-address 000B.5FC2.2C23group phone 1type 7940keep-conference!!!ephone 232mac-address 0017.95B0.44C7group phone 1type 7960keep-conference!!!ephone 233mac-address 000E.D748.5DE3group phone 3type 7960keep-conference!!!line con 0exec-timeout 0 0line aux 0line vty 0 4exec-timeout 0 0password xxxxlogin!exception protocol ftpexception dump 9.20.20.253exception data-corruption buffer truncatescheduler allocate 20000 1000endRouter#Configuring Cisco Unity Express for Cisco Unified CME Voice Mail
The followings are required for defining Cisco Unity Express with VRF awareness Cisco Unified CME:
•Telnet is used to access Cisco Unity Express, not the "Service-Engine Service-Engine 1/0 session" which is for non-VRF awareness Cisco Unified CME commands. Access the Cisco Unity Express module for defining Cisco Unity Express users with "voice vrf vrf2" telnet 21.10.10.5 2066 /vrf vrf2
•One IP address is required for "interface service engine," used to assign the interface to "voice vrf."
The example is for configuring Cisco Unity Express for Cisco Unified CME Voice Mail.
voice vrf vrf2....ip vrf vrf2rd 100:2route-target export 100:2route-target import 100:2.....interface GigabitEthernet0/1.210encapsulation dot1Q 210ip address 21.10.10.2 255.255.255.0!......interface Service-Engine1/0ip vrf forwarding vrf2ip address 21.10.10.5 255.255.255.0service-module ip address 21.10.10.6 255.255.255.0service-module ip default-gateway 21.10.10.2!......line 66no activation-characterno exectransport preferred nonetransport input alltransport output pad telnet rlogin lapb-ta mop udptn v120Configuring Cisco Unified CME and DSP Farm on the Same Box for Conference, Transcoder, and Media Termination Point
interface Loopback5ip address 12.5.10.1 255.255.255.255!......sccp local Loopback5sccp ccm 12.5.10.1 identifier 2 version 4.1sccp!sccp ccm group 2bind interface Loopback5associate ccm 2 priority 1associate profile 103 register conf103associate profile 101 register xcode101!dspfarm profile 101 transcodecodec g711ulawcodec g711alawcodec g729ar8codec g729abr8codec g729r8maximum sessions 1associate application SCCP!dspfarm profile 103 conferencecodec g711ulawcodec g711alawcodec g729ar8codec g729abr8codec g729r8codec g729br8maximum sessions 1associate application SCCP.....telephony-servicesdspfarm conference mute-on # mute-off #sdspfarm units 4sdspfarm transcode sessions 10sdspfarm tag 1 xcode101sdspfarm tag 2 conf103group 1 vrf vrf1ip source-address 10.1.10.1 port 2000!group 2 vrf vrf2ip source-address 10.2.10.1 port 2000!group 3 vrf vrf3ip source-address 10.3.10.1 port 2000!group 4 vrf vrf4ip source-address 10.4.10.1 port 2000!group 5ip source-address 12.5.10.1 port 2000!conference hardwareload 7941 SCCP41.8-3-3-13Sload 7970 SCCP70.8-3-3-13Smax-ephones 240max-dn 480auto assign 1 to 100 type 7960auto assign 204 to 230calling-number initiatorsystem message vcme3845time-zone 5voicemail 7710max-conferences 8 gain -6call-forward pattern .Tcall-forward system redirecting-expandedmoh music-on-hold.auweb admin system name cisco secret 5 $1$S04p$HfTwkOyOYAa8zU2pANKqg/dn-webedittime-webedittransfer-system full-consult dsstransfer-pattern 9.Tsecondary-dialtone 9create cnf-files version-stamp 7960 Feb 16 2008 22:45:55!Configuring Cisco Unified CME and DSP Farm on the Different Boxes for Conference, Transcoder, and Media Termination Point
There are no changes to defining the DSP farm. Do make sure that the DSP farm messages and flows are coming through the interface and subinterface defined as "voice VRF" interface and subinterface.
The following example has the DSP farm defined on another box.
interface FastEthernet0/0.202encapsulation dot1Q 202ip address 21.2.10.2 255.255.255.0!........sccp local FastEthernet0/0.202sccp ccm 20.2.10.1 identifier 2 version 4.0sccp!sccp ccm group 2associate ccm 2 priority 1associate profile 103 register conf103associate profile 101 register xcode101!dspfarm profile 101 transcodecodec g711ulawcodec g711alawcodec g729r8maximum sessions 1associate application SCCPshutdown!dspfarm profile 103 conferencecodec g711ulawcodec g711alawcodec g729ar8codec g729abr8codec g729r8codec g729br8maximum sessions 1associate application SCCP!Verification
This section shows configuration verification commands.
