
Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
First Published: 2020-05-29

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2020 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

C O N T E N T S

Full Cisco Trademarks with Software License ?

About This Guide viiP R E F A C E

Audience vii

Terms and Definitions vii

Related Documentation ix

ETSI NFV MANO Northbound API Overview 1C H A P T E R 1

ETSI NFV MANO Northbound API Overview 1

Managing Resources 3C H A P T E R 2

Managing Resources 3

Resource Definitions for ETSI API 3

Updating Resource Definitions 5

OAuth (Open Authorization) 2.0 Authentication 8

Managing VIM Connectors 11C H A P T E R 3

VIM Connectors Overview 11

Creating New VIM Connectors 12

Using an Existing VIM Connector 12

Updating the VIM Connector 13

Understanding Virtual Network Function Descriptors 15C H A P T E R 4

Virtual Network Function Descriptor Overview 15

Defining Extensions to the Virtual Network Function Descriptor 15

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
iii

Managing VNF Lifecycle Operations 21C H A P T E R 5

Managing the VNF Lifecycle 21

VNF Lifecycle Operations 22

Creating the VNF Identifier 23

Instantiating Virtual Network Functions 24

Querying Virtual Network Functions 30

Modifying Virtual Network Functions 36

Operating Virtual Network Functions 38

Terminating Virtual Network Functions 39

Deleting Virtual Network Function Resource Identifier 40

Monitoring Virtual Network Functions 41C H A P T E R 6

Monitoring Virtual Network Functions Using ETSI API 41

VMMonitoring Operations 43

Notification for VM Monitoring Status 43

Monitoring VNF Using D-MONA 45C H A P T E R 7

Onboarding D-MONA 45

Deploying D-MONA 45

Configuring D-MONA 46

Deploying VNF Using D-MONA 46

Monitoring Using D-MONA 47

Healing Virtual Network Functions 49C H A P T E R 8

Healing Virtual Network Functions Using ETSI API 49

Updating an Existing Deployment During Healing 51

Scaling Virtual Network Functions 55C H A P T E R 9

Scaling Virtual Network Functions Using ETSI API 55

VNFD Policies for Scaling 57

Dependencies on Multiple IP Addresses 59

Autoscaling of VNFs 60

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
iv

Contents

Error Handling Procedures 63C H A P T E R 1 0

VNF Lifecycle Management Error Handling Procedures 63

Alarms and Notifications for ETSI LCM Operations 67C H A P T E R 1 1

ETSI Alarms 67

Subscribing to Notifications 70

ETSI Failure and Load Notifications for VNFs 72

Auto-Scaling VNFs Using KPI Instructions 75

Healing VNFs Using KPI Instructions 78

Administering ESC 79C H A P T E R 1 2

ETSI Performance Reports 79

Performance Management Jobs 79

Configuring Threshold for Performance Management Job 82

Subscribing to Performance Management Job 85

ETSI Production Properties 91A P P E N D I X A

ETSI Production Properties 91

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
v

Contents

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
vi

Contents

About This Guide

This guide helps you to perform tasks such as lifecycle management operations, monitoring, healing and
scaling of the VNFs using the ETSI APIs.

• Audience, on page vii

Audience
This guide is designed for network administrators responsible for provisioning, configuring, and monitoring
VNFs. Cisco Elastic Services Controller (ESC) and the VNFs whose lifecycle it manages are deployed in a
Virtual Infrastructure Manager (VIM). Currently OpenStack, VMware vCenter, VMware vCloud Director,
CSP 2100 / 5000, and Amazon Web Services (AWS) are the supported VIMs. The administrator must be
familiar with the VIM layer, vCenter, OpenStack and AWS resources, and the commands used.

Cisco ESC is targeted for Service Providers (SPs) and Large Enterprises. ESC helps SPs reduce cost of
operating the networks by providing effective and optimal resource usage. For Large Enterprises, ESC
automates provisioning, configuring and monitoring of network functions.

Terms and Definitions
The below table defines the terms used in this guide.

Table 1: Terms and Definitions

DefinitionsTerms

AmazonWeb Services (AWS) is a secure cloud services platform, offering compute, database
storage, content delivery and other functionalities.

AWS

Elastic Services Controller (ESC) is a Virtual Network FunctionManager (VNFM), performing
lifecycle management of Virtual Network Functions.

ESC

European Telecommunications Standards Institute (ETSI) is an independent standardization
organization that has been instrumental in developing standards for information and
communications technologies (ICT) within Europe.

ETSI

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
vii

DefinitionsTerms

A deployment flavour definition contains information about affinity relationships, scaling,
min/max VDU instances, and other policies and constraints to be applied to the VNF instance.
The deployment flavour defined in the VNF Descriptor (VNFD) must be selected by passing
the flavour_id attribute in the InstantiateVNFRequest payload during the instantiate VNF
LCM operation.

ETSI
Deployment
Flavour

ESC High Availability (HA) is a solution for preventing single points of ESC failure and
achieving minimum ESC downtime.

HA

Key Performance Indicator (KPI) measures performance management. KPIs specify what,
how and when parameters are measured. KPI incorporates information about source,
definitions, measures, calculations for specific parameters.

KPI

Cisco Managed Services Accelerator (MSX) is a service creation and delivery platform that
enables fast deployment of cloud-based networking services for both Enterprises and Service
Providers customers.

MSX

Network Function Virtualization (NFV) is the principle of separating network functions from
the hardware they run on by using virtual hardware abstraction.

NFV

NFV Orchestrator (NFVO) is a functional block that manages the Network Service (NS)
lifecycle and coordinates the management of NS lifecycle, VNF lifecycle (supported by the
VNFM) and NFVI resources (supported by the VIM) to ensure an optimized allocation of
the necessary resources and connectivity.

NFVO

Cisco Network Services Orchestrator (NSO) is an orchestrator for service activation which
supports pure physical networks, hybrid networks (physical and virtual) and NFV use cases.

NSO

Flavors define the compute, memory, and storage capacity of nova computing instances. A
flavor is an available hardware configuration for a server. It defines the size of a virtual server
that can be launched.

OpenStack
Compute
Flavor

A service consists of a single or multiple VNFs.Service

The Virtualisation Deployment Unit (VDU) is a construct that can be used in an information
model, supporting the description of the deployment and operational behaviour of a subset
of a VNF, or the entire VNF if it was not componentized in subsets.

VDU

The Virtualized Infrastructure Manager (VIM) adds a management layer for the data center
hardware. Its northbound APIs are consumed by other layers to manage the physical and
virtual resources for instantiation, termination, scale in and out procedures, and fault &
performance alarms.

VIM

A Virtual Machine (VM) is an operating system OS or an application installed on a software,
which imitates a dedicated hardware. The end user has the same experience on a virtual
machine as they would have on dedicated hardware.

VM

A Virtual Network Function (VNF) consists of a single or a group of VMs with different
software and processes that can be deployed on a Network Function Virtualization (NFV)
Infrastructure.

VNF

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
viii

About This Guide
About This Guide

DefinitionsTerms

AVirtual Network Function Component is (VNFC) a composite part of the VNF, synonymous
with a VDU, which could be implemented as a VM or a container.

VNFC

Virtual Network Function Manager (VNFM) manages the life cycle of a VNF.VNFM

Related Documentation
The Cisco ESC doc set comprises of the following guides to help you perform installation, configuration; the
lifecycle management operations, healing, scaling, monitoring and maintenance of the VNFs using different
APIs.

Information Provided in This GuideGuide

Includes new features and bugs, known issues.Cisco Elastic Services Controller Release
Notes

Includes procedure for new installation and upgrade scenarios,
pre and post installation tasks, and procedure for ESC High
Availability (HA) deployment.

Cisco Elastic Services Controller Install
and Upgrade Guide

Includes lifecycle management operations, monitoring, healing
and scaling of the VNFs.

Cisco Elastic Services Controller User
Guide

Includes lifecycle management operations, monitoring, healing
and scaling of the VNFs using the ETSI APIs.

Cisco Elastic Services Controller ETSI
NFV MANO User Guide

Includes maintenance, monitoring the health of ESC, and
information on system logs generated by ESC.

Cisco Elastic Services Controller
Administration Guide

Information on the Cisco Elastic Services Controller NETCONF
northbound API, and how to use them.

Cisco Elastic Services Controller
NETCONF API Guide

Information on the Cisco Elastic Services Controller RESTful
northbound API, and how to use them.

Cisco Elastic Services Controller REST
API Guide

Includes information on the Cisco Elastic Services Controller
ETSI APIs, and how to use them.

Cisco Elastic Services Controller ETSI
REST API Guide

Includes information about deployment attributes used in a
deployment datamodel.

Cisco Elastic Services Controller
Deployment Attributes

Includes information on licenses and notices for open source
software used in Cisco Elastic Services Controller.

Cisco Elastic Services Controller Open
Source

Obtaining Documentation Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service
request, and gathering additional information, see What's New in Cisco Product Documentation, at:
http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
ix

About This Guide
Related Documentation

http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html

Subscribe to What's New in Cisco Product Documentation, which lists all new and revised Cisco technical
documentation, as an RSS feed and deliver content directly to your desktop using a reader application. The
RSS feeds are a free service.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
x

About This Guide
About This Guide

C H A P T E R 1
ETSI NFV MANO Northbound API Overview

• ETSI NFV MANO Northbound API Overview, on page 1

ETSI NFV MANO Northbound API Overview
The ETSI NFV MANO API (ETSI API) is another programmatic interface to ESC that uses the REST
architecture. The ETSIMANO adheres to the standards defined by the European Telecommunications Standards
Institute (ETSI), specifically around Management and Orchestration (MANO). The API accepts and returns
HTTPmessages that contain JavaScript Object Notation (JSON) payloads. The API contains its own datamodel
designed around the ETSI MANO specifications that abstract away from the ESC core datamodel.

For information on VNF lifecycle management operations using the REST/NETCONF APIs, see the Cisco
Elastic Services Controller User Guide.

Table 2: ETSI MANO Specifications

DescriptionVersion SupportSpecification

Format and structure for the VNF
Descriptor

v2.5.1SOL001

Defines all interactions over the
Ve-Vnfm reference point

v2.5.1SOL002

Defines all interactions over the
Or-Vnfm reference point

v2.4.1SOL003

The terminology used in the ETSI-specific sections of the user guide align to the ETSI MANO standards
defined in the ETSI documentation. For more information, see the ETSI website.

Note

The current implementation of the ETSI NFV MANO standards consists of the Or-Vnfm and Ve-Vnfm
reference points, which are the interfaces between the NFVO and VNFM, and the EM and the VNFM
respectively. Both of these allow for the onboarding of ETSI-compliant CSAR packages, management of
virtualized resources, and VNF lifecycle management (LCM) operations.

For more information on Or-Vnfm and Ve-Vnfm reference points, see the ETSI Group Specification document
on the ETSI website. The figure below represents the NFV MANO architecture for all reference points.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
1

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
http://www.etsi.org/

Figure 1: NFV MANO Architecture with Reference Points

For information on managing resources, see Resource Definitions for ETSI API, on page 3.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
2

ETSI NFV MANO Northbound API Overview
ETSI NFV MANO Northbound API Overview

C H A P T E R 2
Managing Resources

• Managing Resources, on page 3
• Resource Definitions for ETSI API, on page 3
• OAuth (Open Authorization) 2.0 Authentication, on page 8

Managing Resources

Resource Definitions for ETSI API
Cisco Elastic Services Controller (ESC) resources comprise of images, flavours, tenants, volumes, networks,
and subnetworks. These resources are the ones that ESC requests to provision a Virtual Network Function.

For ETSI MANO, these resource definitions are created by NFVO either at the time of onboarding the VNF
package or onboarding the tenant, and represented by the VIM identifiers in the request to ESC.

For information on managing resources using NETCONF or REST APIs, see Managing Resources Overview
in the Cisco Elastic Services Controller User Guide.

ETSI API Documentation

You can access the ETSI API documentation directly from the ESC VM:

http:[ESC VM IP]:8250/API

The ETSI API documentation provides details about all the various operations supported through the ESTI
MANO interface.You can also see the Cisco ETSI API Guide for more information.

The following table lists the resource definitions on the VIM that must be made available before VNF
instantiation.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
3

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-programming-reference-guides-list.html

Table 3: Resource Definitions on VIM

OpenStackResource Definitions

Out of band tenants

You can create a tenant using NETCONF API, REST
API, or the ESC portal. You can also create a tenant
directly on the VIM. The tenant is then referred to
within the vimConnectionInfo data structure. Formore
information, see VIMConnectors Overview, on page
11.

Tenants

Out of band images

The NFVO onboards a VNF package, extracts and
then onboards the image contained within the VNF
package on to the VIM. Though the VNFD refers to
the image file, because of the size of the image file,
instead of onboarding the image at the time of
deployment, the vimAssets in the Grant stipulates the
image to be used.

Images

Out of band flavors

During onboarding of the VNF package, the NFVO
looks at each cisco.nodes.nfv.Vdu.Compute node's
capabilities in the VNFD to determine the flavor to
be created. This is available later at the time of
instantiation, or optionally overriden by a VIM flavor
supplied at instantiation time as an additional
parameter.

ETSI deployment flavour is a different
concept than OpenStack compute flavor.
For more information, see Terms and
Definitions in About This Guide.

Note

Flavors

ESC supports out-of-band volumes as Cisco extension.Volumes

External networks specified in the instantiation
payload to which external connection points will
connect.

External Networks (Virtual Link)

External networks specified in the instantiation
payload to which internal virtual links will be bound
instead of creating ephemeral networks.

Externally Managed Internal Virtual Links

Out-of-band subnetsSubnetworks

For information on onboarding VNF packages and lifecycle operations using the ETSI API, see Managing
the VNF Lifecycle, on page 21.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
4

Managing Resources
Resource Definitions for ETSI API

Updating Resource Definitions
This section provides details about updating ETSI API resource definitions.

Updating the VNF Flavour

You can define the alternate VNF nodes and deployment flavours for a single VNFD using the following
TOSCA parameters:

• Import statements—The import statement allows a single, parent VNFD yaml file to conditionally
include other files based on an input value which can be specified dynamically, at run time.

• Substitution mappings—The substitution mapping applies only to the node types derived from the
tosca.nodes.nfv.VNF. You cannot substitute values of other node types that is, Connection Points, Virtual
Links and so on.

Example1:

In this example, the yaml file contains three import files.

All three files must exist in the VNFD ZIP archive file in the same location as the parent file importing them.

The requirements and capabilities are not defined in the derived tosca.nodes.nfv.VNF node. These aremandatory
for defining characteristics of VNFs instantiated using this VNFD. They are defined within the imported files.
tosca_definitions_version: tosca_simple_yaml_1_2
description: Substitution Mapping Example

imports:
- df_default.yaml
- df_silver.yaml
- df_gold.yaml

. . .

node_types:
my-vnf:
derived_from: tosca.nodes.nfv.VNF

. . .

topology_template:

. . .

########################
Substitution Mapping
########################
substitution_mappings:
node_type: my-vnf
requirements:
None

node_templates:

vnf:
type: my-vnf
properties:
descriptor_id: 8717E6CC-3D62-486D-8613-F933DE1FB3A0

. . .

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
5

Managing Resources
Updating Resource Definitions

flavour_id: default
flavour_description: Default VNF Deployment Flavour

Example 2:

When the VNF is instantiated, the required flavour is sent in the Instantiate request to the VNFM. The TOSCA
parser tries to match the flavour and the VNF node name with the defined substitution mappings. These may
be imported or defined within the VNFD itself. For example, the df_silver.yaml contains the following:

tosca_definitions_version: tosca_simple_yaml_1_2

description: Silver Deployment Flavour

imports:

topology_template:
substitution_mappings:
node_type: my-vnf
properties:
flavour_id: silver
flavour_description: Silver VNF Deployment Flavour
requirements:
- virtual_link: [vm1_nic1, virtual_link]

silver is the flavourId passed in the Instantiate Request payload. The parent yaml shown above has its empty
requirements section updated with the requirements from the silver profile, and the existing flavour_id and
flavour_description properties are updated as well.

