

Configure Controllers

This chapter describes the controllers and procedures to configure the controllers.

- Verify a Card State, on page 1
- Verify the FPGA Firmware Version Using System Admin Prompt, on page 3
- Verify the FPGA Firmware Version Using XR Prompt, on page 4
- Verify Craft Firmware Version, on page 5
- Upgrade FPD, on page 6
- Mapping Type Supported, on page 8
- Configure an OTN Controller, on page 12
- Configure the LAN PHY Controller, on page 13
- Configure the Ethernet terminated OTN Controller (without Breakout), on page 14
- Configure the Ethernet terminated OTN Controller (with Breakout), on page 15
- Configure the Clock Controller, on page 17
- Configure 100MHZ Flex Grid for NCS4K-4H-OPW-QC2 Line Card, on page 19
- Configure an OTU (HO/LO) Controller, on page 21
- Configure an ODU (HO/LO) Controller, on page 22
- Configure Squelch for ODU Controller, on page 25
- Configure Idle Frame for ODU Controller, on page 25
- Configure an ODU Group Controller, on page 26
- Configure the Ethernet Controller, on page 26
- Configure a SONET or SDH Controller, on page 27
- Configure AINS, on page 32
- Clear the Traffic from a Resource in an ODU Group Controller, on page 33
- Aggregation of Traffic in OTN, on page 34
- Remove and Install Fabric Card Using System Admin Prompt, on page 34
- Upgrade to 400G Fabric Card Using IOS XR, on page 35
- Daisy Chain on Management Ports, on page 38

Verify a Card State

Before you begin

A card should be inserted on the chassis before verifying a card state.

	Procedure
Step 1	show platform
	Example:
	RP/0/RP0:hostname # show platform
	Verifies the card details on all the nodes.
Step 2	show platform
	Example:
	RP/0/RP0:hostname # admin
	Enters the admin mode.
Step 3	show platform
	Example:
	sysadmin-vm: 0_RP1 # show platform
	Verifies the card details on all the nodes.

Example: Verifying a Card State Using XR Prompt

Example: Verifying a Card State Using System Admin Prompt

The following example shows how to verify a card state using Cisco IOS XR commands:

RP/0/RP0:hostname# show platform

Wed Apr 15 Node name	21:28:10.626 UTC Node type	Node state	Admin state	Config state
0/0	NCS4K-24LR-O-S	OPERATIONAL	UP	NSHUT
0/1	NCS4K-20T-O-S	OPERATIONAL	UP	NSHUT
0/RP0	NCS4K-RP	OPERATIONAL	UP	NSHUT
0/RP1	NCS4K-RP	OPERATIONAL	UP	NSHUT
0/FC0	NCS4016-FC-M	OPERATIONAL	UP	NSHUT
0/FC1	NCS4016-FC-M	OPERATIONAL	UP	NSHUT
0/FC2	NCS4016-FC-M	OPERATIONAL	UP	NSHUT
0/FC3	NCS4016-FC-M	OPERATIONAL	UP	NSHUT
0/FT0	NCS4K-FTA	OPERATIONAL	UP	NSHUT
0/FT1	NCS4K-FTA	OPERATIONAL	UP	NSHUT
0/EC0	NCS4K-ECU	OPERATIONAL	UP	NSHUT

The following example shows how to verify a card state using System Admin Prompt:

sysadmin-vm: 0_RP1 # show platform

Wed Apr Location	15 21:27:40.651 UTC Card Type	HW State	SW State	Config State
0/1	NCS4K-20T-O-S	OPERATIONAL	N/A	NSHUT

0/RP0	NCS4K-RP	OPERATIONAL	OPERATIONAL	NSHUT
0/RP1	NCS4K-RP	OPERATIONAL	OPERATIONAL	NSHUT
0/FC0	NCS4016-FC-M	OPERATIONAL	N/A	NSHUT
0/FC2	NCS4016-FC-M	OPERATIONAL	N/A	NSHUT
0/FC3	NCS4016-FC-M	OPERATIONAL	N/A	NSHUT
0/FT0	NCS4K-FTA	OPERATIONAL	N/A	NSHUT
0/FT1	NCS4K-FTA	OPERATIONAL	N/A	NSHUT
0/ECO	NCS4K-ECU	OPERATIONAL	N/A	NSHUT

Verify the FPGA Firmware Version Using System Admin Prompt

Before you begin

A card should be inserted on the chassis before verifying the firmware version.

Procedure

show hw-module fpd

Example:

sysadmin-vm: 0_RP1 # show hw-module fpd

Verifies the hardware version on all the cards.

Example: Verifying the Firmware Version Using System Admin Prompt

The following example shows how to verify the firmware version on a card using System Admin Prompt:

sysadmin-vm: 0 RP1 # show hw-module fpd

Wed Apr 15 21:30:22.527 UTC

				F 1	PD vers	10ns
Location	Card type	HWver	FPD device	ATR Status	Run	Programd
0/1 0/1 0/RP0 0/RP0 0/RP0 0/RP0 0/RP0 0/RP0 0/RP0 0/RP0 0/RP0 0/RP0 0/RP0	NCS4K-20T-O-S NCS4K-20T-O-S NCS4K-20T-O-S NCS4K-RP NCS4K-RP NCS4K-RP NCS4K-RP NCS4K-RP NCS4K-RP NCS4K-RP NCS4K-RP NCS4K-RP NCS4K-RP NCS4K-RP NCS4K-RP NCS4K-RP	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	CCC-FPGA CCC-Power-On Ethernet-Switch Backup BIOS Backup-CCC-PwrOM Backup-EthSwitch BP-FPGA CCC-Bootloader CCC-FPGA CCC-Power-On CPU-Complex-Boot CPU-Complex-FPGA Ethernet-Switch Primary BIOS	CURRENT CURRENT CURRENT NEED UPGD CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT	3.23 1.11 1.39 3.16 4.08 1.12 2.04 1.36 13.08	3.23 1.11 1.39 13.06 1.12 1.36 3.16 4.08 4.08 1.12 2.04 2.04 1.36 13.08
U/RPO	NCS4K-RP	0.1	Timing-FPGA	CURRENT	3.13	3.13

Verify the FPGA Firmware Version Using XR Prompt

Before you begin

A card should be inserted on the chassis before verifying the firmware version.

Procedure

show hw-module fpd

Example:

RP/0/RP0:hostname # show hw-module fpd

Verifies the hardware version on all the cards.

Example: Verifying the Firmware Version Using XR Prompt

The following example shows how to verify the firmware version on a card using Cisco IOS XR commands:

RP/0/RP0:hostname# show hw-module fpd

Wed Apr 1	15 21:29:40.934	UTC		FPD =====	Versions	==
Location	Card type	HWver	FPD device	ATR Status	Running	Programd
0/1 0/1 0/1	NCS4K-20T-O-S NCS4K-20T-O-S NCS4K-20T-O-S	0.1 0.1 0.1	ZYNQ GENNUM DIGI2	CURRENT CURRENT CURRENT	1.51 3.01 2.03	1.51 3.01 2.03

0/1	NCS4K-20T-O-S	0.1	DIGI1	CURRENT	2.03	2.03
0/6	NCS4K-24LR-O-S	0.1	ZYNQ	NEED UPGD	4.04	4.04
0/7	NCS4K-24LR-O-S	0.1	ZYNQ	NEED UPGD	4.04	4.04

Verify Craft Firmware Version

Procedure Step 1 Login into active RP. Step 2 admin **Example:** RP/0/RP0:router# admin Enters SYSADMIN mode. Step 3 run chvrf 0 bash Example: sysadmin-vm:0_RP0# run chvrf 0 bash Enters execute mode. Step 4 /opt/cisco/calvados/sbin/ccc_driver_client Example: bash-3.2# /opt/cisco/calvados/sbin/ccc_driver_client Displays the CCC Test Client Main Menu. CCC Test client main menu - Version 0.3 - handle with care 0] Refresh menu

- Watchdog Menu
 Console Menu
- 3] CCC Info Menu (Card/Chassis Info/OIR etc)
- 4] I2C Menu
- 5] SPI Menu
- 6] MDIO Menu (PHY's and Marvell)
- 7] Reset Menu
- 8] Peek 'n' Poke
- 9] LED test
- 10] EID Menu
- 11] Power Control
- 12] Craft Panel Tests
- 13] Upgrade Bao
- 14] PLX eeprom
- 15] Sensor Device Menu
- 16] Dispaly I2C Logical Config Table
- 17] CRE Menu
- 18] Atris Config Menu

Step 5 Type 12 and press Enter key

Example:

Selects Craft Panel Test option to display the Craft Panel Tests Menu.

