Create a Worker Node

This module describes the tasks to create a worker node.

* Create a Worker Node, on page 1

* Add Interfaces for XRd, on page 3

* Running Cisco IOS XRd on the Worker Node, on page 4
* Install XRd vRouter, on page 4

» Install XRd Control Plane, on page 5

*» Access XRd, on page 6

Create a Worker Node

This section describes how to create a self-managed worker node in the EKS cluster that satisfies all of XRd's
requirements on the host operating system.

Before creating a worker node, ensure that the EKS cluster is in AcTIVE state, and the authentication and
networking configuration has been applied as described in the EKS Cluster Configuration section.

This example is inline with the XRd vRouter, and uses m5n.24x1arge instance with three interfaces:

* One interface reserved for cluster communication.

» Two XRd data interfaces.

Prerequisites
* Find the number of cores on the instance type
To find the number of cores, run the following command:
aws ec2 describe-instance-types \
--instance-type m5.24xlarge \

--query "InstanceTypes[0].VCpulInfo.DefaultCores" \
—--output text

This value must be substituted for <cpu-cores> in the EC2 run-instances command.
* Create a user data file

Create the user data file by copying the following contents into a file named worker-user-data.bash:

#!/bin/bash
/etc/eks/bootstrap.sh xrd-cluster

Create a Worker Node .

b-xrd-deploy-aws_chapter4.pdf#nameddest=unique_22

. Create a Worker Node

Create a Worker Node |

For XRd Control Plane, add the following two sysctl settings to the user data file:

echo "fs.inotify.max user instances=64000" >> /etc/sysctl.conf
echo "fs.inotify.max user watches=64000" >> /etc/sysctl.conf

Bring Up the Worker Node

Bring up the worker node by running the following command:
aws ec?2 run-instances \
--image-id <xrd-ami-id> \
--count 1 \
--instance-type m5.24xlarge \
--key-name <key-pair-name> \
--block-device-mappings "DeviceName=/dev/xvda,Ebs={VolumeSize=56}" \
--iam-instance-profile "Arn=<node-profile-arn>" \
--network-interfaces "DeleteOnTermination=true,DevicelIndex=0,Groups=<sg-id>,
SubnetId=<private-subnet-1>,PrivateIpAddress=10.0.0.10" \
--cpu-options CoreCount=<cpu-cores>,ThreadsPerCore=1 \
--tag-specifications
"ResourceType=instance, Tags=[{Key=kubernetes.io/cluster/xrd-cluster,Value=owned}]" \
--user-data file://worker-user-data.bash

Make a note of the instance id, <worker-instance-id>.
This command brings up an EC2 instance with the following settings:

* A 56-GB primary partition - required to store any process cores that the XRd generates.

* A single interface in the first private subnet with permissions to communicate with the EKS control plane.
This interface is used for cluster control plane communications. The assigned IP address is 10.0.0.10.

* One thread per core (SMT or Hyper-Threading turned off). This is to prevent the "noisy neighbor effect"”
(where processes scheduled on a different logical but same physical core hampers the performance of
high priority processes) for the high-performance packet processing threads.

* A tag that is required by EKS to display the node should be allowed to join the cluster.

* A user data file that runs the EKS bootstrap script with the cluster name.

The requirements for XRd Control Plane are as follows:

* You can use a smaller (and cheaper) instance type, for example, m5.2xlarge.

* The --cpu-options line is not required.

Turn off the source or destination check for the instance, by running the following command:

aws ec2 modify-instance-attribute \
--instance-id <worker-instance-id> \
--no-source-dest-check

When the worker node is up, check if the worker node is added to the cluster.

kubectl get nodes
NAME STATUS ROLES AGE VERSION
ip-10-0-0-10.ec2.internal Ready <none> 1m v1.22.17-eks-48e63af

\}

Note If you do not see the worker node, check the EKS configuration steps.

. Create a Worker Node

| Create a Worker Node

Add Interfaces for XRd [J|j

Add Interfaces for XRd

The worker node created in the previous step has a single interface used for cluster control plane traffic. So,
you must create more XRd interfaces and attach them to the worker node.