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0
description: Deployment Flavour SILVER
topology_template:
substitution_mappings:
node_type: tosca.nodes.nfv.VNF.CiscoESC
requirements:
virtual_link: [anECP, external_virtual_link]

capabilities:
deployment_flavour:
properties:
flavour_id: silver
description: 'SILVER Deployment Flavour'
vdu_profile:
vdu_node_1:
min_number_of_instances: 2
max_number_of_instances: 2

instantiation_levels:
default:
description: 'Default Instantiation Level'
vdu_levels:
vdu_node_1:
number_of_instances: 1

scale_info:
default_scaling_aspect:
scale_level: 2

silver_level:
description: 'SILVER Instantiation Level'
vdu_levels:
vdu_node_1:
number_of_instances: 2

scale_info:
default_scaling_aspect:
scale_level: 2

default_instantiation_level_id: default
vnf_lcm_operations_configuration: {}

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
6

Managing Resources
Updating Resource Definitions

scaling_aspect:
- default_scaling_aspect

cisco_esc_properties:

description: "SILVER: This is substituted if not already defined"

ESC sends a POST request to update the VNF flavour:

Method Type:

POST

VNFM Endpoint:

/vnflcm/v1/vnfinstances/{vnfInstanceId}/change_flavour

Updating the External VNF Connectivity

You can update the external VNF connectivity in an existing deployment. The API supports the following
changes:

• Disconnect the existing connection points (CPs) to the existing external virtual link and connect to a
different virtual link.

• Change the connectivity parameters of the existing external CPs, including changing the addresses.

ESC sends a POST request to update the VNF external connectivity:

Method Type

POST

VNFM Endpoint

/vnflcm/v1/vnfinstances/{vnfInstanceId}/change_ext_conn

Request Payload (Data structure = ChangeExtVnfConnectivityRequest)

{
"extVirtualLinks": [
{
"id": "extVL-98345443-7797-4c6d-a0ed-e18771dacf1c",
"resourceId": "node_1_ecp",
"extCps": [
{
"cpdId": "node_1_ecp",
"cpConfig": [
{
"cpProtocolData": [
{
"layerProtocol": "IP_OVER_ETHERNET",
"ipOverEthernet": {
"ipAddresses": [
{
"type": "IPV4",
"numDynamicAddresses": 2,
"subnetId": "esc-subnet"

}
]

}
}

]
}

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
7

Managing Resources
Updating Resource Definitions

]
}

]
}

]
}

The id in the extVirtualLinks, extVL-98345443-7797-4c6d-a0ed-e18771dacf1c in the above example, must
also exist in the instantiatedVnfInof in the vnfInstance.

Note

Merging Policy

The substitution merges the new values into the VNFD.

1. For regular scalar properties such as name=joe, the value is replaced in the VNFD.

2. Arrays such as [list, of, strings] are merged. The new values are added into the array, if they do not exist.

3. Objects such as where a key is indented under another key, are replaced. The configurable_properties
object in the matched substitution will overwrite that defined in the VNFD.

Parser Behaviour

• After the substitution mappings are made, the parser tries to populate any additionalParams provided.
Note that the command fails if the input parameters do not match those in the template.

For more information on VNF lifecycle operations, see Managing the VNF Lifecycle, on page 21.

OAuth (Open Authorization) 2.0 Authentication
The ETSI NFVMANO supports OAuth 2.0 authentication for SOL003 Or-Vnfm reference point. The NFVO
makes a token request to ESC providing the client credentials such as client id and client secret for
authentication. In turn, ESC verifies the request and returns the access token.

The NFVO makes a POST request providing the clientId and secret as primary authentication.

Method Type

POST

URL
{apiRoot}/oauth2/token

Header

Authorization: Basic {base 64 encoded CLIENT_ID:CLIENT_SECRET}
Accept: application/json
Content-Type: application/x-www-form-urlencoded

Body
grant_type=client_credentials

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
8

Managing Resources
OAuth (Open Authorization) 2.0 Authentication

ESC returns the access token in response.

Example:
{

"access_token":
"eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJjaHJpcyIsImlzcyI6IkVUU0ktVk5GTSIsImlhdCI6MTU1ODYwMzk2NiwiZXhwIjoxNTU4NjA0NTY2f

Q.lAtre7vdCKJjgzNs7p9P3NS2qMcXegC-oWXmy5Kakn0AL95gLWF6liOqPViMZNnWZLOsG5r1kPnGoBWnN0tgIw",
"token_type": "bearer",
"expires_in": 600

}

The access token is then used to access the or_vnfm endpoints.

Example:

Method

GET

URL
{apiRoot}/vnflcm/v1/subscriptions

Headers
Authorization: Bearer eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJjaHJpcyIsImlzcyI6IkVUU0k
tVk5GTSIsImlhdCI6MTU1ODYwMzk2NiwiZXhwIjoxNTU4NjA0NTY2fQ.lAtre7vdCKJjgzNs
7p9P3NS2qMcXegC-oWXmy5Kakn0AL95gLWF6liOqPViMZNnWZLOsG5r1kPnGoBWnN0tgIw

The existing tokens become invalid if the ETSI service is restarted.Note

Accessing and Updating the OAuth Properties File

ESC stores the client id and secret in the new etsi-production.yaml properties file in the same location as the
etsi-production.properties file. The new escadm etsi commands are available to maintain the client id and
secret values. The client secret is encrypted the same way as the existing rest username.

To add or update a client id

sudo escadm etsi oauth2_clients --set <CLIENT_ID>:<CLIENT_SECRET>

To remove a client id

sudo escadm etsi oauth2_clients --remove <CLIENT_ID>

Restart the ETSI services after updating the OAuth 2.0 values.Note

For information on other properties, see ETSI Production Properties, on page 91.

OAuth Calls from ETSI to the NFVO

ESC supports OAUTH 2.0 calls from ETSI to the NFVO.

The following properties are added to the etsi-production.properties file:

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
9

Managing Resources
OAuth (Open Authorization) 2.0 Authentication

nfvo.clientID=<YourClientID>
nfvo.clientSecret=<YourClientSecret>
nfvo.tokenEndpoint=<Your NFVO Token Endpoint>
nfvo.authenticationType=OAUTH2

The Client id, ClientSecret and TokenEndpoint must match that of the OAUTH 2.0 Server. The authentication
type determines authentication of the outgoing calls from ESC to the NFVO. The authentication type must
be either BASIC, or OAUTH2.

The tokens from the NFVO are stored against the token endpoint in the properties file.

When the NFVO sends a call request, ETSI checks for the tokens stored against the token endpoint. If the
token has not expired, then ETSI adds the old token to the header of the request and executes the call. A new
token is required if the token fails to execute.

If there are no tokens against the token endpoint, then new tokens are required to execute the call.

OAuth 2.0 Notification and Subscription

The subscription payloads must add the following to enable OAuth 2.0 authentication with the notifications:

{
"authentication": {
"authType": [
"OAUTH2_CLIENT_CREDENTIALS"

],
"paramsOauth2ClientCredentials": {
"clientId": <client_id>,
"clientPassword": <client_secret>,
"tokenEndpoint": <token_endpoint>

}
}

}

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
10

Managing Resources
OAuth (Open Authorization) 2.0 Authentication

C H A P T E R 3
Managing VIM Connectors

• VIM Connectors Overview, on page 11
• Creating New VIM Connectors, on page 12
• Using an Existing VIM Connector, on page 12
• Updating the VIM Connector, on page 13

VIM Connectors Overview
The ETSI API creates VIM connectors during the processing of an LCMoperation or uses an existing connector.

The Grant response or the LCM operation request from the NFVO supplies new VimConnectionInfo to the
VnfInstance. During the processing of the LCM operation, ETSI synchronizes the new VimConnectionInfo
with the VIM connectors in ESC.

A VimConnectionInfo is new if the VnfInstance does not have an existing VimConnectionInfo with the same
id. Any VimConnectionInfo supplied that matches an existing VimConnectionInfo id stored against any
VnfInstance as part of a LCM request uses the existing connector and ignore any changes submitted in the
new request.

ESC creates a new VIM connector only if a matching VIM connector is not available.

The ETSI API allows only the existing VimConnectionInfo, and the associated VIM connector, to be updated
via the Modify VNF information operation.

The Grant from the NFVO specifies the vimConnectionId for each resource. This value identifies the
VimConnectionInfo and the associated VIM connector for creating the locator for each resource. The VIM
specific VimConnectionInfo.accessInfo properties are set as additional properties in the locator.

VimConnectionInfo in OpenStack:

{
"id": "435456",
"vimType": "OPENSTACK_V3",
"interfaceInfo": {
"endpoint": "https://10.18.54.42:13001/v3/"

},
"accessInfo": {
"username": "admin",
"password": "bmkQJtyDrbPFnJT8ENdZw2Maw",
"project": "cbamnso",
"projectDomain": "Default",
"userDomain": "Default",

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
11

"vim_project": "cbamnso"
}

}

VimConnectionInfo in vCloud Director:

{
"id": "435456",
"vimType": "VMWARE_VCD",
"interfaceInfo": {
"endpoint": "https://10.85.103.150"

},
"accessInfo": {
"username": "admin@cisco",
"password": "bmkQJtyDrbPFnJT8ENdZw2Maw",
"vim_project": "cbamnso",
"vim_vdc": "vdc1"

}
}

Creating New VIM Connectors
During the ETSI LCM operation, ESC checks each VimConnectionInfo against the existing VIM connector
records. If an existing VIM connector is not available, ESC creates a new VIM connector.

If the VimConnectionInfo.vimId is supplied, then this value is used as the id of the new VIM connector. If the
VimConnectionInfo.vimId is not supplied, then an id is generated for the new VIM connector and this value
is also set as the VimConnectionInfo.vimId.

To use an existing VIM connector, see Using an Existing VIM Connector, on page 12.

Using an Existing VIM Connector
During an ETSI LCM operation, ESC checks for an existing vimConnectionInfo with a matching identifier
stored against any VnfInstance.

Existing VIM connectors are found by:

• Matching the VimConnectionInfo.vimId, if supplied, to the id of a VIM connector.

• Matching the VIM specific properties of the VimConnectionInfo to a VIM connector.

• OpenStack

• vimType

• interfaceInfo.endpoint

• accessInfo.project

• vCloud Director

• vimType

• interfaceInfo.endpoint

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
12

Managing VIM Connectors
Creating New VIM Connectors

If a matching VIM connector is found, and the VimConnectionInfo.vimId is not set, then the
VimConnectionInfo.vimId is set to the id of the VIM connector.

If an NFVO provides a VimConnectionInfo with accessInfo to stipulate some of the connection properties,
we use the following keys to configure the VIM connectors:

OpenStack

• username

• password

• project

• projectDomain

• userDomain

• vim_project

vCloud Director

• username

• password

• vim_project

• vim_vdc

The ETSI specifications does not specify the keys to be used as part of the accessInfo attribute. In order to
ease integration, in the event that an NFVO uses different keys, the properties file allows the user to specify
a mapping from the third party keys to the ones that ESC understands.

mapping.vimConnectionInfo.accessInfo.username
mapping.vimConnectionInfo.accessInfo.password
mapping.vimConnectionInfo.accessInfo.project
mapping.vimConnectionInfo.accessInfo.projectDomain
mapping.vimConnectionInfo.accessInfo.userDomain
mapping.vimConnectionInfo.accessInfo.vim_project
mapping.vimConnectionInfo.accessInfo.vim_vdc

To create a new VIM connector, see Creating New VIM Connectors, on page 12.

Updating the VIM Connector
The ETSI API updates the existing VimConnectionInfo, and the associated VIM connector via the Modifying
Virtual Network Functions, on page 36 operation. The VimConnectionInfo in the modify request payload is
compared to the existing VimConnectionInfo stored against the VnfInstance.

If an existing VimConnectionInfo stored against any VnfInstance with a matching id is not found, then then
VimConnectionInfo is added to the VnfInstance.

If an existing VimConnectionInfo stored against any VnfInstance with a matching id is found, then the
VimConnectionInfo is updated. If the VimConnectionInfo has been modified and it has an associated VIM
connector, then the VIM connector is also updated.

To create new VIM connectors, see Creating New VIM Connectors, on page 12.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
13

Managing VIM Connectors
Updating the VIM Connector

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
14

Managing VIM Connectors
Updating the VIM Connector

C H A P T E R 4
Understanding Virtual Network Function
Descriptors

• Virtual Network Function Descriptor Overview, on page 15
• Defining Extensions to the Virtual Network Function Descriptor, on page 15

Virtual Network Function Descriptor Overview
ESC supports a TOSCA-based Virtual Network Function Descriptor (VNFD) to describe the VNF properties.
The VNFD conforms to the GS NFV-SOL 001 specifications and standards specified by ETSI.

The VNFD file describes the instantiation parameters and operational behaviors of the VNFs. It contains KPIs,
and other key requirements that can be used in the process of onboarding and managing the lifecycle of a
VNF.

For VNF Lifecycle operations, see VNF Lifecycle Operations, on page 22.

Defining Extensions to the Virtual Network Function Descriptor
ESC implements extensions to the VNFD defined by Cisco to expose the more advanced concepts supported
by ESC, but missing in the ETSI standards. These extensions are strongly typed in the Cisco types definition
to describe the overridden data, node, and interface types.

VNF Configurable Properties

The VNF node type is always customized for each VNF. The Cisco extensions provide the ability to specify
the recovery policy and time to wait for the VNF to recover before ESC considers any mitigating action.

For example:
vnf:

type: cisco.VPC.1_0.1_0
properties:
descriptor_id: b98450dd-f532-4a42-8419-e3dc04327318
descriptor_version: '3.8'
provider: cisco
product_name: VPC
software_version: 1.0
product_info_name: 'Virtual Packet Core (VPC); 32 vCPUs, 64Gb RAM, 66Gb vStorage'
vnfm_info:
- '9:Cisco Elastic Services Controller:v04.04.01'

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
15

configurable_properties:
is_autoscale_enabled: false
is_autoheal_enabled: false

lcm_operations_configuration:
heal:
recovery_action: REBOOT_THEN_REDEPLOY
recovery_wait_time: 0

flavour_id: default
flavour_description: 'Default VNF Deployment Flavour'

Compute

The Cisco Compute node allows for many of the ESC features to be exposed via the extended ETSI data
model. This includes the following:

• Overriding the automatically generated name for a VNFC on the VIM.

• VIM flavor (overriding the ETSI capabilities specified for a VNFC).

• Supplying ESC with an expected bootup time to prevent further actions being taken until this timer has
expired.

• Providing Day-0 configuration blocks to execute/store on the VNFC once deployed.

• Specifying KPI parameters and associated rules to configure the monitoring agent.

• Intra-VM Group placement rules.

For example:
vdu1:
type: cisco.nodes.nfv.Vdu.Compute
properties:
name: Example VDU1
description: Example VDU
boot_order:
- boot1-volume

configurable_properties:
additional_vnfc_configurable_properties:
vim_flavor: Automation-Cirros-Flavor
bootup_time: 1800

name_override: my-vdu-1
vdu_profile:
min_number_of_instances: 1
max_number_of_instances: 1
static_ip_address_pool:
network: esc-net
ip_address_range:
start: { get_input: VDU1_NETWORK_START }
end: { get_input: VDU1_NETWORK_END }

ip_addresses: { get_input: VDU1_SCALE_IP_LIST }
kpi_data:
VM_ALIVE-1:
event_name: 'VM_ALIVE-1'
metric_value: 1
metric_cond: 'GT'
metric_type: 'UINT32'
metric_occurrences_true: 1
metric_occurrences_false: 30
metric_collector:
type: 'ICMPPing'
nicid: 1
poll_frequency: 10
polling_unit: 'seconds'

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
16

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

continuous_alarm: false
admin_rules:
VM_ALIVE-1:
event_name: 'VM_ALIVE-1'
action:
- 'ALWAYS log'
- 'FALSE recover autohealing'
- 'TRUE esc_vm_alive_notification'

placement_type: zone
placement_target: nova
placement_enforcement: strict
vendor_section:
cisco_esc:
config_data:
example.txt:
file: ../Files/Scripts/example.txt
variables:
DOMAIN_NAME: { get_input: DOMAIN_NAME }
NAME_SERVER: { get_input: NAME_SERVER }
VIP_ADDR: { get_input: VIP_ADDR }
VIP_PREFIX: { get_input: VIP_PREFIX }

capabilities:
virtual_compute:
properties:
virtual_cpu:
num_virtual_cpu: 8

virtual_memory:
virtual_mem_size: 16

requirements:
- virtual_storage: cdr1-volume
- virtual_storage: boot1-volume

You can supply a high number of input parameters, allowing the use of a single template for multiple
deployments.