show ip vrf interfacerouter#show ip vrf interface Interface IP-Address VRF Protocol Lo101 11.1.0.1 vcme1 up Gi0/0.301 10.1.10.1 vcme1 up Gi0/1.101 11.1.10.1 vcme1 up Lo102 11.2.0.1 vcme2 up Gi0/0.302 10.2.10.1 vcme2 up Gi0/1.102 11.2.10.1 vcme2 up Se1/0 21.10.10.5 vcme2 up Lo103 11.3.0.1 vcme3 up Gi0/0.303 10.3.10.1 vcme3 up Gi0/1.103 11.3.10.1 vcme3 up Lo104 11.4.0.1 vcme4 up Gi0/0.304 10.4.10.1 vcme4 upshow ip vrf interface vcme2router#show ip vrf interface vcme2 Interface IP-Address VRF Protocol Lo102 11.2.0.1 vcme2 up Gi0/0.302 10.2.10.1 vcme2 up Gi0/1.102 11.2.10.1 vcme2 up Se1/0 21.10.10.5 vcme2 up router#show ip vrf detail Csco3845_1router#show ip vrf detail
VRF vcme1; default RD 100:1; default VPNID <not set> Interfaces: Lo101 Gi0/0.301 Gi0/1.101 VRF Table ID = 1 Export VPN route-target communities RT:100:1 Import VPN route-target communities RT:100:1 No import route-map No export route-map VRF label distribution protocol: not configured VRF label allocation mode: per-prefixVRF vcme2; default RD 100:2; default VPNID <not set> Interfaces: Lo102 Gi0/0.302 Gi0/1.102 Se1/0 VRF Table ID = 2 Export VPN route-target communities RT:100:2 Import VPN route-target communities RT:100:2 No import route-mapshow sccp all Csco3845_1router#show sccp all
SCCP Admin State: UP Gateway IP Address: 12.5.10.1, Port Number: 2000 IP Precedence: 5 User Masked Codec list: None Call Manager: 12.5.10.1, Port Number: 2000 Priority: N/A, Version: 4.1, Identifier: 2 Trustpoint: N/ATranscoding Oper State: ACTIVE - Cause Code: NONE Active Call Manager: 12.5.10.1, Port Number: 2000 TCP Link Status: CONNECTED, Profile Identifier: 101 Reported Max Streams: 2, Reported Max OOS Streams: 0 Supported Codec: g711ulaw, Maximum Packetization Period: 30 Supported Codec: g711alaw, Maximum Packetization Period: 30 Supported Codec: g729ar8, Maximum Packetization Period: 60 Supported Codec: g729abr8, Maximum Packetization Period: 60 Supported Codec: g729r8, Maximum Packetization Period: 60 Supported Codec: rfc2833 dtmf, Maximum Packetization Period: 30 Supported Codec: rfc2833 pass-thru, Maximum Packetization Period: 30 Supported Codec: inband-dtmf to rfc2833 conversion, Maximum Packetization Period: 30Conferencing Oper State: ACTIVE - Cause Code: NONE --More--show sccp connection Csco3845_1router#show sccp connection
sess_id conn_id stype mode codec ripaddr rport sport-1073676287 131075 conf sendrecv g711u 12.5.10.1 2000 18214 -1073676287 131074 conf sendrecv g711u 12.5.10.1 2000 19226 -1073676287 131073 conf sendrecv g711u 12.5.10.1 2000 18170Total number of active session(s) 1, and connection(s) 3 6) show ip route vrf vcme2 Csco3845_1#show ip route vrf vcme2Routing Table: vcme2 Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static routeGateway of last resort is not setO E2 223.255.254.0/24 [110/20] via 11.2.10.2, 18:31:10, GigabitEthernet0/1.102 21.0.0.0/8 is variably subnetted, 3 subnets, 2 masks C 21.10.10.0/24 is directly connected, Service-Engine1/0 O 21.2.0.1/32 [110/3] via 11.2.10.2, 18:31:10, GigabitEthernet0/1.102 O 21.2.10.0/24 [110/2] via 11.2.10.2, 18:31:10, GigabitEthernet0/1.102 20.0.0.0/24 is subnetted, 1 subnets O 20.2.10.0 [110/3] via 11.2.10.2, 18:31:10, GigabitEthernet0/1.102 10.0.0.0/24 is subnetted, 1 subnets C 10.2.10.0 is directly connected, GigabitEthernet0/0.302 11.0.0.0/8 is variably subnetted, 2 subnets, 2 masks C 11.2.10.0/24 is directly connected, GigabitEthernet0/1.102show ip ospf neighbor Csco3845_1router#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface 21.10.10.1 1 FULL/DR 00:00:31 21.10.10.1 GigabitEthernet0/1.210 21.1.10.2 1 FULL/DR 00:00:39 11.9.10.2 