Craft	Panel	Tests
	0]	Return to the main menu
	1]	Transmit a message
	2]	Register for receive notifications
	3]	Enable/Disable CRAFT UART Loopback
	4]	Register for OIR notifications
	5]	Get craft panel info
	6]	Poke the Craft Panel
	7]	Peek the Craft Panel
	8]	Read Craft Panel IDPROM
	9]	Read Craft Panel Firmware

Step 6 Type 9 and press Enter key Select **Read Craft Firmware** from options displayed.

Example:

9

Dumps the craft firmware number into ccc driver logs.

Server indicated successful craft transmit.

Step 7 quit

Exits the execute mode.

Step 8 show controller ccc trace craft_ccc_plugin location "***" | inc CRAFT_FW_VERSION

Example:

```
<code>sysadmin-vm:0_RP0#</code> show controller 1 ccc trace <code>craft_ccc_plugin</code> <code>location</code> <code>"***"</code> <code>|</code> inc <code>CRAFT_FW_VERSION</code>
```

Note Alternatively execute **show tech ctrace** command and grep for "CRAFT_FW_VERSION" under ccc-driver logs.

```
Tue May 8 08:52:13.685 UTC
2018-05-08:08.51.36.221561844:CR_DLL:_LOG_:craft_decode_rx_msg :[CRAFT_FW_VERSION]<--
"2.9.46tft/hc/L SLCD43 "AT043TN24""
```

Upgrade FPD

Procedure

Step 1 show hw-module fpd Example: RP/0/RP0:FPD#show hw-module fpd or RP/0/RP0:FPD#show hw-module fpd CCC-FPGA or

RP/0/RP0:FPD#show hw-module location 0/FC3 fpd

or

RP/0/RP0:FPD#show hw-module location 0/FC3 fpd CCC-FPGA

Displays the current FPD image version. This information determines whether FPD upgrade is required.

Step 2 show fpd package

Example:

RP/0/RP0:FPD# show fpd package

Displays FPD versions compatible with the current software version.

Step 3 upgrade hw-module location {all | *slot*} fpd {all | *fpga-type*} [force]

Example:

RP/0/RP0:FPD# upgrade hw-module location 0/3 fpd all

Upgrades the FPD images that need upgrade. If force option is selected then upgrades/downgrades all FPD images.

Note The following FPD's do not have a fallback image:

Craft FPD

If the craft FPD upgrade does not complete or fails, the craft might display a blank screen. In such a case rerun the upgrade command.

• PEM FPD

If the PEM FPD upgrade fails, the module might not work as expected. In such a case rerun the upgrade command.

Step 4 admin

Example:

RP/0/RP0:FPD# admin

Enters into administration exec mode.

Step 5 hw-module location { *slot* } **reload**

Example:

RP/0/RP0:FPD# hw-module location 0/3 reload

(Optional) Reloads the card. Required when post upgrade FPD shows RLOAD REQ.

I

Mapping Type Supported

The following table describes the mapping type supported for NCS4k-24LR-OS line card :

User Provided	Info			Derived Info		
Port Number	Port Mode	Mapping Type	Framing Type	Payload Type	Data Path	
0-23 (1)	ethernet	gmp	opu0	07	24 x 1 GbE over ODU0 over CBRI/GMP mapped on CBRI CBRB ODU0 GMP TTT CPB GE-PMON-Passthrough	
10,11, ⁽⁴⁾ 22,23 ⁽⁴⁾	ethernet (LAN)	gfp-f (defined by g.sup43-6.2)	opu2	05	4 x 10GE G.Sup43, 6.2 over ODU2 over CBRI mapped on CBRI CBRB ODU2 GFP-F CPB 10GE-MAC 10GE-PCS	
10,11, ⁽⁴⁾ 22,23 ⁽⁴⁾	ethernet (LAN)	bmp (defined by g.sup43-7.1)	opu2e	03	4 x 10GE G.Sup43, 7.1 over ODU2e over CBRI mapped on CBRI CBRB ODU2e BMP CPB 10GERXPMON-Passthrough	
10,11, ⁽⁴⁾ 22,23 ⁽⁴⁾	ethernet (LAN)	bmp (defined by g.sup43-7.2)	opule	03	4 x 10GE G.Sup43, 7.2 over ODU1e over CBRI mapped on CBRI CBRB ODU2e BMP CPB 10GERXPMON-Passthrough	
10,11, ⁽⁴⁾ 22,23 ⁽⁴⁾	ethernet (LAN)	gfp-f-extended (defined by g.sup43-7.3)	opu2	09	4 x 10GE G.Sup43, 7.3 over ODU2 over CBRI (now G.709) mapped on CBRI CBRB ODU2 GFP-F CPB GSUP43-7.3-PCS 10GE_PCS	
10,11, ⁽⁴⁾ 22,23 ⁽⁴⁾	ethernet (WAN)	wis (defined by g.sup43-6.1)	opu2	02	4 x 10GE WAN Over Sonet mapped on CBRI CBRB ODU2 GFP-F CPB 10GEMAC WIS(Map/Dem) Sonet-PP STS-192/STM-64	
0-3, ⁽²⁾ 6-9, ⁽²⁾ 12-15, ⁽³⁾ 18-21 ⁽³⁾	sonet	bmp	opu1	03	16 x STS-48/STM16 Over ODU1 over CBRI/BMP mapped on CBRI CBRB ODU1 BMP CPB STS-STM-PMON	
10,11, ⁽⁴⁾ 22,23 ⁽⁴⁾	sonet	amp	opu2	02	4 x STS-192/STM64 Over ODU2 over CBRI/AMP mapped on CBRI CBRB ODU2 AMP CPB STS-STM-PMON XFI	
10,11, ⁽⁴⁾ 22,23 ⁽⁴⁾	sonet	bmp	opu2	03	4 x STS-192/STM64 Over ODU2 over CBRI/BMP mapped on CBRI CBRB ODU2 BMP CPB STS-STM-PMON XFI	

User Provided	Info			Derived Info		
0-3, ⁽⁷⁾	otn	-	opu1	20 or 21	16 x OTU1	
6-9, ⁽⁷⁾				(user		
12-15, ⁽⁸⁾				provided)		
18-21 (8)						
10,11, ⁽⁵⁾	otn	-	opule	20 or 21	4 x OTU1e	
22,23 ⁽⁶⁾				(user provided)		
10,11, ⁽⁵⁾	otn	-	opu2	20 or 21	4 x OTU2	
22,23 (6)				(user provided)		
10,11, ⁽⁵⁾	otn	-	opu2e	20 or 21	4 x OTU2e	
22,23 (6)				(user provided)		
10,11, ⁽⁵⁾	otn	-	opu1f	20 or 21	4 x OTU1F	
22,23 (6)				(user provided)		
10,11, ⁽⁵⁾	otn	-	opu2f	20 or 21	4 x OTU2F	
22,23 (6)				(user provided)		

Following are the limitations for NCS4k-24LR-O-S card:

User Provided I	Info			Derived Info		
0-19	sonet	amp	opu2	02	OC-192/STM-64 SFP+ over ODU2 mapped to PMON, CPB, AMP Map, Interlaken(CBRI-ODU2)	
0-19	sonet	amp	opu2	03	OC-192/STM-64 SFP+ over ODU2 mapped to PMON, CPB, BMP Map, Interlaken(CBRI-ODU2)	
0-19	ethernet (LAN)	gfp-f (defined by g.sup43-6.2)	opu2	05	10GE SFP+ over ODU2 mapped to Rx MAC+PCS, CPB, GFP-F Map (G.Sup43 6.2)	
0-19	ethernet (LAN)	gfp-f (defined by g.sup43-7.1)	opu2e	03	10GE SFP+ over ODU2e mapped to PMON, 10GE Rx Passthru, CPB, BMP Map (G.Sup43 7.1), Interlaken(CBRI - ODU2e)	
0-19	ethernet (LAN)	gfp-f (defined by g.sup43-7.3)	opu2	09	10GE SFP+ over ODU2 mapped to PMON, 10GE Rx Passthru, CPB, GFP-F Map (G.Sup43 7.3), Interlaken(CBRI - ODU2)	
0-19	ethernet (WAN)	gfp-f	opuflex	09	10GE SFP+ over ODUFlex mapped to Rx MAC+PCS, CPB, GFP-F Map Interlaken(CBRI - ODUflex)	
0-19	otn	-	opule	20 or 21 (user provided)	OTU1e	
0-19	otn	-	opu2	20 or 21 (user provided)	OTU2	
0-19	otn	-	opu2e	20 or 21 (user provided)	OTU2e	
0-19	otn	-	opu1f	20 or 21 (user provided)	OTU1F	
0-19	otn	-	opu2f	20 or 21 (user provided)	OTU2F	