Note

Connection Point

The Cisco extensions to the VduCp node type mainly allows for improved IP addressing capabilities and
accessibility to the interface. The features added to the connection point are as follows:

• Overriding the automatically generated name for a port on the VIM

• Static IP Addresses (and pools for scaling)

• Identification of whether the port is a management port (i.e. used for monitoring)

• Allowed Address Pairs

• Support for specific network card types and interface types, e.g. SR-IOV

• Support for port binding profiles

• Whether port security is enabled

For example:
vdu1_nic0:

type: cisco.nodes.nfv.VduCp
properties:
layer_protocols: [ipv6]

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
17

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

protocol:
- associated_layer_protocol: ipv6

trunk_mode: false
order: 0
nw_card_model: virtio
iface_type: direct
management: true
name_override: my-vdu1-nic0
ip_subnet:
- ip_address: { get_input: VDU1_NIC0_IP }

allowed_address_pairs:
- ip_address: { get_input: VDU1_NIC0_AADR_PAIRS }

port_security_enabled: false
binding_profile:
trusted: true
requirements:
- virtual_binding: vdu1

If there is a requirement to control these properties on a per-deployment basis, then replace the hard-coded
values with inputs in the VNFD that can be supplied as additionalParams in the incoming request.

The port binding profile is available for Pike and above versions of OpenStack.Note

Volume

ESC supports out-of-band volume as a Cisco extension. This allows the specification of the persistent volume
UUID as the resourceId property against the cisco.nodes.nfv.Vdu.VirtualBlockStorage node to be used in
place of the ephemeral volume defined in the VNFD. Instead of adding extra properties, ESC allows to override
the volume specified in the VNFD and supplies its own persistent (deployed out-of-band) storage by identifying
it with a UUID from the VIM.

For example:
boot1-volume:
type: cisco.nodes.nfv.Vdu.VirtualBlockStorage
properties:
resource_id: { get_input: VDU1_BOOT_VOL_UUID }
virtual_block_storage_data:
size_of_storage: 4GB
vdu_storage_requirements:
vol_id: 1
bus: ide
type: LUKS

sw_image_data:
name: 'Automation_Cirros'
version: '1.0'
checksum: 9af30fce37a4c5c831e095745744d6d2
container_format: bare
disk_format: qcow2
min_disk: 2 GB
size: 2 GB

artifacts:
sw_image:
type: tosca.artifacts.nfv.SwImage
file: ../Files/Images/Automation-Cirros.qcow2

To specify the out-of-band resource in place of ephemeral resource, ESC allows you to use the incoming
request to match tags in the VNFD during instantiation. A new data structure is appended to the existing
InstantiateVnfRequest.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
18

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

For example,

{
"flavourId": "default",
"instantiationLevelId": "default",
"extVirtualLinks": [{}],
"extManagedVirtualLinks": [{}],
"extManagedVolumes": [

{
"virtualStorageDescId": "cf-cdr1-volume",
"resourceId": "vol123"

},
{

"virtualStorageDescId": "cf-boot1-volume",
"resourceId": "vol456"

}
],

...
}

Security Group Rule

As per the handling of the volume above, ESC provides the ability to specify an out-of-band security group
instead of configuring one in the VNFD. This is because the verbs used to describe the security group in the
standards documentation are too simplistic for a very complicated configuration.

For example:
- NETWORK_ORCH_SEC_GRP_1:

type: cisco.policies.nfv.SecurityGroupRule
group_name: { get_input: VIM_NETWORK_ORCH_SEC_GRP_1 }
targets: [vdu1_nic0]

Custom VM Name

The Cisco extension allows you to customize the VNFC (VM) name in a deployment using additional
parameters. The ESC ETSI includes the additional parameters to customize VM names.

To configure the VM name on the VIM, you must first define the data type and then extend the Cisco node
type for the compute node:

tosca_definitions_version: tosca_simple_yaml_1_2
data_types:
cisco.datatypes.nfv.VnfcAdditionalConfigurableProperties:
derived_from: tosca.datatypes.nfv.VnfcAdditionalConfigurableProperties
properties:
vim_flavor:
type: string
required: true

bootup_time:
type: integer
required: true

vm_name_override:
type: string
required: false

These definitions allow the VNFD node_templates to use the inputs to map to the Compute node:

topology_template:
inputs:

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
19

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

...

node_templates:

#####################
VDU configuration
#####################

c1:
type: cisco.nodes.nfv.Vdu.Compute
properties:
name: control-function 1
description: Vdu1 of an active:standby (1:1) redundant pair of CF VMs
...
configurable_properties:
additional_vnfc_configurable_properties:
vim_flavor: { get_input: CF_FLAVOR }
bootup_time: { get_input: BOOTUP_TIME_CF }
vm_name_override: { get_input: VIM_C1_VM_NAME] }

...
capabilities:
virtual_compute:
properties:
virtual_cpu:
num_virtual_cpu: 8

virtual_memory:
virtual_mem_size: 16 GiB

requirements:
- virtual_storage: cf-cdr1-volume
- virtual_storage: cf-boot1-volume

Specify vm_name_override under configurable properties of the compute node. If vm_name_override is not
specified, ESC will auto generate the VM names.

ESC stores the VNFC specific value in
VnfInstance.instantiatedVnfInfo.vnfcResourceInfo.metadata.vim_vm_name for the VNFC identified by the
vduId, which matches the label given to the Compute node representing the VNFC.

For information on lifecycle management operations, see Managing the VNF Lifecycle, on page 21.

SR-IOV

ESC ETSI NFV MANO supports SR-IOV properties using the Cisco data types. You can configure the
interface to associate the VNFC with an SR-IOV pass through adapter.

Cisco data type:

cisco.datatypes.nfv.L2ProtocolData:
derived_from: tosca.datatypes.nfv.L2ProtocolData
properties:
segmentation_id:
type: integer
required: false

Example VNFD:

virtual_link_protocol_data:
- associated_layer_protocol: ethernet
l2_protocol_data:
network_type: vlan
physical_network: vlan_network
segmentation_id: { get_input: VL1_SEG_ID }

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
20

Understanding Virtual Network Function Descriptors
Defining Extensions to the Virtual Network Function Descriptor

C H A P T E R 5
Managing VNF Lifecycle Operations

• Managing the VNF Lifecycle, on page 21
• VNF Lifecycle Operations, on page 22

Managing the VNF Lifecycle
The NFVO communicates with ESC using the ETSI MANO API for lifecycle management of a VNF. A
configuration template, the Virtual Network Function Descriptor (VNFD) file describes the deployment
parameters and operational behaviors of a VNF type. The VNFD is used in the process of deploying a VNF
and managing the lifecycle of a VNF instance.

The lifecycle operations of a VNF instance is as follows:

1. Create a VNF Identifier—ESC generates a new VNF Instance Id (a universally unique identifier) that
is subsequently used as a handle to reference the instance upon which to execute further operations.

2. Instantiate / Deploy VNF—As part of VNF instantiation, ESC instantiates a new VNF instance in the
VIM. ESC receives a request to instantiate a VNF instance from NFVO. The instantiate request contains
resource requirements, networking and other service operational behaviors. All these requirements along
with the VNFD and the grant information provides all the necessary information to instantiate the VNF.

3. Operate VNF—ESC allows you to start and stop a VNF instance. The resources are not released or
changed, but the VNF instance in the VIM is toggled between these two states.

4. Query VNF—To query one or more VNF instances known to ESC. This is a specific REST end point
that can be filtered to find specific instances. The instances can be filtered using the VNF Instance Id.

Also, a separate REST end point allows the NFVO to query the status of one or more lifecycle operation
occurrences associated with a VNF. The lifecycle operations can be filtered using a specific occurrence
identifier.

5. Modify VNF—ESC allows you to modify the properties of a single VNF instance. The instantiated VNF
is updated, and the lifecycle management operation occurrence sends notification to the NFVO about the
status of the VNF.

6. Scale and Scale to Level VNF—ESC allows you to scale VNFs in two ways. You can scale a VNF
incrementally, or to a specific level.

7. Heal VNF—ESC heals the VNF when there is a failure.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
21

8. Terminate / Undeploy VNF—To terminate the VNF instance in the VIM. The resources themselves
remain reserved for the VNF instance, however the VNF itself is undeployed.

9. Delete VNF Identifier—The resources are fully released in the VIM and in ESC and the associated VNF
instance identifer is also released.

For VNF lifecycle operations using REST and NETCONF APIs, see Configuring Deployment Parameters in
the Cisco Elastic Services Controller User Guide.

VNF Lifecycle Operations
VNFM Prerequisites

The following prerequisites must be met for VNF lifecycle operations:

• The resource definitions must be created out of band and must be available before VNF instantiation.

• There are two options with regards to connecting to the VIM. The VIM Connector specifies how ESC
connects to the VIM and may be created and validated in advance of deploying a VNF (and identified
by name) or created as part of the request if new vimConnectionInfo is supplied. See VIM Connectors
Overview, on page 11.

NFVO Prerequisites

• The VNF to be instantiated has to be onboarded to the NFVO within an ETSI compliant VNF package.

• The NFVO must provide ETSI compliant VNF Packages to ESC.

• The VNF package must contain a VNF Descriptor (VNFD) file.

The NFVO must support the /vnf_packages API to allow access to the package artifacts.See chapter 10
in the ETSI GS NFV-SOL 003 specification on the ETSI website for details.

• Update the properties file, etsi-production.properties under: /opt/cisco/esc/esc_database/. The
properties file provides details about the NFVO to ESC.

The single property nfvo.apiRoot allows specification of the NFVO host and port. For example,
nfvo.apiRoot=localhost:8280.

The initial implementation of the ETSIMANOAPI supports only a single VIM. The tenant/project is currently
specified using the resourceGroupId.

For notes on ESC in HA mode, enabled with ETSI service, see the Cisco Elastic Services Controller Install
and Upgrade Guide.

Note

Deployment Request

The deployment request includes the following tasks:

The VNFD provides a description of the following constructs (see ETSI GS NFV-SOL 001 specification on
the ETSI website for details)

• The deployment level configuration such as deployment flavours and external connections

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
22

Managing VNF Lifecycle Operations
VNF Lifecycle Operations

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-installation-guides-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-installation-guides-list.html

• The VDU configuration, including any applicable images (Compute)

• The internal connection points (VduCp)

• Any volumes to be created, including any applicable images (VirtualBlockStorage)

• The internal virtual links (VnfVirtualLink)

• Policies and groups for placement, scaling and security

The InstantiateVnfRequest:

• The chosen deployment flavour

• The VIM connection details (vimConnectionInfo - Or-Vnfm only)

• Any external networks to which to connect the external connection points (extVirtualLinks)

• Any external networks that may be bound to for internal virtual links (extManagedVirtualLinks)

• A list of key-value pairs to provide deployment specific variables for the deployment (additionalParams)

The Grant from the NFVO (see ETSI GS NFV-SOL 003 specification on the ETSI website for details):

• Approved and/or updated resources to be added, updated or removed (UUIDs)

• Confirmed placement information

Creating the VNF Identifier
Creating the VNF Identifier is the first request for any VNF instance. This identifier is used for all further
LCM operations executed by the ETSI API. Resources are neither created nor reserved at this stage.

ESC sends a POST request to create VNF instances:

Method Type:
POST

VNFM Endpoint:
/vnf_instances/

HTTP Request Headers:
Content-Type:application/json

Request Payload (ETSI data structure: CreateVnfRequest):
{

"vnfInstanceName": "Test-VNf-Instance",
"vnfdId": "vnfd-88c6a03e-019f-4525-ae63-de58ee89db74"

}

Response Headers:

HTTP/1.1 201
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
23

Managing VNF Lifecycle Operations
Creating the VNF Identifier

X-Frame-Options: DENY
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Location: http://localhost:8250/vnflcm/v1/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Thu, 04 Jan 2018 12:18:13 GMT

Response Body (ETSI Data structure:VnfInstance)
{

"id": "14924fca-fb10-45da-bcf5-59c581d675d8",
"instantiationState": "NOT_INSTANTIATED",
"onboardedVnfPkgInfoId": "vnfpkg-bb5601ef-cae8-4141-ba4f-e96b6cad0f74",
"vnfInstanceName": "Test-VNf-Instance",
"vnfProductName": "vnfd-1VDU",
"vnfProvider": "Cisco",
"vnfSoftwareVersion": "1.1",
"vnfdId": "vnfd-88c6a03e-019f-4525-ae63-de58ee89db74",
"vnfdVersion": "1.3",
"_links": {

"instantiate": {
"href":

"http://localhost:8250/vnflcm/v1/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8/instantiate"

},
"self": {

"href":
"http://localhost:8250/vnflcm/v1/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"

}
}

}

For instantiating VNFs, see Instantiating Virtual Network Functions, on page 24.

Instantiating Virtual Network Functions
The instantiation request triggers a number of message exchanges, which allows the call flow to be completed
in order to instantiate a VNF instance. The resources are allocated when the VNF instance is instantiated. It
requires the VNF instance identifier, returned by the create VNF request, encoded into the URL to which the
request is posted.

The instantiation request sub-tasks within the flow include:

1. Retrieving the VNF Descriptor template from the NFVO.

2. Requesting permission from the NFVO (bi-directional Grant flow). For more information see, Requesting
Permission via Grant.

Method type:
POST

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}/instantiate

HTTP Request Header:
Content-Type:application/json

Request Payload (ETSI data structure: InstantiateVnfRequest)

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
24

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

{
"flavourId": "default",
"extManagedVirtualLinks": [

{
"id": "my-network",
"resourceId": "93fb90ae-0ec1-4a6e-8700-bf109a0f4fba",
"virtualLinkDescId": "VLD1"

}
],
"vimConnectionInfo": [

{
"accessInfo": {

"password": "P@55w0rd!",
"username": "admin",
"vim_project": "tenantName"

},
"extra": {

"name": "esc"
},
"id": "default_openstack_vim",
"interfaceInfo": {

"baseUrl": "http://localhost:8080"
},
"vimId": "default_openstack_vim",
"vimType": "OPENSTACK"

}
]
"additionalParams": {

"CPUS": 2,
"MEM_SIZE": "512 MB",
"VIM_FLAVOR": "Automation-Cirros-Flavor",
"BOOTUP_TIME": "1800"

}
}

The flavourId value must be same as a single flavour_id specified in the VNFD.

The Grant response from the NFVO provides the vimConnectionInfo. It is not provided in the SOL002 payload.Note

You can customize the VNF before instantiation by adding variables to the VNFD template. Specify the
variables in the additionalParams field of the LCM request. The variables are name-value pairs, where the
value can be either string, numeric or boolean. In the example below, the cpus, andmem_size additionalParams
are defined in the VNFD template using the get_input: <TOSCA method>.

If there are multiple vm groups within the VNFD in a single ETSI deployment, they must all use the same
VIM.

Note

When this template is submitted to the VNFM, the variables are merged into the same VNF instance. The
additionalParams variables are merged with the VNF variables, and actual values for the variables are provided
only during instantiation.

The list of parameters supplied are driven by the contents of the VNFD; the additionalParams specified in the
request are used by the VNFD using the get_input TOSCA method within the VNFD. For example, the cpus,
and mem_size variables are merged with the placeholders within the VNFD:

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
25

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

tosca_definitions_version: tosca_simple_yaml_1_2

imports:
- cisco_nfv_sol001_types.yaml
- etsi_nfv_sol001_vnfd_0_10_0_types.yaml

metadata:
template_name: Example
template_author: Cisco Systems
template_version: '1.0'

topology_template:
inputs:

CPUS:
description: Number of CPUs
type: string
default: "2"

MEM_SIZE:
description: Memory size
type: string
default: "512 MB"

VIM_FLAVOR:
description: VIM Flavor
type: string
default: "Automation-Cirros-Flavour"

BOOTUP_TIME:
description: Time taken to boot the VNF
type: string
default: "1800"

node_templates:

vdu1:
type: cisco.nodes.nfv.Vdu.Compute
properties:
name: vdu1
description: Example
configurable_properties:
additional_vnfc_configurable_properties:
vim_flavor: { get_input: VIM_FLAVOR }
bootup_time: { get_input: BOOTUP_TIME }

vdu_profile:
min_number_of_instances: 1
max_number_of_instances: 1

capabilities:
virtual_compute:
properties:
virtual_cpu:
num_virtual_cpu: { get_input: CPUS }

virtual_memory:
virtual_mem_size: { get_input: MEM_SIZE }

If further LCM requests with additionalParams variables are submitted for the same VNF, then the new
variables overwrite the existing variables. The VNFM uses the new variables for instantiation.