GigabitEthernet0/1.109 21.4.10.2 1 FULL/DR 00:00:38 11.5.10.2 GigabitEthernet0/1.105 21.5.10.2 1 FULL/DR 00:00:38 11.4.10.2 GigabitEthernet0/1.104 21.9.10.2 1 FULL/DR 00:00:38 11.3.10.2 GigabitEthernet0/1.103 21.3.10.2 1 FULL/DR 00:00:39 11.2.10.2 GigabitEthernet0/1.102 21.2.10.2 1 FULL/DR 00:00:39 11.1.10.3 GigabitEthernet0/1.101 8) show dspfarm dsp active Csco3845_1#show dspfarm dsp active SLOT DSP VERSION STATUS CHNL USE TYPE RSC_ID BRIDGE_ID PKTS_TXED PKTS_RXED0 2 22.3.0 UP 1 USED conf 2 0x7 34665 34658 0 2 22.3.0 UP 1 USED conf 2 0x9 34664 34651 0 2 22.3.0 UP 1 USED conf 2 0xB 34662 34640Total number of DSPFARM DSP channel(s) 1show voice dsp voice Csco3845_1router#show voice dsp voice
DSP DSP DSPWARE CURR BOOT PAK TX/RX TYPE NUM CH CODEC VERSION STATE STATE RST AI VOICEPORT TS ABORT PACK COUNT ==== === == ======== ========== ===== ======= === == ========= == ===== ============ edsp 001 01 g729r8 p 0.1 IDLE 50/0/186.1 edsp 002 02 g729r8 p 0.1 IDLE 50/0/186.2 edsp 003 01 g729r8 p 0.1 IDLE 50/0/187.1 edsp 004 02 g729r8 p 0.1 IDLE 50/0/187.2 edsp 005 01 g729r8 p 0.1 IDLE 50/0/188.1 edsp 006 02 g729r8 p 0.1 IDLE 50/0/188.2 edsp 007 01 g711ulaw 0.1 busy 50/0/189.1 edsp 008 02 g729r8 p 0.1 IDLE 50/0/189.2 edsp 009 01 g711ulaw 0.1 busy 50/0/190.1 edsp 010 02 g711ulaw 0.1 busy 50/0/190.2 edsp 011 01 g729r8 p 0.1 IDLE 50/0/197.1 edsp 012 02 g729r8 p 0.1 IDLE 50/0/197.2show telephony-service conference hardware detail Csco3845_1router#show telephony-service conference hardware detail
Conference Type Active Max Peak Master MasterPhone Last cur(initial) ======================================================================================= 3333 Ad-hoc 3 8 3 3099 3099 233 (233) 1098 1098 Conference parties (number:phone) 1098 1098:232 2099 2099:231 3099 3099:233debug tftp events Csco3845_1#TFTP: Looking for CTLSEP000ED7485DE3.tlv TFTP: Looking for CTLSEP000ED7485DE3.tlvdebug tftp packets TFTP: Server request for port 50919, socket_id 0x71523394 for process 334TFTP: read request from host 10.2.10.11(50919) via GigabitEthernet0/0.302 TFTP: Looking for CTLSEP000B5FC22C23.tlv TFTP: Sending error 1 No such file TFTP: Server request for port 49785, socket_id 0x71523394 for process 334 TFTP: read request from host 10.3.10.10(49785) via GigabitEthernet0/0.303 TFTP: Looking for CTLSEP000ED7485DE3.tlv TFTP: Sending error 1 No such filedebug sccp messageCsco3845_1(config)# SCCP operational state bring up is successful. SCCP:send RegisterMessage, protocol_ver=0xA000000 SCCP:send IpPortMessage SCCP:send MediaResourceNotification SCCP:send RegisterMessage, protocol_ver=0xA000000 SCCP:send IpPortMessage SCCP:send MediaResourceNotification %SDSPFARM-6-REGISTER: mtp-1:xcode101 IP:12.5.10.1 Socket:1 DeviceType:MTP has registered. %HWCONF-6-REGISTER: hwconf-2:conf103 IP:12.5.10.1 Socket:2 DeviceType:HW Conference has registered. SCCP:rcvd RegisterAckMessage SCCP:keepaalive interval=30, agreed_sccp_ver=10 SCCP:send MediaResourceNotification SCCP:send VersionReqMessage SCCP:rcvd RegisterAckMessage SCCP:keepaalive interval=30, agreed_sccp_ver=10 SCCP:send MediaResourceNotification SCCP:send VersionReqMessage SCCP:rcvd CapabilitiesReqMessage SCCP:send CapabilitiesResMessage SCCP:rcvd CapabilitiesReqMessage SCCP:send CapabilitiesResMessage SCCP:rcvd VersionMessage VersionMsg Info: version: SCCP:rcvd VersionMessage VersionMsg Info: version:CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco WebEx, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.
All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0809R)
Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.
© 2008 Cisco Systems, Inc. All rights reserved.