User Provided Info				Derived Info		
Port Number	Port Mode	Mapping Type	Framing Type	Payload Type	Data Path	
0,1	ethernet	gfp-f	opu4	05	100GE NCS4K-2H-O-K over ODU4 mapped to Rx MAC+PCS, CPB, GFP-F Map (G.Sup43 6.2)	
0,1	ethernet	amp	opu4	09	100GE NCS4K-2H-O-K over ODU4 mapped to PMON, 100GE Rx Passthru, CPB, GMP Map, Interlaken(CBRI – ODU4)	
0,1	ethernet	gfp-f	opuflex	05	100GE NCS4K-2H-O-K over ODUFlex mapped to Rx MAC+PCS, CPB, GFP-F Map Interlaken(CBRI - ODUflex)	
0,1	otn	-	opu4	21	OTU4	

Configure an OTN Controller

Before you begin

Optics controller should be created before configuring an OTN controller and must be in UP state.

Procedure

С	onfigure
c	ontroller optics Rack/Slot/Instance/Port
E	xample:
R	P/0/RP0:hostname# controller optics 0/0/0/0
E	nters the Optics controller mode.
p	ort-mode {Ethernet FC OTN SDH Sonet} framing framing-type mapping mapping-type
E	xample:
	P/0/RP0:hostname(config-optics)# port-mode sdh framing opul mapping amp
R	
R C	onfigures the port-mode for the sdh controller. Mapping is not required for otn controllers.
R C	Configures the port-mode for the sdh controller. Mapping is not required for otn controllers.

Example: Configure Port Mode as OTN

The following example shows how to configure port mode as otn using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure terminal
RP/0/RP0:hostname# controller optics 0/0/0/0
```

RP/0/RP0:hostname(config-optics)# port-mode otn framing opu2 RP/0/RP0:hostname(config-optics)# exit

Configure the LAN PHY Controller

	Procedure
Step 1	configure
	Example:
	RP/0/RP0:hostname# configure
	Enters the configuration mode.
Step 2	controller optics R/S/I/P
	Example:
	RP/0/RP0:hostname(config)# controller optics 0/6/0/1
	Enters the optics controller configuration mode.
Step 3	port-mode Ethernet framing packet rate rate
	Example:
	RP/0/RP0:hostname (config-Optics)# port-mode Ethernet framing packet rate 100GE
	Configures the port-mode for the Ethernet controller.
Step 4	commit
	Example:
	RP/0/RP0:hostname(config-Optics)# commit

Example: Configure LAN PHY controller interface:

The following example shows how to configure a 100GE LAN PHY controller interface HundredGigE0/6/0/1 using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure
RP/0/RP0:hostname(config)# controller optics 0/6/0/1
RP/0/RP0:hostname(config-Optics)# port-mode Ethernet framing packet rate 100GE
RP/0/RP0:hostname(config-Optics)# commit
```

The following example shows how to configure a 10GE LAN PHY controller interface TenGigE0/14/0/2 using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure
RP/0/RP0:hostname(config)# controller optics 0/14/0/2
RP/0/RP0:hostname(config-Optics)# port-mode Ethernet framing packet rate 10GE
RP/0/RP0:hostname(config-Optics)# commit
```

Configure the Ethernet terminated OTN Controller (without Breakout)

Procedure

Step 1	configure
	Example:
	RP/0/RP0:hostname# configure
	Enters the configuration mode.
Step 2	controller optics R/S/I/P
	Example:
	RP/0/RP0:hostname(config)# controller optics 0/6/0/1
	Enters the optics controller configuration mode.
Step 3	port-mode OTN framing framing type
	Example:
	RP/0/RP0:hostname (config-Optics)# port-mode OTN framing opu4
	Configures the port-mode for the OTN controller.
Step 4	exit
	Example:
	RP/0/RP0:hostname (config-Optics)# exit
	Exits the sub mode.
Step 5	controller payload-type R/S/I/P
	Example:
	RP/0/RP0:hostname(config)# controller ODU4 0/6/0/1
	Enters the odu controller configuration mode.
Step 6	terminate ether mapping mapping-type
	Example:
	RP/0/RP0:hostname(config - odu4)# terminate ether mapping GfpF
Step 7	commit
	Example:
	RP/0/RP0:hostname(config-odu4)# commit

Example: Configure LAN PHY controller interface:

The following example shows how to configure a 100GE Ethernet terminated OTN controller interface HundredGigE0/6/0/1 using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure
RP/0/RP0:hostname(config)# controller optics 0/6/0/1
RP/0/RP0:hostname(config-Optics)# port-mode OTN framing opu4
RP/0/RP0:hostname(config-Optics)# exit
RP/0/RP0:hostname(config)# controller ODU4 0/6/0/1
RP/0/RP0:hostname(config-odu4)# terminate ether mapping GfpF
RP/0/RP0:hostname(config-odu4)# commit
```

The following example shows how to configure a 10GE Ethernet terminated OTN controller interface TenGigE0/14/0/2 using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure
RP/0/RP0:hostname(config)# controller optics 0/14/0/2
RP/0/RP0:hostname(config-Optics)# port-mode OTN framing opu2e
RP/0/RP0:hostname(config-Optics)# exit
RP/0/RP0:hostname(config)# controller ODU2E 0/14/0/2
RP/0/RP0:hostname(config-odu2e)# terminate ether mapping bmp
RP/0/RP0:hostname(config-odu2e)# commit
```

Configure the Ethernet terminated OTN Controller (with Breakout)

	Procedu	re
tep 1	configui	re
	Example	:
	RP/0/RP	0:hostname# configure
	Enters th	e configuration mode.
ep 2	controll	er optics R/S/I/P breakout-mode lane id otn framing framing type
	Note	All lanes should be configured in same mode.
		Only opu2 and opu2e framing type are supported.
	Example	c · · · · · · · · · · · · · · · · · · ·
	RP/0/RP	0:hostname(config)# controller optics 0/0/0/1 breakout-mode 3 otn framing opu2
ep 3	exit	
	Example	:
	RP/0/RP	0:hostname (config-Optics)# exit
	Exits the	sub mode.

Step 4 controller { ODU2 | ODU2E } *R/S/I/P/lane-id* **terminate ether mapping {** *GfpF | bmp }*

Example:

RP/0/RP0:hostname(config)# controller ODU2 0/0/0/1/3 terminate ether mapping GfpF

Step 5 commit

Example:

RP/0/RP0:hostname(config-odu2)# commit

Example

The following examples show how to configure a TenGigE0/0/0/1/3 interface using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure
RP/0/RP0:hostname(config)# controller optics 0/0/0/1 breakout-mode 3 otn framing opu2
RP/0/RP0:hostname(config-Optics)# exit
RP/0/RP0:hostname(config)# controller ODU2 0/0/0/1/3 terminate ether mapping GfpF
RP/0/RP0:hostname(config-odu2)# commit
```

```
RP/0/RP0:hostname# configure
RP/0/RP0:hostname(config)# controller optics 0/0/0/1 breakout-mode 3 otn framing opu2e
RP/0/RP0:hostname(config-Optics)# exit
RP/0/RP0:hostname(config)# controller ODU2e 0/0/0/1/3 terminate ether mapping bmp
RP/0/RP0:hostname(config-odu2)# commit
```