Although internal links are designed to be ephemeral, in some deployment scenarios they can be bound to
external links that outlive the VNF. Consider the following example VNFD fragment:

automation_net:
type: tosca.nodes.nfv.VnfVirtualLink
properties:
connectivity_type:
layer_protocols: [ipv4]

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
26

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

description: Internal Network VL
vl_profile:
max_bitrate_requirements:
root: 10000

min_bitrate_requirements:
root: 0

To specify an external virtual link to be used in place of automation_net in the VNF deployment, the following
data structure must be used as part of the instantiation request:

...
"extManagedVirtualLinks": [

{
"id": "net-5ddc8435-9d85-4560-8b95-bfcd3369c5c2",
"resourceId": "esc-net2",
"vimConnectionId":"default_openstack_vim",
"virtualLinkDescId": "automation_net"

}
],
...

Although the ETSI specifications only support the concept of ephemeral volumes, many vendors require the
specification of a persistent volume and so Cisco have implemented an extension to support this. The resource
Id of the persistent volume can be supplied as an additionalParam and tied to a volume in the VNFD using
an optional property, as per the following example:

example-volume:
type: cisco.nodes.nfv.Vdu.VirtualBlockStorage
properties:
resource_id: { get_input: EX_VOL_UUID }
virtual_block_storage_data:
size_of_storage: 200 GB
vdu_storage_requirements:
vol_id: 1
bus: ide
type: LUKS

Requesting Permission via Grant

The ETSI API requests for permission from the NFVO to complete lifecycle management operations for the
VNF instance resources and gets resource Ids for any resources pre-provisioned. An example GrantRequest
looks like:
{
"flavourId": "default",
"instantiationLevelId": "default",
"isAutomaticInvocation": false,
"operation": "INSTANTIATE",
"vnfInstanceId": "e426a94e-7963-430c-96ee-778dde5bd021",
"vnfLc mOpOccId": "06fe989b-7b0b-40dc-afb3-de26c18651ae",
"vnfdId": "6940B47B-B0D0-48CB-8920-86BC23F91B16",
"addResources":
[
{
"id": "res-1abb1609-a1f3-418a- a7a0-2692a5e53311",
"resourceTemplateId": "vdu1",
"type": "COMPUTE",
"vduId": "vdu1"

},
{
"id": "res-c5ece35c-89e3-4d29-b594-ee9f6591f061",

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
27

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

"resourceTemplateI d": "node_1_nic0",
"type": "LINKPORT",
"vduId": "vdu1"

},
{
"id": "res-e88d8461-5f5a-4dba-af14-def82ce894e5",
"resourceTemplateId": "automation_net",
"type": "VL"

}
],
"_links":
{
"vnfInstance":
{
"href": "https://172.16

.255.8:8251/vnflcm/v1/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"
},
"vnfLcmOpOcc":
{
"href":

"https://172.16.255.8:8251/vnflcm/v1/vnf_lcm_op_occs/457736f0-c877-4e07-8055-39dd406c616b"
}

}
}

The corresponding grant returned may look like the following:
{

"id": "grant-0b7d3420-e6ee-4037-b116-18808dea4e2a",
"vnfInstanceId": "14924fca-fb10-45da-bcf5-59c581d675d8",
"vnfLcmOpOccId": "457736f0-c877-4e07-8055-39dd406c616b",
"addResources": [

{
"resourceDefinitionId": "res-1abb1609-a1f3-418a-a7a0-2692a5e53311",
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c"

},
{

"resourceDefinitionId": "res-c5ece35c-89e3-4d29-b594-ee9f6591f061",
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c"

},
{

"resourceDefinitionId": "res-e88d8461-5f5a-4dba-af14-def82ce894e5",
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c"

}
],
"vimAssets": {

"computeResourceFlavours": [
{

"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c",
"vimFlavourId": "Automation-Cirros-Flavor",
"vnfdVirtualComputeDescId": "vdu1"

}
],
"softwareImages": [

{
"vimConnectionId": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c",
"vimSoftwareImageId": "Automation-Cirros-DHCP-2-IF",
"vnfdSoftwareImageId": "vdu1"

}
]

},
"vimConnections": [

{
"id": "esc-005e4412-e056-43a9-8bc0-d6699c968a3c",
"vimId": "default_openstack_vim",

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
28

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

"vimType": "OPENSTACK",
"accessInfo": {

"vim_project": "admin"
}

}
],
"zones": [

{
"id": "zone-c9f79460-7a23-43e4-bb6d-0683e2cdb3d4",
"vimConnectionId": "default_openstack_vim",
"zoneId": "default"

},
{

"id": "zone-4039855e-a2cb-48f8-996d-b328cdf9889a",
"vimConnectionId": "default_openstack_vim",
"zoneId": "nova"

}
],
"_links": {

"self": {
"href":

"http://localhost:8280/grant/v1/grants/grant-0b7d3420-e6ee-4037-b116-18808dea4e2a"
},
"vnfInstance": {

"href": "https://172.16
.255.8:8251/vnflcm/v1/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"

},
"vnfLcmOpOcc": {

"href":
"https://172.16.255.8:8251/vnflcm/v1/vnf_lcm_op_occs/457736f0-c877-4e07-8055-39dd406c616b"

}
}

}

The grant request is accepted only if all the requested resources have been granted, else the grant is rejected.

Retrieving the Deployment Descriptor from ESC

The NFVO can retrieve the ESC datamodel instance in the form of a deployment descriptor. The NFVO can
view all the inputs provided at the time of instantiation and changes made later to the deployment descriptor.

To retrieve the deployment descriptor, you must:

• Create the VNF

• Provide the vnfinstanceId

Method Type

GET

VNFM Endpoint

/vnflcm/v1/ext/vnfinstances/{vnfInstanceId}/deployment

HTTP Request Header

content-Type:application/xml

Request Payload

not applicable.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
29

Managing VNF Lifecycle Operations
Instantiating Virtual Network Functions

Querying Virtual Network Functions
Querying VNFs does not affect the state of any VNF instance. This operation simply queries ESC for all the
VNF instances it knows about, or a specific VNF isntance.

Method Type:
GET

VNFM Endpoint:
/vnf_instances/vnf_instances/{vnfInstanceId}

HTTP Request Header:
Content-Type: application/json

Request Payload:
not applicable.

Response Headers:

< HTTP/1.1 200
HTTP/1.1 200
< X-Content-Type-Options: nosniff
X-Content-Type-Options: nosniff
< X-XSS-Protection: 1; mode=block
X-XSS-Protection: 1; mode=block
< Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
< Pragma: no-cache
Pragma: no-cache
< Expires: 0
Expires: 0
< X-Frame-Options: DENY
X-Frame-Options: DENY
< Strict-Transport-Security: max-age=31536000 ; includeSubDomains
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
< X-Application-Context: application:8250
X-Application-Context: application:8250
< Accept-Ranges: none
Accept-Ranges: none
< ETag: "2"
ETag: "2"
< Content-Type: application/json;charset=UTF-8
Content-Type: application/json;charset=UTF-8
< Transfer-Encoding: chunked
Transfer-Encoding: chunked
< Date: Thu, 04 Jan 2018 12:25:32 GMT
Date: Thu, 04 Jan 2018 12:25:32 GMT

Response Body for a single VNF Instance (ETSI Data structure:VnfInstance)

The ETag response header is only returned for a single VNF query (that is, one with the VNF Instance ID
specified). The ETag value is conditionally used during any subsequent VNF modify operations.

Note

{
"_links": {
"instantiate": {

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
30

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

"href":
"http://localhost:8250/vnflcm/v1/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8/instantiate"

},
"self": {
"href":

"http://localhost:8250/vnflcm/v1/vnf_instances/14924fca-fb10-45da-bcf5-59c581d675d8"
}

},
"id": "14924fca-fb10-45da-bcf5-59c581d675d8",
"instantiationState": "NOT_INSTANTIATED",
"onboardedVnfPkgInfoId": "vnfpkg-bb5601ef-cae8-4141-ba4f-e96b6cad0f74",
"vnfInstanceName": "Test-VNf-Instance",
"vnfProductName": "vnfd-1VDU",
"vnfProvider": "Cisco",
"vnfSoftwareVersion": "1.1",
"vnfdId": "vnfd-88c6a03e-019f-4525-ae63-de58ee89db74",
"vnfdVersion": "2.1"

}

The query VNF operation output shows the instantiated state of the VNF. The InstantiatedVnfInfo element
shows the VIM resource information for all the VNFs.

For example:

{
"instantiatedVnfInfo": {
"extCpInfo": [
{
"cpProtocolInfo": [
{
"ipOverEthernet": {
"ipAddresses": [
{
"addresses": [
"172.16.235.19"
],
"isDynamic": false,
"type": "IPV4"
}
],
"macAddress": "fa:16:3e:4b:f8:03"
},
"layerProtocol": "IP_OVER_ETHERNET"
}
],
"cpdId": "anECP",
"id": "extCp-4143f7d4-f581-45fc-a730-568435dfdb4f"
}
],
"extManagedVirtualLinkInfo": [
{
"id": "net-d39bc4de-285c-4056-8113-24eccf821ebc",
"networkResource": {
"resourceId": "my-network",
"vimConnectionId": "esc-b616e5be-58ce-4cfc-8eee-e18783c5ae5d"
},
"vnfLinkPorts": [
{
"cpInstanceId": "vnfcCp-9b24c9e0-1b28-4aba-a9df-9bfc786bfaed",
"id": "vnfLP-9b24c9e0-1b28-4aba-a9df-9bfc786bfaed",
"resourceHandle": {
"resourceId": "926b7748-61d9-4295-b9ff-77fceb05589a",
"vimConnectionId": "esc-b616e5be-58ce-4cfc-8eee-e18783c5ae5d"

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
31

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

}
}
],
"vnfVirtualLinkDescId": "my-network"
}
],
"extVirtualLinkInfo": [
{
"extLinkPorts": [
{
"cpInstanceId": "extCp-4143f7d4-f581-45fc-a730-568435dfdb4f",
"id": "extLP-4143f7d4-f581-45fc-a730-568435dfdb4f",
"resourceHandle": {
"resourceId": "d6a4c231-e77c-4d1f-a6e2-d3f463c4ff72",
"vimConnectionId": "default_openstack_vim"
}
}
],
"id": "extVL-b9bd55a9-4bd9-4ad8-bf67-ba1e7b82aca6",
"resourceHandle": {
"resourceId": "anECP",
"vimConnectionId": "esc-b616e5be-58ce-4cfc-8eee-e18783c5ae5d"
}
}
],
"flavourId": "bronze",
"scaleStatus": [
{
"aspectId": "default_scaling_aspect",
"scaleLevel": 1
}
],
"vnfState": "STARTED",
"vnfcResourceInfo": [
{
"computeResource": {
"resourceId": "a21f0b15-ec4b-4968-adce-1ccfad118caa",
"vimConnectionId": "default_openstack_vim"
},
"id": "res-89a669bb-fef4-4099-b9fe-c8d2e465541b",
"vduId": "vdu_node_1",
"vnfcCpInfo": [
{
"cpProtocolInfo": [
{
"ipOverEthernet": {
"ipAddresses": [
{
"addresses": [
"172.16.235.19"
],
"isDynamic": false,
"type": "IPV4"
}
],
"macAddress": "fa:16:3e:4b:f8:03"
},
"layerProtocol": "IP_OVER_ETHERNET"
}
],
"cpdId": "node_1_nic0",
"id": "vnfcCp-c09d5cf2-8727-400e-8845-c4d5cb479db8",
"vnfExtCpId": "extCp-4143f7d4-f581-45fc-a730-568435dfdb4f"
},

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
32

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

{
"cpProtocolInfo": [
{
"ipOverEthernet": {
"ipAddresses": [
{
"addresses": [
"172.16.235.16"
],
"isDynamic": false,
"type": "IPV4"
}
],
"macAddress": "fa:16:3e:94:b3:91"
},
"layerProtocol": "IP_OVER_ETHERNET"
}
],
"cpdId": "node_1_nic1",
"id": "vnfcCp-9b24c9e0-1b28-4aba-a9df-9bfc786bfaed"
}
]
}
]
}

Selecting Attributes for VNF Query

You can select the attributes to appear in the VNF Query response using the attribute selector. You can mark
the attributes for including or excluding from a query. You can exclude some of the attributes that are not
required, for example attributes with a lower bound of zero on their cardinality (e.g. 0..1, 0..N) and that are
not mandatory (subject to certain conditions).

By selecting only the necessary attributes in the query reduces the amount of data exchanged over the interface
and processed by the API consumer application.

The table lists the URI query parameters for selecting attributes for the GET Request.

Table 4: Selecting Attributes for GET Request

DefinitionParameter

Requests all complex attributes included in the response, including those
suppressed by exclude_default. It is opposite to the exclude_default parameter.
The API producer supports the all_fields parameter for certain resources.

The complex attributes are structured attributes or arrays.Note

all_fields

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
33

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

DefinitionParameter

Requests to include only the listed complex attributes in the response.

The parameter is formatted as a list of attribute names. An attribute name can
either be the name of an attribute, or a path consisting of the names of multiple
attributes with parent-child relationship, separated by "/". The attribute names
in the list can be separated by comma (","). The valid attribute names for a
particular GET request are the names of all complex attributes in the expected
response that have a lower cardinality bound of 0 and that are not conditionally
mandatory.

The API producer supports the fields parameter for certain resources. The details
are defined in the clauses specifying the actual resources.

The "/" and "~" characters in attribute names in an attribute selector will be
escaped according to the IETF standards.

The "," character in attribute names in an attribute selector will be escaped by
replacing it with "~a".

Further, percent-encoding applies to the characters that are not allowed in a
URI query part according to the IETF standards.

fields

Requests to exclude the listed complex attributes from the response. For the
format, eligible attributes and support by the API producer, the provisions
defined for the "fields" parameter will apply.

exclude_fields

Requests to exclude a default set of complex attributes from the response. Not
every resource has a default set. Only complex attributes with a lower cardinality
bound of zero that are not conditionally mandatory can be included in the set.

The API producer supports this parameter for certain resources.

The exclude_default parameter is a flag and has no value.

If a resource supports attribute selector, and none of the attribute selector
parameters is specified in a GET request, then the exclude_default parameter
becomes the default. To emulate the original behaviour of GET Request, you
can either supply the all_fields flag or set the ETSI property
attribute.selector.default.all_fields to true which changes the behaviour, when
no attribute selectors are provided, to all_fields.

exclude_default

The GET Response validates the parameter combinations in the GET Request.The table defines the valid
parameter combinations.

Table 5: Parameter combinations for Get Response

GET ResponseParameter Combination

Includes same as exclude_default.(none)

Includes all the attributes.all_fields

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
34

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

GET ResponseParameter Combination

Includes all the attributes except all complex attributes
with minimum cardinality of zero that are not
conditionally mandatory, and that are not provided
in <list>.

fields=<list>

Includes all attributes except those complex attributes
with a minimum cardinality of zero that are not
conditionally mandatory, and that are provided in
<list>.

exclude_fields=<list>

Includes all attributes except those complex attributes
with a minimum cardinality of zero that are not
conditionally mandatory, and that are part of the
default exclude set defined in the present document
for the particular resource.

exclude_default

Includes all attributes except those complex attributes
with a minimum cardinality of zero that are not
conditionally mandatory and that are part of the
default exclude set defined in the present document
for the particular resource, but that are not part of
<list>.

exclude_default and fields=<list>

The GET Request for resources such as VNF Instances, VNF LCM Operation Occurrences, and PM Jobs
supports the selection of attributes.

Table 6: Resources supporting the selection of attributes

DescriptionCardinalityName

VNF Instances

Indicates to exclude the following
complex attributes from the
response.