Also, you must create additional subnets and security groups. You must not use the subnets and security
groups created while creating a VPC here, because the cluster control plane traffic must be kept separate from
the data traffic flowing through the XRd instances.

Add Subnets for Data Traffic

The setup for data subnets and security groups vary with each deployment. In this example two subnets are
created, and isolated from the internet. One security group is created, which allows all communication inside
the security group, but rejects any traffic from outside the security group.

These subnets and the security group can be used for interfaces on multiple worker nodes.

)

Note The data traffic subnets must be created in the same Availability Zone (AZ) as the worker node.

Create two subnets for data traffic using the following command:

aws ec2 create-subnet \
--vpc-id "<vpc-id>" \
--cidr-block "10.0.100.0/24"™ \
--availability-zone "<region>a"
aws ec2 create-subnet \
--vpc-id <vpc-id> \
--cidr-block "10.0.101.0/24"™ \
--availability-zone "<region>a"

\)

Note The a after the <region> in the availability zone specification indicates the first subnet in the region.

Make a note of the subnet IDs, <data-subnet-1> and <data-subnet-2>.

Create the Security Group

Create a security group for the data network traffic using the following command:

aws ec2 create-security-group —--group-name "xrd-data" \
--description "Data traffic for XRd EKS Cluster™ \
--vpc-id <vpc-id>

Make a note of the output group ID, <data-sg-id>.

A single egress rule that allows all traffic egress is added when a security group is created, but no ingress
rules are added. So, all incoming traffic is dropped. You must add an ingress rule for all traffic originating
from the same security group, so that all traffic is allowed within the security group.
aws ec2 authorize-security-group-ingress \

--group-id <data-sg-id> \

--source—-group <data-sg-id> \
--protocol all

Create a Worker Node .

Create a Worker Node |
. Running Cisco 10S XRd on the Worker Node

Create and Attach Interfaces

The following example creates two interfaces on the worker node to be used by XRd, one in each of the two
subnets created. Run the following commands to create these interfaces:
aws ec2 create-network-interface \

--description "XRd worker 1 data 1" \

--groups <data-sg-id> \

--private-ip-address "10.0.100.10" \

--subnet-id <data-subnet-1> \

--tag-specifications
"ResourceType:network—interface,Tags:[{Key:node.k8s.amazonaws.com/no_manage,Value:true}]"
aws ec2 create-network-interface \

--description "XRd worker 1 data 2" \

--groups <data-sg-id> \

--private-ip-address "10.0.101.10" \

--subnet-id <data-subnet-2> \

--tag-specifications
"ResourceType:network—interface,Tags:[{Key:node.k8s.amazonaws.com/no_manage,Value:true}]"

Make a note of both the network interface IDs, <data-interface-1> and <data-interface-2>.

To attach the interfaces to the worker node, run the following commands:

aws ec2 attach-network-interface \
--device-index 1 \
--instance-id <worker-instance-id> \
--network-interface-id <data-interface-1>
aws ec2 attach-network-interface \
--device-index 2 \
--instance-id <worker-instance-id> \
--network-interface-id <data-interface-2>

Running Cisco 10S XRd on the Worker Node

This section provides instruction on how to run a Cisco IOS XRd workload on the previously configured
worker node.

Perform the following steps to run the Cisco IOS XRd on the Worker Node:

* Provide a label to the worker node so that it can be identified in Kubernetes metadata using the following
command:

kubectl label node/ip-10-0-0-10.ec2.internal xrd-worker=one

» Add the XRd Helm repository using the following command:

helm repo add xrd https://ios-xr.github.io/xrd-helm
* Proceed with either of the XRd installation sections provided below:

« Install XRd vRouter

¢ Install XRd Control Plane

Install XRd vRouter

Copy the following contents to a file named xrd-one.yaml.