The following examples show how to configure a fourty gigabit interface using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure
RP/0/RP0:hostname(config) # controller Optics0/4/0/5
breakout-mode 1 Otn framing opu2
breakout-mode 2 Otn framing opu2
breakout-mode 3 Otn framing opu2
breakout-mode 4 Otn framing opu2
RP/0/RP0:hostname(config-Optics)# exit
RP/0/RP0:hostname(config) # controller ODU20/4/0/5/1
terminate ether mapping GfpF
!
controller ODU20/4/0/5/2
terminate ether mapping GfpF
1
controller ODU20/4/0/5/3
terminate ether mapping GfpF
1
controller ODU20/4/0/5/4
 terminate ether mapping GfpF
1
```

RP/0/RP0:hostname(config-odu2) # commit

Configure the Clock Controller

Procedure

Step 1 c	configure
----------	-----------

Example:

RP/0/RP0:hostname# configure

Enters the configuration mode.

 Step 2
 clock-interface [Rack0-Bits0-In | Rack0-Bits0-Out | Rack0-Bits1-In | Rack0-Bits1-Out]

 Example:

RP/0/RP0:hostname(config) # clock-interface Rack0-Bits0-Out

Enters the clock interface configuration mode.

Step 3 port-parameters [Interface Type] [bits-input | bits-output] [BITS mode]

Note Refer following table for configuring port parameters:

BITS mode	Interface Type	QL Option	Supported as Input	SSM Rx Supported	Supported as Output	SSM Tx Supported
T1 D4 AMI	ANSI (Wirewrap)	O2 G1	Yes	No - use receive exact	Yes	No - ssm disabled
T1 D4 B8ZS	ANSI (Wirewrap)	O2 G1	Yes	No - use receive exact	Yes	No - ssm disabled
T1 ESF AMI	ANSI (Wirewrap)	O2 G1	Yes	Yes	Yes	Yes
T1 ESF B8ZS	ANSI (Wirewrap)	O2 G1	Yes	Yes	Yes	Yes
J1 D4 AMI	ANSI (Wirewrap)	O2 G1	Yes	No - use receive exact	Yes	No - ssm disabled
J1 D4 B8ZS	ANSI (Wirewrap)	O2 G1	Yes	No - use receive exact	Yes	No - ssm disabled
J1 ESF AMI	ANSI (Wirewrap)	O2 G1	Yes	Yes	Yes	Yes
J1 ESF B8ZS	ANSI (Wirewrap)	O2 G1	Yes	Yes	Yes	Yes
E1 FAS AMI	ETSI (BNC)	01	Yes	Yes	Yes	Yes

E1 FAS HDB3	ETSI (BNC)	01	Yes	Yes	Yes	Yes
E1 CRC4 AMI	ETSI (BNC)	01	Yes	Yes	Yes	Yes
E1 CRC4 HDB3	ETSI (BNC)	01	Yes	Yes	Yes	Yes
E1 G.703 2048KHz	ETSI	01	Yes	No - use receive exact	Yes	No - ssm disabled
64KHz + 8KHz Composite Clock (Includes GR378 and G.703)	ANSI & ETSI	01/02	Yes	No - use receive exact	No	No

Example:

RP/0/RP0:hostname (config-clock-if)# port-parameters etsi bits-output e1 crc-4 sa4 ami

Configures the port-parameters for the clock controller.

Step 4 commit

Example:

```
RP/0/RP0:hostname(config-clock-if)# commit
```

Example: Configure Clock controller interface:

The following example shows how to configure a clock interface:

```
RP/0/RP0:hostname# configure
RP/0/RP0:hostname(config)# clock-interface Rack0-Bits0-Out
RP/0/RP0:hostname(config-Optics)# port-parameters etsi bits-output e1 crc-4 sa4 ami
RP/0/RP0:hostname(config-Optics)# commit
```

Configure 100MHZ Flex Grid for NCS4K-4H-0PW-QC2 Line Card

Feature Name	Release Information	Feature Description
100MHz Grid Spacing for NCS4K-4H-OPW-QC2 line card	Cisco IOS XR Release 6.5.33	In addition to the 50GHZ flex-grid-spacing, you can now configure 100MHz flex-grid-spacing on the CFP2 trunk ports of the NCS4K-4H-OPW-QC2 card. The setup can be done by Cisco Transport Controller (CTC) or CLI. With 100MHz flex-grid-spacing, you can configure up to 761 different wavelengths; which is more than 96 wavelengths that can be done with 50GHZ flex-grid-spacing. Commands added: • dwdm-carrier Commands modified: • show controller optics

Table 1: Feature History

The trunk ports 10 and 11 with coherent CFP2 optics in the NCS4K-4H-OPW-QC2 card currently support 50GHz grid spacing. However, the coherent CFP2 optics supports 100MHz grid spacing. From Release 6.5.33, you can configure 100MHz flex grid spacing. The 100MHz grid spacing enables you to configure the frequencies with a granularity of 7 digits, and therefore 761 different wavelengths can be configured on the colored optics, whereas 50GHz grid spacing can support only 96 wavelengths.

You can also configure the 100MHz grid spacing through CTC. See Configure 100MHz Grid Spacing for NCS4K-4H-OPW-QC2 Line Card Using CTC.

Procedure

Step 1 configure

RP/0/RP0:hostname# configure

Enters the configuration mode.

```
      Step 2
      controller optics Rack/Slot/Instance/Port

      RP/0/RP0:hostname(config)#controller optics 0/0/0/11

      Enters the optics controller configuration mode.
```

Step 3 shutdown

RP/0/RP0:ios(config-Optics)#shutdown

Shuts down the controller.

Step 4 sec-admin-state maintenance

RP/0/RP0:ios(config-Optics)#sec-admin-state maintenance

Configures the administrative state of the controller to maintenance mode.

Step 5 dwdm-carrier 100MHz-grid frequency <frequency-value>

The frequency range is 1911500-1961000. In 100MHz grid spacing, enter the 7-digit frequency value in the range of 1911500 to 1961000 THz. For example, enter 1913501 to specify 191.3501 THz.

RP/0/RP0:ios(config-Optics)#dwdm-carrier 100MHz-grid frequency 1960810

Configures the wavelength in 100MHz (0.1GHz) grid spacing in accordance with ITU definition.

Step 6 commit

Step 7 no shutdown

RP/0/RP0:ios(config-Optics)# no shutdown

Brings up the controller.

Step 8 commit

Step 9 show controller optics *R/S/I/P* dwdm-carrier-map flexi-grid

RP/0/RP0:ios#show controller Optics0/0/0/11 dwdm-carrier-map flexi-grid Mon Mar 20 07:12:36.764 UTC DWDM Carrier Band:: OPTICS_C_BAND Frequency range supported: 196.10000 THz ~ 191.30630 THz

DWDM Carri	er Map table.	2		
Channel index	G.694.1 Ch Num	Frequency (THz)	Wavelength (nm)	
1	480	196.10000	1528.773	
2	479	196.09380	1528.822	
3	478	196.08750	1528.871	
4	477	196.08130	1528.919	-
5	476	196.07500	1528.968	
6	475	196.06880	1529.017	-
7	474	196.06250	1529.066	
8	473	196.05630	1529.114	
9	472	196.05000	1529.163	
10	471	196.04380	1529.212	
11	470	196.03750	1529.261	
12	469	196.03130	1529.309	
13	468	196.02500	1529.358	

14	467	196.01880	1529.407
 15	466	196.01250	1529.456
 16	465	196.00630	1529.504

--More--

Displays the wavelength and channel mapping with flexible grid channel spacing enabled.

Configure an OTU (HO/LO) Controller

Before you begin

Optics controller should be created before configuring an OTU (HO/LO) controller and must be in UP state.

Procedure

Step 1	configure				
Step 2	controller otu [HO LO] <i>R/S/I/P</i>				
	Example:				
	RP/0/RP0:hostname (config)# controller OTU1 0/0/0/1				
	Enters the otu controller configuration mode.				
Step 3	fec {EnhancedHG20 EnhancedHG7 EnhancedI4 EnhancedI7 EnhancedSwizzle Standard None}				
	Example:				
	RP/0/RP0:hostname (config-otul)# fec EnhancedHG20				
	Configures FEC on the otu controller.				
Step 4	gcc0				
	Example:				
	RP/0/RP0:hostname (config-otul)# gcc0				
	Configures GCC on the otu controller.				
Step 5	secondary-admin-state [Automatic-in-service Maintenance Normal]				
	Example:				
	RP/0/RP0:hostname (config-otul)# secondary-admin-state maintenance				
	Configures the secondary administrative state of an otu controller.				
Step 6	loopback [internal line]				
	Example:				
	RP/0/RP0:hostname (config-otul)# loopback internal				

Step 7 threshold {sd | sf | sm-tca} value Example: RP/0/RP0:hostname (config-otul) # threshold sf 7 Configures the threshold for signal failure and signal degrade on the OTUk controller. The valid range of signal failure is from 1 to 9 and for signal degrade is from 3 to 9. The valid range of sm-tca is from 3 to 9. The default range is 3. Step 8 tti [expected | sent] {ascii | dapi | hex | operator-specific | sapi} value Example: RP/0/RP0:hostname (config-otul) # tti expected ascii abc Configures the trail trace identifier (TTI) of an otu controller. The maximum length of the ascii text is 64 characters. Step 9 **srlg set** *index-of-the-srlg value-of-the-network-srlg* Example: RP/0/RP0:hostname (config-otul) # srlg set 5 8 6 7 8 9 7 Configures the SRLG for network. The valid range of index is from 1 to 17. The valid range of values is from 0 to 4294967294. You can set a maximum of six values in one set. Step 10 commit

Example: Configure an otu Controller

Configures loopback mode of an otu controller.

The following example shows how to configure an otu controller using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure terminal
RP/0/RP0:hostname(config)# controller otul 0/0/0/1
RP/0/RP0:hostname(config-otul)# fec EnhancedHG20
RP/0/RP0:hostname(config-otul)# gcc0
RP/0/RP0:hostname(config-otul)# secondary-admin-state maintenance
RP/0/RP0:hostname(config-otul)# loopback internal
RP/0/RP0:hostname(config-otul)# threshold sf 7
RP/0/RP0:hostname(config-otul)#tti expected ascii abc
RP/0/RP0:hostname(config-otul)#srlg set 5 8 6 7 8 9 7
RP/0/RP0:hostname(config-otul)#exit
```