The following attributes are
excluded from the VnfInstance
structure in the response body if
this parameter is provided, or none
of the parameters (all_fields, fields,
exclude_fields, exclude_default)
are provided:

• vnfConfigurableProperties

• vimConnectionInfo

• instantiatedVnfInfo

• metadata

• extension

0..1exclude_default

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
35

Managing VNF Lifecycle Operations
Querying Virtual Network Functions

DescriptionCardinalityName

VNF LCM operation occurrences

The following attributes are
excluded from the VnfLcmOpOcc
structure in the response body if
this parameter is provided, or none
of the parameters (all_fields, fields,
exclude_fields, exclude_default)
are provided:

• operationParams

• error

• resourceChanges

• changedInfo

• changedExtConnectivity

0..1exclude_default

PM Jobs

The following attributes are
excluded from the PmJob structure
in the response body if this
parameter is provided, or none of
the parameters (all_fields, fields,
exclude_fields, exclude_default)
are provided:

• Reports

0..1exclude_default

For information on VNF lifecycle operations, see VNF Lifecycle Operations, on page 22.

Modifying Virtual Network Functions
You can modify or update the properties of a VNF instance, which is in the NOT_INSTANTIATED state,
using the modify VNF lifecycle operation. ESC receives a PATCH request from NFVO to modify a single
VNF instance.

A JSONmerge algorithm is applied from the input payload against the stored data to modify the VNF instance.

Modifying VNF operation updates only the properties, but not the functionality of the VNF. The modify
operation is only valid on a VNF instance resource that is NOT_INSTANTIATED.

Note

The following properties of an existing VNF instance can be modified:

• vnfInstanceName

• vnfInstanceDescription

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
36

Managing VNF Lifecycle Operations
Modifying Virtual Network Functions

• onboardedVnfPkgInfoId (null value is not allowed)

• vnfConfigurableProperties

• metadata

• extensions

• vimConnectionInfo

Method Type
PATCH

VNFM Endpoint
/vnf_instances/{vnfInstanceId}

HTTP Request Header
Content-Type: application/merge-patch+json
If-Match: ETag value

The ETag, if specified, is validated against the ETag value stored against the VNF instance resource. If the
values do not match, the modify request will be rejected.

Note

Request Payload (ETSI data structure: VnfInfoModifications)
{

"vnfInstanceName": "My NEW VNF Instance Name",
"vnfInstanceDescription": "My NEW VNF Instance Description",
"vnfPkgId": "pkg-xyzzy-123",
"vnfConfigurableProperties": {

"isAutoscaleEnabled": "true"
},
"metadata": {

"serialRange": "ab123-cc331",
"manufacturer": "Cisco"

},
"extensions": {

"testAccess": "false",
"ipv6Interface": "false"

},
"vimConnectionInfo": [

{
"id": "vci1",
"vimType": "openstack",
"interfaceInfo": {

"uri": "http://172.16.14.27:35357/v3"
},
"accessInfo": {

"domainName": "default",
"projectName": "admin",
"userName": "default"

}
}

]
}

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
37

Managing VNF Lifecycle Operations
Modifying Virtual Network Functions

The Grant response from the NFVO provides the vimConnectionInfo instead of the SOL002 payload. The
SOL002 request contains some attributes that affect the VNF resource at a finer VNFC-level such as
vnfcInfoModifications. See SOL002 on the ETSI website for more details.

Note

Response Header:
not applicable.

Response Body:
not applicable.

When the PATCH operation is complete, the VNF instance is modified, and the details are sent to the NFVO
through the notification.

Operating Virtual Network Functions
You can start or stop a VNF instance using the operate lifecycle management operation. The VNF instance
can be stopped gracefully or forcefully.

The OpenStack API supports only forceful stop.Note

The changeStateTo field must have the value STARTED or STOPPED in the request payload, to start or stop
a VNF instance.

Permission is also required from the NFVO (bi-directional Grant flow) for this operation. See Requesting
Grant Permission for more informaiton.

Method Type:
POST

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}/operate

HTTP Request Headers:

Content-Type:application/json

Response Headers:

HTTP/1.1 202
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: TEST
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Location: http://localhost:8250/vnflcm/v1/vnf_lcm_op_occs/e775aad5-8683-4450-b260-43656b6b13e9
Content-Length: 0
Date: Thu, 04 Jan 2018 12:40:27 GMT

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
38

Managing VNF Lifecycle Operations
Operating Virtual Network Functions

Response Body:
not applicable.

Terminating Virtual Network Functions
The terminating VNF request terminates a VNF instance. The resources are deallocated but remain reserved
for this instance until it is deleted. Permission is required from the NFVO (bi-directional Grant flow) for this
operation. The VNF instance can be decommissioned gracefully or forcefully.

The OpenStack API supports only forceful termination.Note

As per the Instantiate VNF Request, the terminate VNF request requires the VNF instance identifier encoded
into the URL to which the request is posted.

Method Type:
POST

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}/terminate

HTTP Request Headers:
Content-Type:application/json

Request Payload (ETSI data structure: TerminateVnfRequest)

{
"terminationType":"FORCEFUL",
}

Response Headers:

HTTP/1.1 202
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: TEST
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Location: http://localhost:8250/vnflcm/v1/vnf_lcm_op_occs/dae25dbc-fcde-4ff9-8fd6-31797d19dbc1
Content-Length: 0
Date: Thu, 04 Jan 2018 12:45:59 GMT

Response Body:
not applicable.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
39

Managing VNF Lifecycle Operations
Terminating Virtual Network Functions

Deleting Virtual Network Function Resource Identifier
Deleting VNF operation releases the VIM resources reserved for the VNF instance as well as deletes the VNF
instance identifier. Upon deletion, the VNF instance identifier is no longer available. So, no further lifecycle
management operations are possible using this identifier.

Method Type:
DELETE

VNFM Endpoint:
/vnf_instances/{vnfInstanceId}

HTTP Request Headers:
Content-Type:application/json

Request Payload:
not applicable.

Response Headers:

HTTP/1.1 204
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Frame-Options: TEST
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application:8250
Accept-Ranges: none
Date: Thu, 04 Jan 2018 12:48:59 GMT

Response Body:
not applicable.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
40

Managing VNF Lifecycle Operations
Deleting Virtual Network Function Resource Identifier

C H A P T E R 6
Monitoring Virtual Network Functions

• Monitoring Virtual Network Functions Using ETSI API, on page 41
• VM Monitoring Operations, on page 43

Monitoring Virtual Network Functions Using ETSI API
During the deployment of a VNF, metrics must be defined to instruct the ESC monitoring agent component
(MONA) how to determine if the VNF is healthy. The definition of metrics is within the Key Performance
Indicator (KPI) section of the VNFD and allow MONA to periodically monitor the VNF to check its health
and workload, defined on a per-VNFC basis. Actions are then associated with these KPIs and executed when
the appropriate conditions are met.

There are several built-in monitoring methods such as ICMP Ping and SNMP. Some of the metrics to monitor
on the constituent VNFCs include:

• reachability

• resource usage (such as CPU, memory, disk and network throughput)

The following pre-requisites must be met for the deployed VNFCs to be monitored:

• The deployed VNFCs must be alive

• Monitoring is enabled

• KPIs must be configured

Example:
vdu2:

type: cisco.nodes.nfv.Vdu.Compute
properties:
name: Example VDU 2
description: Example VDU
...
kpi_data:
VM_ALIVE-1:
event_name: 'VM_ALIVE-1'
metric_value: 1
metric_cond: 'GT'
metric_type: 'UINT32'
metric_occurrences_true: 1
metric_occurrences_false: 30

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
41

metric_collector:
type: 'ICMPPing'
nicid: 1
poll_frequency: 10
polling_unit: 'seconds'
continuous_alarm: false
property_list:

- name: vmname
value: vdu2

- name: status
value: ERROR

admin_rules:
VM_ALIVE-1:
event_name: 'VM_ALIVE-1'
action:
- 'ALWAYS log'
- 'FALSE recover autohealing'
- 'TRUE esc_vm_alive_notification'
property_list:

- name: vmname
value: vdu2

- name: status
value: SUCCESS

...

The kpi_data shown above is the default KPI required that is required in all deployments at a minimum so
that the VM_ALIVEmessage is generated to tell ESCManager that the VNFC has been deployed successfully;
it consists of the KPI, how it is collected and the actions to be executed when the KPI is met.

Cisco data structure properties

ValuesDescriptionProperty NameData Type

AnyUnique user-defined
KPI name

KPI labelcisco.datatypes.nfv.data.Kpi

event_namecisco.datatypes.nfv.data.Kpi

metric_valuecisco.datatypes.nfv.data.Kpi

metric_condcisco.datatypes.nfv.data.Kpi

metric_typecisco.datatypes.nfv.data.Kpi

metric_occurrences_truecisco.datatypes.nfv.data.Kpi

metric_occurrences_falsecisco.datatypes.nfv.data.Kpi

See theNETCONFAPI
Guide

See theNETCONFAPI
Guide

typecisco.datatypes.nfv.metric.Collector

nicidcisco.datatypes.nfv.metric.Collector

poll_frequencycisco.datatypes.nfv.metric.Collector

polling_unitcisco.datatypes.nfv.metric.Collector

continuous_alarmcisco.datatypes.nfv.metric.Collector

property_listcisco.datatypes.nfv.metric.Collector

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
42

Monitoring Virtual Network Functions
Monitoring Virtual Network Functions Using ETSI API

ValuesDescriptionProperty NameData Type

AnyUnique user-defined
name

Rule labelcisco.datatypes.nfv.data.Admin_rules

This value must match
a Kpi event_name

event_namecisco.datatypes.nfv.data.Admin_rules

actioncisco.datatypes.nfv.data.Admin_rules

property_listcisco.datatypes.nfv.data.Admin_rules

For more information on KPIs and Rules, see the Cisco Elastic Services Controller User Guide.

VM Monitoring Operations
You can set and unset monitoring of VMs using RESTful interface.

A payload is required to monitor VMs:

REST Code

POST <VNFM-api-root>/vnflcm/v1/ext/vnf_instances/{vnfInstanceId}/operations

To start and stop monitoring operation on a specified VM, set the vnfcInstanceIds
POST /v0/{internal_tenant_id}/deployments/vm/{vm_name}

with payload:
{

"vnfcInstanceIds": ["vnfcInstanceId1","vnfcInstanceId2",...,"vnfcInstaceIdN"], ##
optional

"operation": "ENABLE_MONITOR", ##
mandatory ENABLE_MONITOR, DISABLE_MONITOR, REBOOT

"additionalParams": [] ##
optional - for future use :-)
}

To start and stop monitoring operation on the entire VNF, do not set the vnfcInstanceIds.

Youmust mention enable_monitoring to set VMmonitoring, and disable_monitoring to unset VMmonitoring
in the operation field.

When a user reboots the VM from the ESC ETSI interface, the monitoring is automatically enabled.Note

Notification for VM Monitoring Status
ETSI NFV MANO provides status notifications for VMMonitoring. You can enable, disable, and reboot the
VMs on a particular VNF or on a particular VM of a VNF using payload.
[operation]

enable a monitor for

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
43

Monitoring Virtual Network Functions
VM Monitoring Operations

disable a monitor for
reboot

ETSINFVMANO sends the following [notifications-per-operation]when setting, unsetting, or rebooting
the VMs:
[notifications-per-operation]

VM_MONITOR_SET notification when enabling a monitor
VM_MONITOR_UNSET notification when disabling a monitor
VM_REBOOTED notification when rebooting

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
44

Monitoring Virtual Network Functions
Notification for VM Monitoring Status

C H A P T E R 7
Monitoring VNF Using D-MONA

• Onboarding D-MONA, on page 45
• Deploying D-MONA, on page 45
• Configuring D-MONA, on page 46
• Deploying VNF Using D-MONA, on page 46
• Monitoring Using D-MONA, on page 47

Onboarding D-MONA
ETSI NFV MANO supports Distributed Monitoring and Actions (D-MONA) for effective monitoring of the
VNFs. D-MONA is a standalone monitoring application. For more information, see Monitoring VNFs Using
D-MONA in the Cisco Elastic Services Controller User Guide.

To onboard D-MONA, you must fulfill the prerequisites and prepare the deployment data model:

Prerequisites

• Ensure connectivity between ESC and D-MONA.

• Ensure connectivity between D-MONA and the deployed VNFs.

• Only ESC Active/Active deployment is supported by D-MONA.

For information on deploying D-MONA, see Deploying D-MONA, on page 45.

Deploying D-MONA
ESC supports 1:1 D-MONA deployment for a VIM. A single D-MONA instance monitors VNF on a single
VIM.

For using D-MONA in your infrastructure, you must:

1. Deploy the D-MONA with the monitoring infrastructure.

2. Deploy the VNFs using the D-MONA for monitoring their respective liveness.

After deployment, D-MONA is monitored by the local MONA running on the ESC VM.

For information on deploying VNFs using D-MONA, see Deploying VNF Using D-MONA, on page 46.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
45

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html

Configuring D-MONA
D-MONA reuses the ESC 5.0 image. You can view two types of runtime behavior; one from a typical ESC
deployment, and the other one with capabilities provided by D-MONA.

D-MONA Day Zero Configuration

The D-MONA runtime behavior is controlled by the day 0 configuration provided to the VM at the time of
deployment.

The following example shows D-MONA SSH access configuration:
<configuration>
<dst>--user-data</dst>
<file>file:///opt/cisco/esc/esc-config/dmona/iser-data.template</file>
<variable>
<name>vm_credentials</name>
<val>REPLACED_WITH_GENERATED_PWD</val>
</variable>
</configuration>

The vm_credentials passes the encrypted password to admin for SSH access to D-MONA.

The following example shows the D-MONA ESC certificate configuration:
<configuration>
<dst>/opt/cisco/esc/moan/dmona.crt</dst>
<data>$DMONA_CERT</data>
</configuration>

For monitoring using D-MONA, see Monitoring Using D-MONA, on page 47.

Deploying VNF Using D-MONA
For deploying the VNFs using D-MONA for monitoring, you must have the D-MONA with the
monitoring.agent.vim.mapping day-0 variable set to true within the same vim_connector. When ESC
detects D-MONA, monitoring of the VNF is assigned to that D-MONA, otherwise the local MONA handles
the monitoring.

The following example shows the D-MONA VNFD:

tosca_definitions_version: tosca_simple_yaml_1_2
description: D-MONA VNFD (SOL001 v0.10.0)

imports:
- cisco_nfv_sol001_types.yaml
- etsi_nfv_sol001_vnfd_0_10_0_types.yaml

metadata:
template_name: D-MONA
template_author: Cisco Systems
template_version: '1.0'

dsl_definitions:
descriptor_id: &descriptor_id f5b37b47-d9bd-4605-afb0-30c0d659a3c2
provider: &provider cisco
product_name: &product_name D-MONA

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
46

Monitoring VNF Using D-MONA
Configuring D-MONA

software_version: &software_version '1.0'
descriptor_version: &descriptor_version '1.0'
flavour_id: &flavour_id default
flavour_description: &flavour_description 'Default VNF Deployment Flavour'
vnfm: &vnfm '9:Cisco Elastic Services Controller:v04.04.01'

Monitoring Using D-MONA
Tomonitor the VNFs using D-MONA, you must deploy the ESTI VNFDD-MONA and then deploy the ESTI
VNFDmonitored byD-MONA. For information on deployingD-MONA, seeDeployingVNFUsingD-MONA,
on page 46.

The D-MONA parameters are defined within the VNFD, or provided as additionalparams in the instantiate
D-MONA VNF payload.

An ETSI compliant VNFD is used for the deployment of D-MONA.

The input parameters, KPI data, and config paramters are required for instantiation of D-MONA deployment.

The input parameters are either defined within the VNFD or provided as additionalParams section of instantiate
D-MONA VNF payload.

Table 7: Input Parameters for D-MONA Deployment

DescriptionParameter

The name of ESC imageSW_IMAGE_NAME

The HTTPS certificateDMONA_CERT

The URL or ID of the monitoring agent that will
monitor the VM

DMONA_AGENT_ID

The admin user passwordADMIN_PASSWORD

A flag that indicates whether basic security is enabled
or not

SECURITY_BASIC_ENABLED

A security user to communicate with ESCManagerSECURITY_USER_NAME

A security user's password used to communicate with
ESCManager

SECURITY_USER_PASSWORD

KPI data:

• monitoring_agent—value defined for DMONA_AGENT_ID in the input parameter.