. Create a Worker Node

https://www.cisco.com/c/en/us/td/docs/routers/virtual-routers/general/install-and-upgrade/b-xrd-deploy-aws/m_create-a-worker-node.html?bookSearch=true#Cisco_Concept.dita_551fc9e3-1a67-4b05-8336-c0febb28c574
https://www.cisco.com/c/en/us/td/docs/routers/virtual-routers/general/install-and-upgrade/b-xrd-deploy-aws/m_create-a-worker-node.html?bookSearch=true#Cisco_Concept.dita_9b03d2b8-8d74-44c4-bb18-8346b87f33d5

Create a Worker Node
Install XRd Control Plane .

image:
repository: "<repository-uri>"
tag: "7.8.1"
resources:
limits:
memory: 10Gi
hugepages-1Gi: 6Gi
nodeSelector:
xrd-worker:
persistence:
enabled: true
storageClass: "gp2"
config:
username: <xr-root-username>
password: <xr-root-password>
ascii: |
interface HundredGigE0/0/0/0
ipv4 address 10.0.100.10 255.255.255.0
|
interface HundredGigE0/0/0/1

ipv4 address 10.0.101.10 255.255.255.0
!

" "

one

interfaces:
- type: pci
config:
last: 2
cpu:
cpuset: "12-23"
pciDriver: "igb uio"

Replace all the values in angle brackets with:

* The ECR repository URI from the top

* An XR root username and password

Run the following command to install XRd into the cluster:

helm install xrd-one xrd/xrd-vrouter -f xrd-one.yaml

Install XRd Control Plane

Copy the following contents to a file named xrd-one.yaml.

image:
repository: "<repository-uri>"
tag: "7.8.1"
resources:
limits:
memory: 6Gi
nodeSelector:
xrd-worker:
persistence:
enabled: true
storageClass: "gp2"
config:
username: <xr-root-username>
password: <xr-root-password>
ascii: |
interface GigabitEthernet0/0/0/0

ipv4 address 10.0.100.10 255.255.255.0
|

" "

one

Create a Worker Node .

Create a Worker Node |
. Access XRd

interface GigabitEthernet0/0/0/1

ipv4 address 10.0.101.10 255.255.255.0
|
interfaces:
- type: multus
config:
type: host-device
device: ethl
- type: multus
config:
type: host-device
device: eth2

Replace all the values in angle brackets with:
* The ECR repository URI from the top

* An XR root username and password

Run the following command to install XRd Control plane into the cluster.

helm install xrd-one xrd/xrd-control-plane -f xrd-one.yaml

Access XRd

After the XRd is installed, it takes around a minute to come up as the image is pulled from the ECR repository.
You can monitor the status of the XRd pod by running the following command:

kubectl get pods

When the pod is in Running state, attach to the XRd pod using the following command:
kubectl attach -it pod/<pod-name>

Log in using the root username and password that were added into xrd-one.yaml.

The following is a sample output:

kubectl attach -it pod/<pod-name>
If you don't see a command prompt, try pressing enter.

User Access Verification

Username: myuser
Password:

RP/0/RPO/CPUO:ios#
To check the status of the XR data interfaces, run the show ip int br command.

RP/0/RP0O/CPUO:ios#show ip int br
Wed Mar 8 12:27:35.949 UTC

Interface IP-Address Status Protocol Vrf-Name
HundredGigE0/0/0/0 10.0.100.10 Up Up default
HundredGigE0/0/0/1 10.0.101.10 Up Up default

N

Note On XRd Control Plane, the interface name is GigabitEthernet*.

. Create a Worker Node

| Create a Worker Node

Access XRd .

You can detach the console using ~p~q.

A\

Note

In this example, the only method to attach to the XRd console is using kubectl attach (Or kubectl exec).

In this example setup, the XRd instance has interfaces only in the data subnets. Interfaces in the data subnets
can communicate only with other interfaces in the data subnets (due to the security group). SSH access is not
possible because there are no other hosts with interfaces in the data subnet.

If more hosts are added with interfaces in the data subnet (appropriate security group settings applied), and
when standard XR SSH server configuration is applied, SSH access from that host is possible.

Create a Worker Node .

Create a Worker Node |
. Access XRd

. Create a Worker Node

	Create a Worker Node
	Create a Worker Node
	Add Interfaces for XRd
	Running Cisco IOS XRd on the Worker Node
	Install XRd vRouter
	Install XRd Control Plane
	Access XRd