Configure an ODU (HO/LO) Controller

Before you begin

Optics controller should be created before configuring an ODU (HO/LO) controller and must be in UP state.

Procedure

Step 1 Step 2	configure controller odu[HO LO] R/S/I/P					
	Example:					
	RP/0/RP0:hostname (config)# controller ODU1 0/0/0/1					
	Enters the ODU controller configuration mode.					
Step 3	gcc1					
	Example:					
	RP/0/RP0:hostname (config-odul)# gccl					
	Configures GCC on the ODU controller. To remove gcc use no form of this command.					
Step 4	secondary-admin-state [Automatic-in-service Maintenance Normal]					
	Example:					
	RP/0/RP0:hostname (config-odul)# secondary-admin-state maintenance					
	Configures the secondary administrative state of the ODU controller. Administrative state can be normal and maintenance.					
Step 5	loopback [internal line]					
	Example:					
	RP/0/RP0:hostname (config-odul)# loopback internal					
	Configures loopback mode of the ODU controller. You can configure the line and internal loopback modes.					
Step 6	threshold {pm-tca sf sd} value					
	Example:					
	RP/0/RP0:hostname (config-odul)# threshold sf 7					
	RP/0/RP0:hostname (config-odul)# threshold sd 5					
	RP/0/RP0:hostname (config-odul)# threshold pm-tca 6					
	Configures the threshold for signal failure, signal degrade and pm-tca on the ODU controller.					
	Sets the signal fail bit error rate. The range is for NCS4K-20T-O-S and NCS4K-20T-O-S is from 1E-6 to 1E-9. The default value is 6. The range for other cards is from 1E-5 to 1E-9. The default value is 5.					
	Sets the signal degrade bit error rate. The range is from 1E-3 to 1E-9. The range is for NCS4K-20T-O-S and NCS4K-20T-O-S is from 1E-6 to 1E-9. The default value is 7. The range for other cards is from 1E-5 to 1E-9. The default value is 7					
	The valid range of pm-tca is from 3 to 9. The default value is 6.					
Step 7	tsg [1.25G 2.5G]					
	Example:					
	RP/0/RP0:hostname (config-odul)# tsg 1.25G					
	Configures TSG of the ODU controller. The valid values are 1.25G and 2.5G.					
Step 8	tti [expected sent] {ascii dapi hex operator-specific sapi} value					

	Example:
	RP/0/RP0:hostname (config-odul)# tti expected ascii abc
	Configures the TTI of the ODU controller. The maximum length of the ascii text is 64 characters.
Step 9	tcm id value
	Example:
	RP/0/RP0:hostname (config-odul)# tcm id 4
	Configures the TCM level for the ODU controller and enters the TCM mode. The valid range is from 1 to 6.
Step 10	threshold {pm-tca sf sd} value
	Example:
	RP/0/RP0:hostname (config-odul-tcm0x4)# threshold sd 5
	RP/0/RP0:hostname (config-odul-tcm0x4)# threshold sf 7
	RP/0/RP0:hostname (config-odul-tcm0x4)# threshold pm-tca 7
	Configures the threshold for signal failure and signal degrade in the TCM connection.
	The valid range of signal failure is from 1 to 9. The default value is 3.
	The valid range of signal degrade is from 3 to 9. The default value is 6.
	The valid range of pm-tca is from 3 to 9. The default value is 3.
Step 11	tti [expected sent] {ascii dapi hex operator-specific sapi} value
	Example:
	RP/0/RP0:hostname (config-odul-tcm0x4)# tti expected ascii abc
	Configures the TTI of the TCM controller. The maximum length of the ascii text is 64 characters.
Step 12	commit

Example: Configure an ODUk Controller

The following example shows how to configure an ODU controller using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure terminal
RP/0/RP0:hostname(config)#controller ODU1 0/0/0/1
RP/0/RP0:hostname(config-odu1)#gcc1
RP/0/RP0:hostname(config-odu1)#loopback internal
RP/0/RP0:hostname(config-odu1)#loopback internal
RP/0/RP0:hostname(config-odu1)#threshold sf 7
RP/0/RP0:hostname(config-odu1)#tti expected ascii abc
RP/0/RP0:hostname(config-odu1)#tti expected ascii abc
RP/0/RP0:hostname(config-odu1)#ttm id 4
RP/0/RP0:hostname(config-odu1-tcm0x4)#tti expected ascii abc
RP/0/RP0:hostname(config-odu1-tcm0x4)#tti expected ascii abc
```

Configure Squelch for ODU Controller

Procedure

Step 1	configure					
	Enters the global configuration mode.					
Step 2	controller ODU2 R/S/I/P					
	Example:					
	<pre>RP/0/RP0:hostname(config)#controller ODU2 0/1/0/1</pre>					
	Enters the ODU2 controller mode.					
Step 3	opu ca laser-squelch hold-off timer					
	Example:					
	RP/0/RP0:hostname(config-odu2)#opu ca laser-squelch 20					
	Configures squelch hold-off time. The range is 20ms to 10000 ms					
Step 4	commit					

Configure Idle Frame for ODU Controller

Procedure
configure
Enters the global configuration mode.
controller ODU2 R/S/I/P
Example:
RP/0/RP0:hostname(config)#controller ODU2 0/1/0/1
Enters the ODU2 controller mode.
opu ca idle-frame hold-off timer
Example:
RP/0/RP0:hostname(config-odu2)#opu ca laser-squelch 20
Configures idle frame hold-off time. The range is 20ms to 10000 ms.
commit

I

Configure an ODU Group Controller

Before you begin

Optics controller should be created before configuring an ODU controller and must be in UP state.

configure
controller [odu-group-mp odu-group-te] <i>group-id</i> signal {Ethernet FC OTN SDH Sonet} odu-type <i>type-of-the-odu</i>
Example:
RP/0/RP0:hostname# controller odu-group-mp 5 signal OTN odu-type odu1
This creates the ODU group controller. The ODU Group MP value ranges from 1 to 65535.
commit

Configure the Ethernet Controller

Before you begin

Optics controller should be created before configuring an Ethernet controller and must be in UP state.

Proc	edure					
conf	ïgure terminal					
Exar	nple:					
Rou	ter# configure terminal					
Ente	ers the global configuration mode.					
controller optics <i>R/S/I/P</i> port-mode ethernet framing <i>type</i> mapping <i>type</i> rate <i>rate</i>						
Note	The rate parameter will appear only if the framing type is opuflex.					
Exar	nple:					
RP/(GfpH)/RPO:hostname# controller optics 0/0/0/0 port-mode ethernet framing opuflex mapping 7 rate 100GE					
Con	figures the port-mode for the ethernet controller.					
exit						
Exar	nole:					

Router(config-oc3)# exit

Exits the OC controller configuration mode.

Example: Configure Port Mode as Ethernet

The following example shows how to configure port mode as ethernet using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure terminal
RP/0/RP0:hostname(config)# controller optics 0/0/0/0 port-mode Ethernet framing opuflex
mapping GfpF rate 100GE
RP/0/RP0:hostname(config)# commit
```

Configure a SONET or SDH Controller

Before you begin

Optics controller should be created before configuring a SONET or SDH controller and must be in UP state.