• property_list

• name—protocol

• value—https

• name—port

• value—8443

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
47

Monitoring VNF Using D-MONA
Monitoring Using D-MONA

• name—path

• value—mona/v1/health/status

Config data parameters:

• user-data.txt

admin_password—value defined for ADMIN_PASSWORD in input parameter

• application—dmona.template

• monitoring.agent—true

• security_basic_enabled—value defined for SECURITY_BASIC_ENABLED in input parameter

• security_user_name—value defined for SECURITY_USER_NAME in input parameter

• security_user_password—value defined for SECURITY_USER_PASSWORD in input parameter

• monitoring.agent.vim.mapping—true

Example payload:

config_data:
'--user-data':

file: ../Files/Scripts/user-data.txt
variables:

admin_password: { get_input: ADMIN_PASSWORD }
'/opt/cisco/esc/mona/dmona.crt':

data: { get_input: DMONA_CERT }
'/opt/cisco/esc/mona/config/application-dmona.properties':

file: ../Files/Scripts/application-dmona.template
variables:

monitoring.agent: true
security_basic_enabled: { get_input: SECURITY_BASIC_ENABLED }
security_user_name: { get_input: SECURITY_USER_NAME }
security_user_password: { get_input: SECURITY_USER_PASSWORD }
monitoring.agent.vim.mapping: true

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
48

Monitoring VNF Using D-MONA
Monitoring Using D-MONA

C H A P T E R 8
Healing Virtual Network Functions

• Healing Virtual Network Functions Using ETSI API, on page 49
• Updating an Existing Deployment During Healing, on page 51

Healing Virtual Network Functions Using ETSI API
As part of life cycle management, ESC heals the VNFs when there is a failure. The recovery policy specified
during deployment controls the recovery. ESC supports recovery using the policy-driven framework, see
Configuring a Recovery Policy Using the Policy-driven Framework in the Cisco Elastic Services Controller
User Guide.

The healing parameters define the behavior that is monitored to trigger a notification to heal a VNF. These
parameters are configured in the KPI section of each compute node in the VNFD along with rules. The rules
define the action to be taken (including events that are triggered) as a result of these KPI conditions to heal a
VNF.

ESC ETSI configures monitoring using the following two sections:

• kpi_data—defines the type of monitoring, events, polling interval and other parameters

• admin_rules—defines the actions when the KPI monitoring events are triggered

Example:

vdu1:
type: cisco.nodes.nfv.Vdu.Compute
properties:
name: Example VDU1
description: Example VDU
...
kpi_data:
VM_ALIVE-1:
event_name: 'VM_ALIVE-1'
metric_value: 1
metric_cond: 'GT'
metric_type: 'UINT32'
metric_occurrences_true: 1
metric_occurrences_false: 30
metric_collector:
type: 'ICMPPing'
nicid: 1
poll_frequency: 10

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
49

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html

polling_unit: 'seconds'
continuous_alarm: false

admin_rules:
VM_ALIVE-1:
event_name: 'VM_ALIVE-1'
action:
- 'ALWAYS log'
- 'FALSE recover autohealing'
- 'TRUE esc_vm_alive_notification'

...

This example shows the default KPI and rule to support the service alive notification required to complete
the deployment in ESC. For more information on KPI, rules, and the underlying data model that is exposed
in the VNFD, see KPIs, Rules and Metrics in the Cisco Elastic Services Controller User Guide.

There are three types of actions for recovery when an event denoting that an instance requires attention is
received, a timer expires or a manual recovery request is received; the healing workflow will:

• REBOOT_THEN_REDEPLOY—first attempt to reboot the affected VNFCs; if this fails, then it attempts
to redeploy the affected VNFCs (on the same host)

• REBOOT_ONLY—only attempt to reboot the VM

• REDEPLOY_ONLY—only attempt to redeploy the VM

The recovery policy is configured at a VNF-level, and applies to each VNFC contained within. The monitoring
agent monitors each VNFC and when a recovery situation arises, the message is converted to an alarm and
sent to any subscribed consumers (e.g. an NFVO or Element Manager).

If autoheal is enabled on the VNF instance, then ESC automatically attempts to recover the VNF based on
the recovery policy configured on deployment. This may be configured in the VNFD or alternativelymodified
against the VNF instance prior to instantiation.

The recovery of the VNF is to request action against the affected VNFCs. If the service fails to deploy, then
the lifecycle management operation fails, if ESC cannot manage to recover the service using the defined policy
after the initial deployment operation times out.

To modify the autoheal flag (isAutohealEnabled) VNF instance resource, see Modifying Virtual Network
Functions, on page 36.

If autoheal is not enabled, only the alarm is dispatched to all the subscribers. The subscriber can initiate a
manual HealVnfRequest. The data structures are available for anyVNF specific actions. There are nomandatory
parameters.

Example for SOL003:

Request Payload (ETSI data structure: HealVNFRequest)
POST /vnf_instances/{vnfInstanceId}/heal
{

"cause": "b9909dde-e21e-45ec-9cc0-9e9ae413eee0",
}

Example for SOL002:

POST /vnf_instance/{vnfInstanceId}/heal
{
"vnfcInstanceId": ["b9909dde-e21e-45ec-9cc0-9e9ae413eee0"],
"cause": "b9909dde-e21e-45ec-9cc0-9e9ae413eee0",
"healScript": "REBOOT_ONLY"

}

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
50

Healing Virtual Network Functions
Healing Virtual Network Functions Using ETSI API

https://www.cisco.com/c/en/us/support/cloud-systems-management/elastic-services-controller-esc/products-user-guide-list.html

The healScript is implemented as an enumeration of the valid recovery policy names which allow the policy
configured in the deployment data model to be overriden. The list of vnfcInstanceIds allow the required
VNFCs to be affected, however the absence of this list means the request applies to the entire VNF.

Additional parameters can be used to specify an overriding recovery policy, regardless of the policy configured
at the time of deployment.

The recovery policy can be specified at VNFC level using additional parameters. This will override the values
set at the VNF level. If the recovery policy is not specified at VNFC level, then ESC will inherit the properties
from the VNF level recovery policy.

An optional additional parameter is added to the cisco.datatypes.nfv.VnfcAdditionalConfigurableProperties
data type to support VNFC level recovery.

cisco.datatypes.nfv.VnfcAdditionalConfigurableProperties:
derived_from: tosca.datatypes.nfv.VnfcAdditionalConfigurableProperties
properties:
...
is_vnfc_autoheal_enabled:
type: boolean
description: It permits to enable (TRUE)/disable (FALSE) the auto-healing functionality.

If the properties is not present for configuring, then VNF-level property is used instead
required: false

recovery_action:
type: string
required: false
constraints:
- valid_values: [REBOOT_THEN_REDEPLOY, REDEPLOY_ONLY, REBOOT_ONLY]

For information on monitoring, see Monitoring Virtual Network Functions Using ETSI API, on page 41.

Updating an Existing Deployment During Healing
After a deployment is created successfully, the resources within it can be updated. As part of deployment
management, you can add or remove resources, or update the configuration of the existing resources. These
updates can be carried out in a running deployment. The resources are updated as part of the recovery process.

You can update an existing deployment (provisioned through the ETSI NFVMANO API) during the healing
workflow. During the Heal request, the existing image and Day-0 parameters are compared and updated to
the new ones provided as part of a subsequent Heal request.

The healing workflow allows:

• Updating the deployment model with the new image and Day-0 configuration

• Re-applying new or existing configuration data to the VNFC when healing with an upgraded image

You must redeploy the VNF after any update to the data model if the change is not carried out directly on the
VIM.

Note

After supplying new additionalParams via the HealVnfRequest, if the Grant response (from the NFVO) also
supplies a new image or new additionalParams, this would also trigger a service update.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
51

Healing Virtual Network Functions
Updating an Existing Deployment During Healing

If the NFVO determines that the deployment should be moved as part of a redeployment, then the Grant
provides a new zoneId to reflect the new placement of the resources.

The recovery action takes place after the service update is complete. In the event of a redeploy, it considers
the up-to-date deployment model to ensure that any deployed updates are not reverted.

The following example shows the details NFVO returns in the Grant to trigger a service update with new
additionalParams and/or a new vimSoftwareImageId.

Example:

{
"headers" : {
"Content-Type" : ["application/json"],
"Location" : [

"http://{nfvoApiRoot}/sol003/default/grant/v1/grants/38ba2103-dab3-450e-992b-ee85aad6c899"
],

"Content-Length" : ["22935"],
},
"body" : {
"id" : "38ba2103-dab3-450e-992b-ee85aad6c899",
"vnfInstanceId" : "6aaf527c-0093-49c3-ba2e-49fc6d8a4f71",
"vnfLcmOpOccId" : "cdc5d9b3-81a0-400b-a4d9-97d1b3e117d9",
"_links" : {
"self" : {
"href" :

"http://{nfvoApiRoot}/sol003default/grant/v1/grants/38ba2103-dab3-450e-992b-ee85aad6c899"
},
"vnfLcmOpOcc" : {
"href" :

"https://{vnfmApiRoot}/vnflcm/v1/vnf_lcm_op_occs/cdc5d9b3-81a0-400b-a4d9-97d1b3e117d9"
},
"vnfInstance" : {
"href" :

"https://{vnfmApiRoot}/vnflcm/v1/vnf_instances/6aaf527c-0093-49c3-ba2e-49fc6d8a4f71"
}

},
"vimConnections" : [{
"id" : "myVimConnection",
"vimType" : "OPENSTACK_V3",
"vimId" : "595b0bc2-8dad-4087-abdf-ebe3b0b14d96",
"interfaceInfo" : {
"endpoint" : "https://{vimApiRoot}/v3"

},
"accessInfo" : {
"password" : "********",
"project" : "cisco",
"projectDomain" : "demo",
"region" : "RegionOne",
"userDomain" : "demo",
"username" : "********"

}
}],
"zones" : [{
"id" : "1773873a-ab15-4a7b-b024-bc338425ed24",
"zoneId" : "nova"

},{
"id" : "1773873a-ab15-4a7b-b024-bc555555ed55",
"zoneId" : "nova2"

}],
"addResources" : [{
"resourceDefinitionId" : "res-a6252dbf-b418-4f88-b8a9-14d8f3942938",
"vimConnectionId" : "myVimConnection",

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
52

Healing Virtual Network Functions
Updating an Existing Deployment During Healing

"zoneId" : "1773873a-ab15-4a7b-b024-bc555555ed55"
}],
"vimAssets" : {
"softwareImages" : [{
"vnfdSoftwareImageId" : "s3",
"vimSoftwareImageId" : "3a609da7-e2b2-4e27-91b6-7bcabe902820",
"vimConnectionId" : "myVimConnection"

}, {
"vnfdSoftwareImageId" : "s4",
"vimSoftwareImageId" : "3a609da7-e2b2-4e27-91b6-7bcabe902820",
"vimConnectionId" : "myVimConnection"

}]
}

},
"additionalParams": [
...
/* changed additionalParams */
"CF_VIP_ADDR": "10.123.23.4",
"SF_VIP_ADDR": "10.123.24.4",
...

],
"statusCode" : "CREATED",
"statusCodeValue" : 201

}

For more information on healing, see Healing Virtual Network Functions Using ETSI API, on page 49.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
53

Healing Virtual Network Functions
Updating an Existing Deployment During Healing

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
54

Healing Virtual Network Functions
Updating an Existing Deployment During Healing

C H A P T E R 9
Scaling Virtual Network Functions

• Scaling Virtual Network Functions Using ETSI API, on page 55

Scaling Virtual Network Functions Using ETSI API
One of the main benefits of ESC is its capability to elastically scale a service. This allows a VNFC that
performs a particular role or aspect within the VNF to be able to service requests and scale out to meet high
demand or scale in when being under utilized. This aspect may span across multiple VNFCs.

The scaling requests may be manual or automatic. The different approaches to accomplishing scaling are
detailed below.

For more details on these concepts and specification, please see Annex B of ETSI GS NFV-SOL 003.

For information on Scaling VNFs using REST andNETCONFAPIs, see theCisco Elastic Services Controller
User Guide.

Scale

The Scale VNF request uses the scaleStatus, an attribute found as part of the instantiatedVnfInfo when querying
a VnfInstance resource. This attribute describes the current scale level of each aspect in the VNF, for example:

"scaleInfo": [
{
"aspectId": "webserver", "scaleLevel": "4"

},
{
"aspectId": "processing", "scaleLevel": "2"

}
]

This forms the starting point for a Scale VNF request, which allows a single aspect to be scaled horizontally
(i.e. adding or removing VNFCs) relative to the current scaleLevel for that dimension of the VNF. Any scaling
operation on an aspect will be applied to each VNFC that supports that aspect.

The current specification does not support vertical scaling (adding/removing resources to/from existing VNFC
instances) at this time.

Note

Request Payload (ETSI data structure: ScaleVNFRequest)

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
55

{
"type": "SCALE_OUT",
"aspectId": "processing",
"numberOfSteps": 1,
"additionalParams": {}

}

The above payload results in the scaleStatus example above being updated to and the addition of the number
of VNFCs for this step required to scale out to scaleLevel 3:

"scaleInfo": [
{
"aspectId": "webserver", "scaleLevel": "4"

},
{
"aspectId": "processing", "scaleLevel": "3"

}
]

To understand the scaling steps and other related policies configured to support scaling, see the VNFD Policies
for Scaling.

Scale To Level

The Scale VNF To Level request, rather than the relative scaling that Scale VNF offers, specifies the absolute
scale result desired and so some aspects may be scaled out and others scaled in. This option uses one of the
two approaches to define the scaling required:

• instantiation level

• scale level

These are mutually exclusive and allow for more than one aspect to be scaled in a single request.

Instantiation Level

An Instantiation level is a predefined size for each aspect, where each level has a scale level associated with
each aspect. There is no further granularity offered and so the entire VNF (that is, all aspects) is scaled
according to the instantiation level requested.

Example:

Request Payload (ETSI data structure: ScaleVNFToLevelRequest)

{
"instantiationLevelId": "premium"

}

See the VNFD Policies for the definition of instantiation levels.

Scale Level

The Scale Level is also a pre-defined size for each aspect where each aspect has target VNFCs, defined
step_deltas (since each scaling step may not be uniform) and a maximum scale level. The policies that define
this option allow the different targets to have different scaling outcomes.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
56

Scaling Virtual Network Functions
Scaling Virtual Network Functions Using ETSI API

The scale level does not represent the number of VMs; for example scaleLevel=0 means the initial number
of instances (initial delta) for that aspect on the target VNFC and scaleLevel=1 is the initial delta plus the first
scaling step defined for that aspect and VNFC tuple.

Note

Request Payload (ETSI data structure: ScaleVNFToLevelRequest)

{
"scaleInfo": [
{

"aspectId": "processing",
"scaleLevel": "2"

},
{

"aspectId": "webserver",
"scaleLevel": "3"

}
]

}

For information on definition of scale levels, See the VNFD Policies for Scaling.

VNFD Policies for Scaling
There are a number of policies that make up the overall scaling behavior of a VNF. These policies will support
the various scaling approaches described above. The first policy defines the aspects that may be scaled (or
not):

policies:
- scaling_aspects:

type: tosca.policies.nfv.ScalingAspects
properties:
aspects:
webserver:
name: 'webserver'
description: 'The webserver cluster.'
max_scale_level: 5
step_deltas:
- delta_1

processing:
name: 'processing'
description: 'An example processing function'
max_scale_level: 3
step_deltas:
- delta_1
- delta_2
- delta_1

database:
name: 'database'
description: 'A test database'
max_scale_level: 0

You can see in this example that the database aspect has a max_scale_level of 0, which denotes that it cannot
be scaled out - this does not mean 0 instances of that aspect - see the algorithm below to see why. The webserver
aspect only has a single step_delta, meaning that all scaling steps are uniform whereas the processing aspect
has different step_deltas specified for each scaling step. This is called non-uniform scaling. This is only the

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
57

Scaling Virtual Network Functions
VNFD Policies for Scaling

declaration of the aspects of this VNF, and this is one of the policies used to perform the validation when a
scaling request is received.