Procedure

```
Step 1 configure
```

Step 2 controller optics *Rack/Slot/Instance/Port*

Example:

RP/0/RP0:hostname# controller optics 0/0/0/2

Enters the optics controller mode.

Step 3 port-mode {Ethernet | FC | OTN | SDH | SONET} framing *framing-type* **mapping** *mapping-type* **rate** { OC3 | OC12 | STM1 | STM4 }

Example:

RP/0/RP0:hostname(config-optics) # port-mode sonet framing opul mapping bmp

Configures the port-mode for the SONET or SDH controller. New parameter rate is introduced for oc3, oc12, stm1 and stm4 controllers.

- **Note** You can create SONET controller when the mapping type is amp and framing type is opul only (optics->sonet -> sonet sdh -> odul).
- Step 4 commit

Example: Configure Port Mode as SONET

The following example shows how to configure port mode as SONET using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure terminal
RP/0/RP0:hostname# controller optics 0/0/0/2
RP/0/RP0:hostname(config-optics)# port-mode SONET framing opul mapping bmp
RP/0/RP0:hostname(config-optics)# exit
```

Configure an OCn controller

Before you begin

Optics controller should be created before configuring an OCn controller and must be in UP state.

Procedure

Step 1	configure
Step 2	controller ocn Rack/Slot/Instance/Port
	Example:
	RP/0/RP0:hostname# controller oc48 0/0/0/2
	Enters the oc48 controller mode.
Step 3	clock source [internal line]
	Example:
	RP/0/RP0:hostname (config-oc48)# clock source internal
	Configures the clock source on an OCn controller.
Step 4	threshold {b1-tca b2-tca sd-ber sf-ber} value
	Example:
	RP/0/RP0:hostname (config-oc48)# threshold b1-tca 6
	Configures the bit error rate (BER) on threshold crossing alert (TCA) of a controller. The BER value ranges from 3 to 9 and default value is 6 for b1-tca and b2-tca. For sd-ber it ranges from 5 to 9 and default value is 6. BER value for sf-ber ranges from 3 to 5 and default value is 3.
Step 5	overhead j0 [expected send] [16Bytes 1Byte] value
	Example:
	RP/0/RP0:hostname (config-oc48)# overhead j0 extected 1Byte 45
	Configures a 1 Byte path trace on OCn controller. The byte value ranges from 0 to 255.
Step 6	commit

Example: Configure OCn controller

The following example shows how to configure OCn controller using Cisco IOS XR commands:

RP/0/RP0:hostname# configure terminal

```
RP/0/RP0:hostname(config)# controller oc48 0/0/0/2
RP/0/RP0:hostname(config-oc48)# clock source internal
RP/0/RP0:hostname(config-oc48)# threshold b1-tca 6
RP/0/RP0:hostname(config-oc48)# overhead j0 expected 1Byte 45
RP/0/RP0:hostname(config-oc48)# exit
```

Configure a STSn Controller

Before you begin

Optics controller should be created before configuring a STSn controller and must be in UP state.

Note

STSn path can be configured on WIS port only

Procedure

Step 1 configure

Step 2 controller stsn R/S/I/P

Example:

RP/0/RP0:hostname (config)# controller sts48 0/0/0/2

Enters the STS48 controller configuration mode.

Step 3 threshold b3-tca value

Example:

RP/0/RP0:hostname (config-sts48) # threshold b3-tca 7

Configures the bit error rate (BER) on threshold crossing alert (TCA) of the controller. The BER value ranges from 3 to 9 and default value is 6.

Step 4 overhead j1 [expected | send] [16Bytes | 64Bytes] ASCII text

Example:

RP/0/RP0:hostname (config-sts48) # overhead j1 expected 64Bytes abcx

Configures the 64Bytes path trace on the STSn controller.

Step 5 commit

Example: Configure an STSn Controller

The following example shows how to configure an STSn controller using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure terminal
RP/0/RP0:hostname(config)# controller sts48n 0/0/0/2
RP/0/RP0:hostname(config-sts48)# threshold b3-tca 7
RP/0/RP0:hostname(config-sts48)# overhead j1 expected 64Bytes abcx
```

RP/0/RP0:hostname(config-sts48)# exit

Configure a STMn controller

Before you begin

Optics controller should be created before configuring a STMn controller and must be in UP state.

Procedure

Step 1	configure
Step 2	controller stmn R/S/I/P

Example:

RP/0/RP0:hostname (config)# controller stm64 0/0/0/2

Enters the STM64 controller configuration mode.

Step 3 clock source [internal | line]

Example:

RP/0/RP0:hostname (config-stm64) # clock source internal

Configures the clock source on an stm controller.

Step 4 threshold {b1-tca | b2-tca | sd-ber | sf-ber} value

Example:

RP/0/RP0:hostname (config-stm64) # threshold b2-tca 7

Configures the bit error rate (BER) on threshold crossing alert (TCA) of a controller. The BER value ranges from 3 to 9 and default value is 6 for b1-tca and b2-tca. For sd-ber it ranges from 5 to 9 and default value is 6. BER value for sf-ber ranges from 3 to 5 and default value is 3.

Step 5 overhead j0 [expected | send] [16Bytes | 1Byte] Ascii value

Example:

RP/0/RP0:hostname (config-stm64) # overhead j0 expected 16Bytes abcx

Configures a 16 Bytes path trace on the stm controller.

Step 6 commit

Example: Configure STM controller

The following example shows how to configure STM controller using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure terminal
RP/0/RP0:hostname(config)# controller stm64 0/0/0/2
RP/0/RP0:hostname(config-stm64)# clock source internal
```

```
RP/0/RP0:hostname(config-stm64)# threshold b2-tca 7
RP/0/RP0:hostname(config-stm64)# overhead j0 expected 16Bytes abcx
RP/0/RP0:hostname(config-stm64)# exit
```

Configure a VCn Controller

Optics controller should be created before configuring a VCn controller and must be in UP state.

lote	VCk path can be configured on WIS port.
Pro	cedure
con	figure
con	troller vcn R/S/I/P
Exa	mple:
RP/	0/RP0:hostname (config)# controller vc4-64c 0/0/0/10
Ent	ers the vc4-64c configuration mode.
thr	eshold b3-tca value
Exa	mple:
RP/	0/RP0:hostname (config-vc4-64c)# threshold b3-tca 8
Cor	figures the bit error rate (BER) on threshold crossing alert (TCA) of the controller.
ove	rhead j1 [expected send] [16Bytes 64Bytes] Ascii value
Exa	mple:
RP/	0/RP0:hostname (config-vc4-64c)# overhead j1 send 64Bytes abcz
Cor	figures a 64Bytes path trace on the VCk controller.
007	amit

Example: Configure a VCk Controller

The following example shows how to configure a VCn controller using Cisco IOS XR commands:

```
RP/0/RP0:hostname# configure terminal
RP/0/RP0:hostname(config)# controller vc4-64c 0/0/0/10
RP/0/RP0:hostname(config-vc4-64c)# threshold b3-tca 8
RP/0/RP0:hostname(config-vc4-64c)# overhead j1 send 64Bytes abcz
RP/0/RP0:hostname(config-vc4-64c)# exit
```

Channelize an ODU (LO) Controller

Before you begin

Optics controller should be created before configuring an ODU (LO) controller.

Procedure

```
Step 1 configure
```

Step 2 controller odu *j R/S/I/P*

Example:

RP/0/RP0:hostname (config) # controller odu4 0/0/0/2

Enters the ODUj controller configuration mode.

Step 3 odu j tpn number-of-the-tributary-port ts slot-of-the-tributary

Example:

RP/0/RP0:hostname (config)# (config-odu4)# ODU3 tpn 4 ts 1-2

Creates a lower order ODU controller and configures tributary port number (TPN) and tributary slots (TS) for that ODU controller. The valid range of TPN is from 1 to 80.

The TS string can be separated from 1 to the number of TS in the parent controller by a colon (:) or an en-dash (-). If a TS string is separated using a colon (:), this indicates individual tributary slot. If a TS string is separated using an en-dash (-), this indicates a range of tributary slots.

Note To configure the packet interface, you need to terminate the configurations using command: terminate ether mapping GfpF/bmp

Step 4 commit

Configure AINS

This task configures AINS for the controller. For more information on AINS support, see AINS Support for Controllers.

Procedure

Step 1 automatic-in-service controller controller-name R/S/I/P hours x minutes y

Configures AINS with a soak timer of 15 minutes.

Note To clear the AINS configuration set the hours and minutes to 0.

Example:

RP/0/RP0:hostname# automatic-in-service controller optics 0/6/0/2 hours 0 minutes 15

Step 2 show controller *controller -name R/S/I/P*

Displays the AINS parameters that have been configured.

Example:

```
RP/0/RP0:hostname# sh controllers optics 0/6/0/2
Tue Aug 14 03:52:22.279 UTC
Controller State: Up
Transport Admin State: Automatic In Service
 Laser State: On
  Optics Status
        Optics Type: Grey optics
         Wavelength = 850.00 nm
         Alarm Status:
         _____
         Detected Alarms: None
         LOS/LOL/Fault Status:
         Alarm Statistics:
         _____
                                  LOW-RX-PWR = 0
         HIGH-RX-PWR = 0
                                   LOW-TX-PWR = 1
         HIGH-TX-PWR = 0
         HIGH-LBC = 0
                                   HIGH-DGD = 0
         OOR-CD = 0
                                   OSNR = 0
         WVL-OOL = 0
                                   MEA = 0
         IMPROPER-REM = 0
         TX-POWER-PROV-MISMATCH = 0
         Laser Bias Current = 52.0 %
         Actual TX Power = -2.41 dBm
         RX Power = -3.55 dBm
         Performance Monitoring: Enable
         THRESHOLD VALUES
         Parameter
                                   High Alarm Low Alarm High Warning Low Warning
         _____ _____

        1.5
        -12.4
        0.0
        0.0

        1.2
        -9.8
        0.0
        0.0

        N/A
        N/A
        0.00
        0.00

         Rx Power Threshold(dBm)
         Tx Power Threshold(dBm)
         LBC Threshold(mA)
         LBC High Threshold = 98 %
         Polarization parameters not supported by optics
 Transceiver Vendor Details
         Form Factor
                                : SFP+
AINS Soak
                        : Running
                        : 0h, 15m
AINS Timer
AINS remaining time
                         : 896 seconds
```

Clear the Traffic from a Resource in an ODU Group Controller

Perform this task to clear the traffic from a resource in an odu group controller.

```
Procedure
```

Step 1 configure

Step 2 odu-group {mp | te} group id-of-the-odu-group-mp | te clear odu-dest name-of-the-controller Rack/Slot/Instance/Port

Example:

RP/0/RP0:hostname Router# controller odu-group-mp 1 manual odu-dest odu0 0/0/0/1 Clears the traffic from the ODU0 controller in a network

Step 3 commit

Aggregation of Traffic in OTN

An OTN circuit carries multiple data streams from various sources. It also carries non-OTN data streams (SONET) coming at any rate. These multiple data streams from various sources are combined and transmitted over a single data stream and this is done through multiplexers.

During multiplexing, various weak data streams are converted into a single strong data stream and then a de-multiplexer is used to transmit the data in their respective formats to the destination. This entire process is called OTN aggregation.

Remove and Install Fabric Card Using System Admin Prompt

Before you begin

A card should be inserted on the chassis before you remove it or plug it to another chassis.

Procedure

```
Step 1 controllers fabric plane plane-id shutdown
```

Example:

sysadmin-vm: 0 RPO # conf t

Enters the configuration mode terminal.

Example:

sysadmin-vm: 0_RP0 # controller fabric plane 3 shutdown

Example:

sysadmin-vm: 0 RPO # commit

- **Step 2** Remove the card physically.
- **Step 3** Insert the card manually.

Example:

sysadmin-vm: 0 RP0(config) # show controller sfe driver rack 0

When the output of this command displays DONE and NRML entry for all the fabric cards, perform the next step. Else, there might be traffic loss.

Example:

+									+
Asic inst	. card HP Asic	Admin plane	Fgid	Asic State	DC	Last	PC	N H	R
(R/S/A)	pwrd type	/Oper /grp	DL			init	(#	⊧) (#)
0/FC3/0	UP 1 s123	UP/UP 3/A	DONE	NRML	0	PON		1	0
0/FC3/1	UP 1 s123	UP/UP 3/A	DONE	NRML	0	PON		1	0
0/FC3/2	UP 1 s123	UP/UP 3/A	DONE	NRML	0	PON		1	0

Step 4

4 no controllers fabric plane *plane-id* shutdown

Example:

sysadmin-vm: 0_RPO(config) # no controller fabric plane 3 shutdown

Restarts the admin plane for fabric card.

Example:

sysadmin-vm: 0 RPO # commit

Upgrade to 400G Fabric Card Using IOS XR

This task enables the user to upgrade from a 200G fabric card (NCS4016-FC-M) to a 400G fabric card (NCS4016-FC2-M). Mixed mode (where 200G and 400G fabric cards co-exist) is recommended only while performing the upgrade. The user is required to upgrade all the FCs to 400G before making any configuration change(s).

Before you begin

The prerequisites before starting with the upgrade procedure are:

- Check for error-free traffic for at least five minutes.
- Verify the status of all the planes using the **show controller fabric plane all** command; the administration and the operational states should be displayed as **UP**.

```
sysadmin-vm:0 RPO# show controller fabric plane all
Mon Mar 14 06:50:33.720 UTC
Plane Admin Plane Plane up->dn up->mcast
Id State State Mode counter counter
-----
0
  UP UP SC 0
                                0
       UP SC
UP SC
UP SC
                        0
                                0
   UP
1
                        0
                                0
2
    UP
              SC
       UP
3
    UP
                        0
                                0
```

Procedure

admin