Next, they must be applied to VNFCs to control their behavior:
- db_initial_delta:

type: tosca.policies.nfv.VduInitialDelta
properties:
initial_delta:
number_of_instances: 1

targets: [vdu1]

- ws_initial_delta:
type: tosca.policies.nfv.VduInitialDelta
properties:
initial_delta:
number_of_instances: 1

targets: [vdu2, vdu4]

- pc_initial_delta:
type: tosca.policies.nfv.VduInitialDelta
properties:
initial_delta:
number_of_instances: 1

targets: [vdu3]

- ws_scaling_aspect_deltas:
type: tosca.policies.nfv.VduScalingAspectDeltas
properties:
aspect: webserver
deltas:
delta_1:
number_of_instances: 1

targets: [vdu2, vdu4]

- pc_scaling_aspect_deltas:
type: tosca.policies.nfv.VduScalingAspectDeltas
properties:
aspect: processing
deltas:
delta_1:
number_of_instances: 1

delta_2:
number_of_instances: 2

targets: [vdu2, vdu4]

In the examples above, the VNFCs are identified as targets; the aspects could have different behaviours on
different VNFCS, but this is not shown here. The definition of the step_deltas are also shown here which are
used in the validation and generation of scaling requests (these steps are inferred by the scale level requested).
The minimum number of instances of a VNFC is always assumed to be 0 and the maximum number is
calculated by the following algorithm:

initial_delta plus the number of instances for each step up to the max_scale_level.

These policies are considered for the scale-level based scaling. There are similar constructs used for
instantiation-level based scaling.
- instantiation_levels:

type: tosca.policies.nfv.InstantiationLevels
properties:
levels:
default:
description: 'Default instantiation level'
scale_info:

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
58

Scaling Virtual Network Functions
VNFD Policies for Scaling

database:
scale_level: 0

webserver:
scale_level: 0

processing:
scale_level: 0

premium:
description: 'Premium instantiation level'
scale_info:
database:
scale_level: 0

webserver:
scale_level: 2

processing:
scale_level: 3

default_level: default

Similar to the scaling aspects, the first part of the definition of instantiation levels is just their declaration.
Here each aspect must already be declared and then each aspect's scale_level is declared for the instantiation
level; a default instantiation level is also stipulated in the event that no other is specified.What each scale_level
means for each VNFC is further elaborated upon in the VduInstantiationLevels policies, for example:
- ws_instantiation_levels:

type: tosca.policies.nfv.VduInstantiationLevels
properties:
levels:
default:
number_of_instances: 1

targets: [vdu2, vdu4]

So these policies together state that the default instantiation level is 'default' which will result in the webserver
aspect being instantiated at scale_level 0 which is 1 VNFC instance.

Dependencies on Multiple IP Addresses
Static IP Addresses

If the VNFC has connection points configured with a static IP address, the VNFC cannot be scaled as there
are no further IP addresses to assign to the connection points on the newly spun up VNFC instances. Instead,
a pool of further static IP addresses can be specified. This is an extension to the ETSI specification.

The following example explains how to create a static IP pool using a list of IP addresses, IP ranges or a
gateway with netmask (one or a combination of more than one can be specified):

vdu2:
type: cisco.nodes.nfv.Vdu.Compute
properties:
name: 'Webserver1'
description: 'Webserver VNFC'
vdu_profile:
min_number_of_instances: 1
max_number_of_instances: 6
static_ip_address_pool:
network: network1
ip_addresses:
- ip_address: 192.168.100.0
- ip_address: 192.168.100.1
- ip_address: 192.168.100.2
- ip_address: 192.168.100.3

ip_address_range:
- start: 172.16.233.10

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
59

Scaling Virtual Network Functions
Dependencies on Multiple IP Addresses

end: 172.16.233.15
- start: 172.16.233.20
end: 172.16.233.25

gateway: 172.10.11.0
netmask: 255.255.255.0

The scaled out VNFC instance that has connection points with static IP addresses is assigned to a network.
This is the key to identify which IP address pool to use when the scaled out instance is deployed. The static
IPs are specified at deployment as part of the inputs in the InstantiateVnfRequest. For information on
instantiating VNFs, see Instantiating VNFs.

The inputs are provided as part of the additionalParams through the VNFD.

Day Zero Configuration

After deploying the VNFs, day 0 variables are configured in the VNFC instance for the deployment service.
In most cases, the values for the day 0 configuration is constant. In other cases, there is a resource pool of
values supplied to the day 0 parameter to allow new values to be assigned to the new VNFC instances.

Day 0 configuration within the vendor_section of the VNFD:

vdu3:
type: cisco.nodes.nfv.Vdu.Compute
properties:
name: 'Processing1'
description: 'Processing VNFC'
vdu_profile:
min_number_of_instances: 1
max_number_of_instances: 5

vendor_section:
cisco_esc:
config_data:
'/tmp/OSRESTTestETSIDay0_Inline_data.cfg':
data: |
NODE_NAME $NODE_NAME
NUM_OF_CPU $NUM_OF_CPU
MEM_SIZE $MEM_SIZE
PROXY_ADDRS $PROXY_ADDRS
SPECIAL_CHARS $SPECIAL_CHARS

variables:
NODE_NAME: vdu_node_1
NUM_OF_CPU: 1
MEM_SIZE: 1GB
PROXY_ADDRS: ["1.1.1.1", "1.1.2.1", "1.1.3.1", "1.1.4.1", "1.1.5.1",

"1.1.6.1", "1.1.7.1"]
SPECIAL_CHARS: '`~!@#$%^&*()-_=+[{]}|;:<.>/?'

In the above example the day 0 configuration is specified inline, with velocity variables defined in the target
configuration. Each of these variables are supported by a variable with one or more values. In order to support
multiple values for the $PROXY_ADDRS variable, a list of values are provided. These values are used to
populate subsequent uses of the variable on new instances of the VNFC.

For information on day 0 configuration in the deployment data model, see Day Zero Configuration in the
Cisco Elastic Services Controller User Guide.

Autoscaling of VNFs
KPIs, rules and actions defined in the VNFD determine the conditions under which scaling must be considered.
The details are provided in Monitoring Virtual Network Functions. The scaling policies are also defined in

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
60

Scaling Virtual Network Functions
Autoscaling of VNFs

the VNFD using several policy types that control the allowed scaling boundaries. These policy items are
described below.

After deployment, ESC configures a monitoring agent (this may be the centralised or distributed instance)
with the KPIs to monitor each VNFC. The scaling workflow begins if a KPI reaches its threshold; based on
the action defined, ESC performs scale in or scale out and generates appropriate notifications and event logs.
This is subject to some built-in functions that can be specified such as log or an onboarded script.

ESC sends appropriate notifications to the subscribed consumers. At this time, ESC interrogates the VNF
instance resource for the isAutoscaleEnabled flag (this is set initially by the value in the VNFD but can be
modified after creation). If this flag is set to true, ESC invokes the scaling workflow (instigated using a
ScaleVnfToLevelRequest to request the scaling of multiple aspects in a single request). If the isAutoscaleEnabled
is set to false, then the control is with an external system such as an NFVO or EM to trigger the desired action
using the requests described above.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
61

Scaling Virtual Network Functions
Autoscaling of VNFs

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
62

Scaling Virtual Network Functions
Autoscaling of VNFs

C H A P T E R 10
Error Handling Procedures

• VNF Lifecycle Management Error Handling Procedures, on page 63

VNF Lifecycle Management Error Handling Procedures
ETSI invokes the following error handling procedures for all its ETSI VNF lifecycle management (LCM)
operations:

• Retry

• Rollback

• Fail

• Cancel

The image below represents the transitional states of the VNF lifecycle management operational occurrence.

Figure 2: VNF Lifecycle Management Transitional States

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
63

The vnfLcmOpOccId is encoded into the URI, which is the primary key to retrieve the request details.

The retry, rollback and fail requests are rejected if the LCM operation is in any other state other than the
FAILED_TEMP state. This error returns HTTP code 409.

The retry, rollback, fail and cancel requests are not supported for the particular VNF LCM operation for the
particular VNF. This error returns HTTP code 404.

An error occurs if the vnfLcmOpOccId does not exist in the ETSI database. This error returns HTTP code
404.

Note

Retry

A retry request is applicable if there is a possibility of the LCM operation to succeed. The operation should
be (pre-condition) in the FAILED_TEMP state for a retry request. You can send several retry requests, as
long as the operation is in the FAILED_TEMP state.

FAILED_TEMP statePrecondition

POST {api_root}/vnf_lcm_op_occs/{vnfLcmOpOccId}/retry()Request

PROCESSING statePostcondition

Upon successful retry, ESC sends a START or PROCESSING notification. If the retry request fails, then ESC
sends a notification to the NFVO with the details.

Rollback

A rollback request is made if it is not possible for the operation to succeed even after a retry request.

Set the rollback_required flag to true. If this is not set to true, then rollback is not performed.

FAILED_TEMP statePrecondition

POST {api_root}/vnf_lcm_op_occs/{vnfLcmOpOccId}/rollback()Request

ROLLED_BACKPostcondition

Upon successful rollback, the LCM operation is rolled back. If the rollback request fails, then the LCM
operation is back to the failed_temp sate.

Fail

When an LCM operation does not require a retry request, or a clean up, a fail request allows you to free up
resources for a subsequent request.

If the rollback_required flag is set to true, a fail request cannot be made.

FAILED_TEMP statePrecondition

POST {api_root}/vnf_lcm_op_occs/{vnfLcmOpOccId}/fail()Request

FAILED statePostcondition

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
64

Error Handling Procedures
VNF Lifecycle Management Error Handling Procedures

Upon successful execution of this request, the LCM operation is in FAILED state.

Cancel

A cancel request is possible if the operation is in STARTING state.

A cancel request is currently possible in the STARTING or PROCESSING state for Instantiate, but only
STARTING for all other LCM operations.

Note

STARTING statePrecondition

POST {api_root}/vnf_lcm_op_occs/{vnfLcmOpOccId}/cancel(CancelMode)Request

ROLLED_BACKPostcondition

The cancel request is Forceful.

ETSI supports canceling an LCM operation in starting state only. The cancel request for LCM operations in
processing or rolling back states are currently not supported.

Note

Example JSON payload (CancelMode):

{
"cancelMode": "FORCEFUL",
"action": "cancel"

}

Set the IsCancelPending attribute of the VnfLcmOpOcc to true. This will stop the processing request, and
move the LCM operation to ROLLED_BACK state.

Error Handling Procedures for ETSI VNF Lifecycle Operations

If the LCM operation for a VNF instance fails, the operation moves to the FAILED_TEMP state according
to the state machine. To complete the intended operation, you must either run the retry or rollback request.

• If creating a VNF identifier fails, then no further action is required. The rollback request is not supported.

• If instantiating the VNF fails, then ESC terminates the request, and sends a new instantiation request.

• If operating the VNF fails, then no further action is required.

• If terminating the VNF fails, you must retry the operation, as rollback is not supported.

• If deleting the VNF operation fails, then no further action is required. Th erollback request is not supported.

The error handling requests do not impact the operating VNF lifecycle operation.Note

For information on VNF lifecycle operations, see VNF Lifecycle Operations, on page 22.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
65

Error Handling Procedures
VNF Lifecycle Management Error Handling Procedures

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
66

Error Handling Procedures
VNF Lifecycle Management Error Handling Procedures

C H A P T E R 11
Alarms and Notifications for ETSI LCM
Operations

• ETSI Alarms, on page 67
• Subscribing to Notifications, on page 70
• ETSI Failure and Load Notifications for VNFs, on page 72

ETSI Alarms
ESC provides alarms and notifications to the NFVO. The NFVO has to subscribe to these alarms and
notifications and send requests to ESC.

The NFVO can receive information about the alarms in the following ways:

Query All Alarms

The NFVO can get a list of all the alarms from the alarms resource.

Method Type:
GET

VNFM Endpoint:
/vnffm/v1/alarms

HTTP Request Header:
Accept:application/json

For example, to query all alarms with the event type as ENVIRONMENTAL_ALARM

Method Type:
GET

VNFM Endpoint:
http://localhost:8250/vnffm/v1/alarms?eventType="ENVIRONMENTAL_ALARM"

HTTP Request Headers:
Accept:application/json

While querying for multiple alarms, the NFVO can use the URI query parameters to filter the results. The
following attribute names are supported for the URI query of the alarms:

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
67

• id

• managedObjectId

• rootCauseFaultyResource.faultyResourceType

• eventType

• perceivedSeverity

• probableCause

The URI query parameters are for querying multiple alarms only.Note

Query an Individual Alarm

The NFVO can query a particular alarm from the alarmId resource.

Method Type:
GET

VNFM Endpoint
/vnffm/v1/alarms/{alarmId}

HTTP Request Header:
Accept:application/json

Modify an Individual Alarm

To modify an alarm, the NFVO must send a PATCH request to the AlarmModifications resource.

Method Type:
PATCH

VNFM Endpoint:
/vnffm/v1/alarms/{alarmId}

HTTP Request Header:
Content-Type: application/merge-patch+json

If-Match: ETag value

If-Match: is optional. If specified, its value is validated against the ETag value stored against the VNF (and
returned from a single VNF query).

Note

The supported attribute is ackState, and the supported attribute value is ACKNOWLEDGE. All other
modification payloads are rejected.

VNF Failure and Load Alarms

The following alarms are created for ETSI VNF failure and load notifications.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
68

Alarms and Notifications for ETSI LCM Operations
ETSI Alarms

• Failure Alarm—ESC generates the failure alarms when one of the compute resources within the VNF
becomes unreachable based upon the VM_ALIVEKPI configuration of the VFND. For more information,
see ETSI Failure and Load Notifications for VNFs.

Example:

Method Type
POST

VNFM Endpoint
/vnffm/v1/extension/alarms

HTTP Request Header
Content-Type:application/json

Request Payload:
{
"externalAlarmId" : "26bf1e3d-cefa-4f59-88ea-210a29358a5c", #generated value
"alarmSource" : "MONA", #hard-coded
"managedObjectId" : "08733ef2-319b-46ce-9d8d-95730306bd1a", #external_deployment_id
"rootCauseFaultyResource" : "chrimann-dep_g1_0_212da327-0573-421b-ae37-057f6b1a6aef",
#vm_name
"alarmRaisedTime" : "$timestamp", #generated value
"ackState" : "UNACKNOWLEDGED", #hard-coded
"perceivedSeverity" : "CRITICAL", #hard-coded
"eventTime" : "2018-05-08T00:59:32.571+00:00", #do we have the eventTime?
"eventType" : "EQUIPMENT_ALARM", #hard-coded
"faultType" : "COMPUTE", #hard-coded
"probableCause" : "VM_MANUAL_RECOVERY_NEEDED", #event_name
"isRootCause" : "TRUE", #hard-coded
"links" : {
"objectInstance" :

"{http_scheme}://{api_root}/vnflcm/v1/vnf_instances/08733ef2-319b-46ce-9d8d-95730306bd1a"

}
}

• LoadAlarm—ESC generates the load alarmswhen one of the compute resources within the VNF becomes
over or under loaded based upon the related KPI configurations of the VFND. ESC creates these alarms
after receiving notifications from the NFVO. For more information, see ETSI Failure and Load
Notifications for VNFs.

Example:

Method Type
POST

VNFM Endpoint
/vnffm/v1/extension/alarms

HTTP Request Header
Content-Type:application/json

Request Payload

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
69

Alarms and Notifications for ETSI LCM Operations
ETSI Alarms

Alarm Extensions

ETSI provides an extension for the alarms to interact with the third party tools. You must send a POST request
to create the alarms.

Method Type
POST

VNFM Endpoint
/vnffm/v1/extension/alarms

HTTP Request Header
Content-Type:application/json

Request Payload

[admin@davwebst-esc-4-2-0-49-keep ETSI]$ cat CreateAlarm.json
{

"id": "alm87032",
"externalAlarmId": "ext-id-xx11214",
"managedObjectId": "930fb087-c1b9-4660-bec8-2a8d97dc1df5",
"rootCauseFaultyResource": {

"id": "fres7629",
"faultyResource": {

"resourceId": "res7727"
},
"faultyResourceType": "NETWORK"

},
"alarmRaisedTime": "2018-05-30T13:55:15.645000+00",
"ackState": "UNACKNOWLEDGED",
"perceivedSeverity": "MAJOR",
"eventTime": "2018-05-30T13:55:15.645000+00",
"eventType": "ENVIRONMENTAL_ALARM",
"probableCause": "Server room overheading",
"isRootCause": "false"

}

Subscribing to Notifications
The NFVO can subscribe to the ETSI notifications related to fault management from ESC.

Create a Subscription

The NFVO sends a POST request to subscribe to the notifications.