```
Step 1
```

Enters the administration mode.

Step 2 config

I

	Enters the	configuration me	ode.						
Step 3	controlle	r fabric plane <i>pl</i>	lane-id						
	Example:								
	sysadmin	-vm:0_RP0(confi	ig) # contro i	ller fabr	ic plane	e 0			
	Checks th the upgrad	e current state of de. For example,	the fabric plan if the selected	e. The fab FC is FC0	ric plane , plane 0	of the desired card needs to be shutdown before needs to be shutdown.			
Step 4	shutdowr	1							
	Example:								
	sysadmin	-vm:0_RP0(confi	ig-plane-0) :	# shutdow	n				
	Shuts dow	on the fabric plane	e.						
Step 5	commit								
Step 6	hw-modu	le shutdown loca	ation card-loc	cation					
	Example:								
	sysadmin	-vm:0_RP0(confi	ig) # hw-mod u	ule shutd	own loca	ation 0/FC0			
	Powers do	Powers down the card.							
	Note	It is mandatory	y to use the co	mmit com	mand af	ter this step to power down the card.			
Step 7	commit								
Step 8	Remove t	Remove the existing 200G FC and replace it with a 400G FC.							
Step 9	no hw-mo	no hw-module shutdown location card-location							
•	Example:								
	sysadmin-vm:0_RP0(config) # no hw-module shutdown location 0/FC0								
	Powers or	n the card.							
	Note	It is mandatory	y to use the co	mmit com	mand af	ter this step to power on the card.			
Step 10	commit								
Step 11	exit								
	Exits the configuration mode.								
Step 12	show platform								
	Example:								
	<pre>sysadmin-vm:0_RP0 # show platform</pre>								
	Verify that the newly inserted FC is in operational state.								
	Location	Card Type	HW State	SW State	Config	State			
	0/0	NCS4K-20T-O-S	OPERATIONAL	N/A	NSHUT				
	0/1	NCS4K-20T-0-S NCS4K-20T-0-S	OPERATIONAL OPERATIONAL	N/A N/A	NSHUT				
	0/3 0/4	NCS4K-20T-O-S NCS4K-20T-O-S	OPERATIONAL OPERATIONAL	N/A N/A	NSHUT NSHUT				

0/5	NCS4K-20T-O-S OPERATIONAL N/A	NSHUT
0/6	NCS4K-20T-O-S OPERATIONAL N/A	NSHUT
0/7	NCS4K-20T-O-S OPERATIONAL N/A	NSHUT
0/8	NCS4K-24LR-O-S OPERATIONAL N/A	NSHUT
0/9	NCS4K-24LR-O-S OPERATIONAL N/A	NSHUT
0/10	NCS4K-2H-O-K OPERATIONAL N/A	NSHUT
0/11	NCS4K-2H-O-K OPERATIONAL N/A	NSHUT
0/12	NCS4K-2H10T-OP-KS OPERATIONAL N/A	NSHUT
0/13	NCS4K-2H10T-OP-KS OPERATIONAL N/A	NSHUT
0/14	NCS4K-2H10T-OP-KS OPERATIONAL N/A	NSHUT
0/15	NCS4K-2H10T-OP-KS OPERATIONAL N/A	NSHUT
0/RP0	NCS4K-RP OPERATIONAL OPERATIONAL	NSHUT
0/RP1	NCS4K-RP OPERATIONAL OPERATIONAL	NSHUT
0/FC0	NCS4016-FC2-M OPERATIONAL N/A	NSHUT
0/FC1	NCS4016-FC2-M OPERATIONAL N/A	NSHUT
0/FC2	NCS4016-FC2-M OPERATIONAL N/A	NSHUT
0/FC3	NCS4016-FC2-M OPERATIONAL N/A	NSHUT
0/CI0	NCS4K-CRAFT OPERATIONAL N/A	NSHUT
0/FT0	NCS4K-FTA OPERATIONAL N/A	NSHUT
0/FT1	NCS4K-FTA OPERATIONAL N/A	NSHUT
0/PT1	NCS4K-AC-PEM OPERATIONAL N/A	NSHUT
0/ECO	NCS4K-ECU OPERATIONAL N/A	NSHUT

For a specific FC, we can use: show platform | include 0/FC0

0/FC0 NCS4016-FC2-M OPERATIONAL N/A NSHUT

Step 13 show hw-module location location fpd

Example:

sysadmin-vm:0 RP0 # show hw-module location 0/FC0 fpd

Verify to check the status of the FPDs.

FPD Versions

0/FC0 NCS4016-FC2-M 0.1 PLX-8649 CURRENT 0.08 0.08

Note The **NEED UPGD** keyword in the Status column indicates that an FPD upgrade is required. To update an FPD, use the **upgrade hw-module location** *location fpd fpd-name* command.

Step 14 config

Enters the configuration mode.

Step 15 controller fabric plane plane-id

Example:

sysadmin-vm:0_RP0 (config) # controller fabric plane 0

Allows the user to perform further configurations on the selected plane.

Step 16 no shutdown

Example:

sysadmin-vm:0_RP0(config-plane-0) # no shutdown

	Brings up the fabric plane again.	
Step 17 Step 18	commit exit	
	Exits the configuration mode.	
Step 19	show controller fabric plane all	
	Example:	
	<pre>sysadmin-vm:0_RP0 # show controller fabric plane all</pre>	
	Verification to check if the fabric plane status is displayed as UP .	

What to do next

Repeat the above procedure to upgrade the remaining fabric cards.

Daisy Chain on Management Ports

Table 2: Feature History

Feature Name	Release Information	Description
Daisy Chain Support on NCS 4000	Cisco IOS XR Release 6.5.33	Typically the NCS 4000 devices are connected to a switch requiring 1-to-1 connections. From this release, it will be possible to have a Daisy Chain topology. Here multiple NCS 4000 devices are connected to form a chain-like structure, and only the first and last nodes are connected to a switch, thereby reducing the number of connections.
		Also, there is more redundancy as data is transmitted in both directions. The first connection acts as a primary path and carries the traffic whereas the last connection acts as a backup path. If the primary connection fails, the backup path is activated which allows traffic to continue to transmit in the network.

The daisy chain arrangement allows multiple NCS 4000 nodes to be connected to each other in a ring, where the first and last nodes are connected to a switch. The switch allows management of all the NCS4000 devices in the network and also prevents traffic storm. This arrangement allows the switch to transmit data in both directions and prevents one node failure from cutting off certain network parts.

Note When the EMS or Craft management interface is administratively shutdown using the **shutdown** command, the peer router interface does not go down due to HW limitation.

The following diagram shows the Daisy Chain topology where five NCS 4000 nodes are connected to each other over the EMS and CRAFT management ports.

Figure 1: NCS4K in a Daisy Chain Network

Configuring Daisy Chain on NCS 4000 involves the following tasks:

Configure Daisy Chain on Switch

You must configure the switch by connecting the switch ports to the head and tail nodes of the NCS4K device before configuring all the NCS4K devices in a daisy chain network. To configure Daisy Chain on switch, follow these steps:

Before you begin

The following prerequisites must be met before configuring Daisy chain on NCS4000:

- Enable Storm Control on Switch.
- STP must be running on the TOR switch.
- Management port 0 must not be in shut down state and must be configured with either IPv4 address.
- Management port 1 must not be configured with IP address.
- Daisy chain must be enabled on all the NCS4000 devices in the topology.

Procedure

Step 1 To connect the port 1/0/1 of the switch with the head node of the NCS4K device, perform these steps:

a) interface type Rack/Slot/Instance/Port

Example:

RP/0/RP0:switch(config)# interface gigabitethernet 0/1/0/1

Sets 0/1/0/1 as Gigabit Ethernet port and enters the port configuration mode.

b) switchport access vlan vlan-id

Example:

RP/0/RP0:switch(config) # switchport access vlan 1526

Configures the VLAN id 1526 for which this access port carries the traffic.

c) switchport mode mode

Example:

RP/0/RP0:switch(config) # switchport mode access

Specifies the Ethernet port as an access port.

Step 2 To connect the port 1/0/2 of the switch with the tail node of the NCS4K device, perform these steps:

a) interface type Rack/Slot/Instance/Port

Example:

RP/0/RP0:switch(config) # interface gigabitethernet 0/1/0/2

Sets 0/1/0/2 as Gigabit Ethernet port and enters the interface configuration mode.

b) switchport access vlan vlan-id

Example:

RP/0/RP0:switch(config) # switchport access vlan 1526

Configures the VLAN id 1526 for which this access port carries the traffic.

c) switchport mode mode

Example:

RP/0/RP0:switch(config) # switchport mode access

Specifies the Ethernet port as an access port.

Step 3 To configure the management ports, perform these steps:

a) interface type Rack/Slot/Instance/Port

Example:

RP/0/RP0:switch(config)# interface gigabitethernet 0/1/0/24

Sets 0/1/0/24 as Gigabit Ethernet port and enters the interface configuration mode.

b) switchport access vlan vlan-id

Example:

RP/0/RP0:switch(config) # switchport access vlan 1526 Configures the VLAN id 1526 for which this access port carries the traffic.

Step 4 To configure the vlan port, perform these steps:

a) interface type Rack/Slot/Instance/Port

Example:

RP/0/RP0:switch(config)# interface vlan 1526

Sets 1526 as VLAN port and enters the interface configuration mode.

b) ip address addresssubnet-mask

Example:

RP/0/RP0:switch(config) # ip address 10.0.24.32 255.255.255.224

Configures the ip address 10.0.24.32 on the CRAFT port of the head node.

For more details about these commands, see the Cisco Nexus 9000 Series NX-OS Command Reference guide.

Configure Daisy Chain on NCS 4000

After configuring Daisy Chain on switch, you need to configure daisy chain on the NCS 4000 devices. To configure Daisy Chain on NCS 4000, follow these steps:

Procedure

Step 1 To assign IP address to the EMS port of slot RP0, perform these steps:

a) interface type Rack/Slot/Instance/Port

Example:

RP/10/RP0:ios(config)#interface MgmtEth0/RP0/EMS/0

b) no shutdown

Example:

RP/10/RP0:ios(config-if)#no shut

c) ipv4 address odu

Example:

RP/10/RP0:ios(config-if)#ipv4 address 192.168.1.12/16

Step 2 To configure the CRAFT port of slot RP0, perform these steps:

a) interface type Rack/Slot/Instance/Port

Example:

RP/0/RP0:Node-41(config)#interface MgmtEth0/RP0/CRAFT/0

b) bridge-port routed-interface typeRack/Slot/Instance/Port

Example:

RP/0/RP0:Node-41(config-if)#bridge-port routed-interface MgmtEth0/RP0/EMS/0

c) no shutdown

Example:

RP/0/RP0:Node-41(config-if)#no shutdown

- **Step 3** To assign IP address to the EMS port of slot RP1, perform the step 1.
- **Step 4** To configure the CRAFT port of slot RP1, perform the step 2.

For more details about these commands, see the Daisy Chain Network Command Reference section of Command Reference for Cisco NCS 4000 Series guide.