Method Type:
POST

VNFM Endpoint:
/vnffm/v1/subscriptions

Response Payload:
{
"filter" : {
"notificationTypes" : [
"AlarmNotification",
"AlarmClearedNotification",

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
70

Alarms and Notifications for ETSI LCM Operations
Subscribing to Notifications

"AlarmListRebuiltNotification"
],
"perceivedSeverities" : [
"CRITICAL",
"MAJOR"

]
},
"callbackUri" : "https://nfvo.endpoint.listener",
"authentication" : {
"authType" : "BASIC",
"paramsBasic" : {
"userName" : "admin",
"password" : "pass123"

}
}

}

This creates a new subscription resource and a new identifier. The callbackUri is the only mandatory parameter.
The others are all optional. You can verify if the callbackuri is valid and reachable by sending a GET request.

Query all Subscriptions

The NFVO can query information about its subscriptions by sending a GET request to the subscriptions
resource.

Method Type:
GET

VNFM Endpoint:
/vnffm/v1/subscriptions

HTTP Request Header:
Accept:application/json

For example, to query all alert subscriptions, when the callbackUri is
http://10.10.1.44:9202/alerts/subscriptions/callback

GET

VNFM Endpoint
http://localhost:8250/vnffm/v1/subscriptions?callbackUri="http://10.10.1.44:9202/alerts/subscriptions/callback"

HTTP Request Header
Accept:application/json

The NFVO can use the URI query parameters to filter the results. The following attribute names are supported
for the URI query of the subscriptions:

• id

• filter

• callbackUri

The URI query parameters are for querying multiple subscriptions only.Note

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
71

Alarms and Notifications for ETSI LCM Operations
Subscribing to Notifications

Query an Individual Subscription

You must know the subscription ID to query an individual subscription.

Method Type:
GET

VNFM Endpoint:
/vnffm/v1/subscriptions/{subscriptionId}

HTTP Request Header:
Accept:application/json

Delete a Subscription

You can delete a subscription if the NFVO does not need it. Send a delete request to the individual subscription.

Method Type:
DELETE

VNFM Endpoint:
/vnffm/v1/subscriptions/{subscriptionId}

HTTP Request Header:
http://localhost:8250/vnffm/v1/subscriptions/682791f8-34ad-487e-811a-553036bf49b2

ETSI Failure and Load Notifications for VNFs
ESC generates notifications for the following:

• VM Failure

The NFVO receives failure notifications from ESC, when the VMs within the deployed VNFs fail. After
receiving the notifications, alarms are generated. For more information on alarms, see ETSI Alarms, on
page 67.

The NFVO must subscribe to the ESC for notifications.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<deployment_name>sample-dep</deployment_name>
<event_name>MY_VM_UNDERLOADED</event_name>
<event_type>VM_UNDERLOADED</event_type>
<external_deployment_id>e911eecf-5f3f-456c-9c80-d99aca2416da</external_deployment_id>

<external_tenant_id>etsi_tenant</external_tenant_id>
<internal_deployment_id>99f7629f-98d3-40f5-ad68-7addcfe07006</internal_deployment_id>

<internal_tenant_id>etsi_tenant</internal_tenant_id>
<vm_source>

<generated_vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</generated_vm_name>

<interfaces>
<addresses>
<address>

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
72

Alarms and Notifications for ETSI LCM Operations
ETSI Failure and Load Notifications for VNFs

<address_id>0</address_id>
<gateway>172.16.0.1</gateway>
<ip_address>172.16.0.0</ip_address>
<dhcp_enabled>true</dhcp_enabled>
<prefix>20</prefix>
<subnet>365a0884-fdb3-424c-afe9-2deb3b39baae</subnet>

</address>
</addresses>
<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>
<mac_address>fa:16:3e:38:1d:6c</mac_address>
<nic_id>0</nic_id>
<port_forwarding/>
<port_uuid>0aeb9585-5190-4f3b-b1aa-495e09c56b7d</port_uuid>
<security_groups/>
<subnet_uuid>none</subnet_uuid>
<type>virtual</type>

<vim_interface_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vim_interface_name>

</interfaces>
<vim_id>default_openstack_vim</vim_id>
<vim_project>admin</vim_project>
<vim_project_id>c12f013306d849e5b1bbf257c54d5891</vim_project_id>
<host_uuid>6b8cf361c5ff08a5a886e26f591b8087dadcf2d2b34fb3b5d2772a8d</host_uuid>
<host_name>my-server</host_name>
<vm_uuid>9fea3fe7-9417-4734-b962-b24340941ef3</vm_uuid>
<vm_group_name>vm1</vm_group_name>
<vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vm_name>

</vm_source>
</esc_event>

• VM Overload and Underload

Similarly, the NFVO receives an overload or underload notification for a VM.

If scaling is not enabled automatically, ESC generates a notification depending on the state of the VM.

Examples:
<?xml version="1.0" encoding="UTF-8"?>
<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<deployment_name>sample-dep</deployment_name>
<event_name>MY_VM_UNDERLOADED</event_name>
<event_type>VM_UNDERLOADED</event_type>
<external_deployment_id>e911eecf-5f3f-456c-9c80-d99aca2416da</external_deployment_id>

<external_tenant_id>etsi_tenant</external_tenant_id>
<internal_deployment_id>99f7629f-98d3-40f5-ad68-7addcfe07006</internal_deployment_id>

<internal_tenant_id>etsi_tenant</internal_tenant_id>
<vm_source>

<generated_vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</generated_vm_name>

<interfaces>
<addresses>
<address>
<address_id>0</address_id>
<gateway>172.16.0.1</gateway>
<ip_address>172.16.0.0</ip_address>
<dhcp_enabled>true</dhcp_enabled>
<prefix>20</prefix>
<subnet>365a0884-fdb3-424c-afe9-2deb3b39baae</subnet>

</address>
</addresses>

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
73

Alarms and Notifications for ETSI LCM Operations
ETSI Failure and Load Notifications for VNFs

<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>
<mac_address>fa:16:3e:38:1d:6c</mac_address>
<nic_id>0</nic_id>
<port_forwarding/>
<port_uuid>0aeb9585-5190-4f3b-b1aa-495e09c56b7d</port_uuid>
<security_groups/>
<subnet_uuid>none</subnet_uuid>
<type>virtual</type>

<vim_interface_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vim_interface_name>

</interfaces>
<vim_id>default_openstack_vim</vim_id>
<vim_project>admin</vim_project>
<vim_project_id>c12f013306d849e5b1bbf257c54d5891</vim_project_id>
<host_uuid>6b8cf361c5ff08a5a886e26f591b8087dadcf2d2b34fb3b5d2772a8d</host_uuid>
<host_name>my-server</host_name>
<vm_uuid>9fea3fe7-9417-4734-b962-b24340941ef3</vm_uuid>
<vm_group_name>vm1</vm_group_name>
<vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vm_name>

</vm_source>
</esc_event>

VM underload example:
<?xml version="1.0" encoding="UTF-8"?>
<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<deployment_name>sample-dep</deployment_name>
<event_name>MY_VM_OVERLOADED</event_name>
<event_type>VM_OVERLOADED</event_type>
<external_deployment_id>e911eecf-5f3f-456c-9c80-d99aca2416da</external_deployment_id>

<external_tenant_id>etsi_tenant</external_tenant_id>
<internal_deployment_id>99f7629f-98d3-40f5-ad68-7addcfe07006</internal_deployment_id>

<internal_tenant_id>etsi_tenant</internal_tenant_id>
<vm_source>

<generated_vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</generated_vm_name>

<interfaces>
<addresses>
<address>
<address_id>0</address_id>
<gateway>172.16.0.1</gateway>
<ip_address>172.16.0.0</ip_address>
<dhcp_enabled>true</dhcp_enabled>
<prefix>20</prefix>
<subnet>365a0884-fdb3-424c-afe9-2deb3b39baae</subnet>

</address>
</addresses>
<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>
<mac_address>fa:16:3e:38:1d:6c</mac_address>
<nic_id>0</nic_id>
<port_forwarding/>
<port_uuid>0aeb9585-5190-4f3b-b1aa-495e09c56b7d</port_uuid>
<security_groups/>
<subnet_uuid>none</subnet_uuid>
<type>virtual</type>

<vim_interface_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vim_interface_name>

</interfaces>
<vim_id>default_openstack_vim</vim_id>
<vim_project>admin</vim_project>

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
74

Alarms and Notifications for ETSI LCM Operations
ETSI Failure and Load Notifications for VNFs

<vim_project_id>c12f013306d849e5b1bbf257c54d5891</vim_project_id>
<host_uuid>6b8cf361c5ff08a5a886e26f591b8087dadcf2d2b34fb3b5d2772a8d</host_uuid>
<host_name>my-server</host_name>
<vm_uuid>9fea3fe7-9417-4734-b962-b24340941ef3</vm_uuid>
<vm_group_name>vm1</vm_group_name>
<vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vm_name>

</vm_source>
</esc_event>

Auto-Scaling VNFs Using KPI Instructions
ESC can auto-scale VMs using the KPI instructions. The scaling workflow begins when the VNF instance is
in the instantiated state.The NFVO enables and disables the auto-scaling while modifying isAutoscaleEnabled
configurable property of the VNF.

Following are the events that trigger an ETSI-compliant auto-scale, which requires an instigation of a
ScaleVnfToLevelRequest: functionality.

• Overload and Underload

If the state of a VM changes and it is under or overloaded, ESC gets a notification to determine if the
scaling is automatically enabled. If it is not, ESC generates a notification towards the ETSI-VNFM
component to check the VNF's state.

The following example shows underloaded notification from ESC:
Headers:
esc-status-code = 200
esc-status-message = VM [sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de]

underloaded.
Body:
<?xml version="1.0" encoding="UTF-8"?>
<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<deployment_name>sample-dep</deployment_name>
<event_name>MY_VM_UNDERLOADED</event_name>
<event_type>VM_UNDERLOADED</event_type>
<external_deployment_id>e911eecf-5f3f-456c-9c80-d99aca2416da</external_deployment_id>

<external_tenant_id>etsi_tenant</external_tenant_id>
<internal_deployment_id>99f7629f-98d3-40f5-ad68-7addcfe07006</internal_deployment_id>

<internal_tenant_id>etsi_tenant</internal_tenant_id>
<vm_source>

<generated_vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</generated_vm_name>

<interfaces>
<addresses>
<address>
<address_id>0</address_id>
<gateway>172.24.0.1</gateway>
<ip_address>172.24.0.37</ip_address>
<dhcp_enabled>true</dhcp_enabled>
<prefix>20</prefix>
<subnet>365a0884-fdb3-424c-afe9-2deb3b39baae</subnet>

</address>
</addresses>
<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>
<mac_address>fa:16:3e:38:1d:6c</mac_address>
<nic_id>0</nic_id>
<port_forwarding/>

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
75

Alarms and Notifications for ETSI LCM Operations
Auto-Scaling VNFs Using KPI Instructions

<port_uuid>0aeb9585-5190-4f3b-b1aa-495e09c56b7d</port_uuid>
<security_groups/>
<subnet_uuid>none</subnet_uuid>
<type>virtual</type>

<vim_interface_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vim_interface_name>

</interfaces>
<vim_id>default_openstack_vim</vim_id>
<vim_project>admin</vim_project>
<vim_project_id>c12f013306d849e5b1bbf257c54d5891</vim_project_id>
<host_uuid>6b8cf361c5ff08a5a886e26f591b8087dadcf2d2b34fb3b5d2772a8d</host_uuid>
<host_name>my-server-65</host_name>
<vm_uuid>9fea3fe7-9417-4734-b962-b24340941ef3</vm_uuid>
<vm_group_name>vm1</vm_group_name>
<vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vm_name>

</vm_source>
</esc_event>

The following example shows overloaded notification from ESC:
Headers:
esc-status-code = 200
esc-status-message = VM [sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de]

overloaded.
Body:
<?xml version="1.0" encoding="UTF-8"?>
<esc_event xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<deployment_name>sample-dep</deployment_name>
<event_name>MY_VM_OVERLOADED</event_name>
<event_type>VM_OVERLOADED</event_type>
<external_deployment_id>e911eecf-5f3f-456c-9c80-d99aca2416da</external_deployment_id>

<external_tenant_id>etsi_tenant</external_tenant_id>
<internal_deployment_id>99f7629f-98d3-40f5-ad68-7addcfe07006</internal_deployment_id>

<internal_tenant_id>etsi_tenant</internal_tenant_id>
<vm_source>

<generated_vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</generated_vm_name>

<interfaces>
<addresses>
<address>
<address_id>0</address_id>
<gateway>172.24.0.1</gateway>
<ip_address>172.24.0.37</ip_address>
<dhcp_enabled>true</dhcp_enabled>
<prefix>20</prefix>
<subnet>365a0884-fdb3-424c-afe9-2deb3b39baae</subnet>

</address>
</addresses>
<network_uuid>c7fafeca-aa53-4349-9b60-1f4b92605420</network_uuid>
<mac_address>fa:16:3e:38:1d:6c</mac_address>
<nic_id>0</nic_id>
<port_forwarding/>
<port_uuid>0aeb9585-5190-4f3b-b1aa-495e09c56b7d</port_uuid>
<security_groups/>
<subnet_uuid>none</subnet_uuid>
<type>virtual</type>

<vim_interface_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vim_interface_name>

</interfaces>
<vim_id>default_openstack_vim</vim_id>

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
76

Alarms and Notifications for ETSI LCM Operations
Auto-Scaling VNFs Using KPI Instructions

<vim_project>admin</vim_project>
<vim_project_id>c12f013306d849e5b1bbf257c54d5891</vim_project_id>
<host_uuid>6b8cf361c5ff08a5a886e26f591b8087dadcf2d2b34fb3b5d2772a8d</host_uuid>
<host_name>my-server-65</host_name>
<vm_uuid>9fea3fe7-9417-4734-b962-b24340941ef3</vm_uuid>
<vm_group_name>vm1</vm_group_name>
<vm_name>sample-dep_vm1_0_fbc3da46-e0c6-40dc-91c8-70b1a88857de</vm_name>

</vm_source>
</esc_event>

• VNFD

The VNFD notification contains the instructions for the scale action required for isAutoscaleEnabled
configurable property of the VNF operation flow.

If the scaling is not enabled automatically, you can instigate the manual LCM operations using the KPI
instructions. It is instigated by processing the ESC notification stream. You must validate the notification
once you receive the KPI events.

You must take the following actions:

• Find the matching VNF instance

• Validate that the appropriate configuration property is set to enable the automated operation

If the validation passes then you can request to instigate the operation flow to generate the appropriate
operation occurrence and associated notifications. For scaling, any specified KPI data determines the
scaling parameters. The properties file includes the following new attributes:
external.scaling.decision = 1
#external.scaling.window = 120
external.healing.decision = 1
#external.healing.window = 120

• VnfInstance resource

The VNFD determines the scale level using the current scaleStatus. The processing of the request
determines the number of VMs to request from ESCManager. The request only supplies a relative number
of increments (SCALE_IN or SCALE_OUT).

You can call the ScaleVnfToLevel endpoint with the following payload, using vnfInstanceId from the
vnfInstance resource of the VNF to be scaled.

Ensure that the VnfLcmOpOcc.isAutomaticInvocation is set to true.

The following eexample shows JSON payload:
{
/* "instantiationLevelId":"id111", */
"scaleInfo": [
{ "aspectId":"processing", "scaleLevel":"3" },
{ "aspectId":"database", "scaleLevel":"2" }

]
"additionalParams": {
"password": "pass1234",
"username": "admin"

},
"action": "scale_to_level"

}

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
77

Alarms and Notifications for ETSI LCM Operations
Auto-Scaling VNFs Using KPI Instructions

Healing VNFs Using KPI Instructions
ESC can auto-heal VMs using the KPI instructions. The NFVO enables and disables the auto-healing while
modifying isAutohealEnabled configurable property of the VNF.

The isAutohealEnabled property permits to enable (TRUE)/disable (FALSE) the auto-healing functionality.

•

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
78

Alarms and Notifications for ETSI LCM Operations
Healing VNFs Using KPI Instructions

C H A P T E R 12
Administering ESC

• ETSI Performance Reports, on page 79
• Performance Management Jobs, on page 79
• Configuring Threshold for Performance Management Job, on page 82
• Subscribing to Performance Management Job, on page 85

ETSI Performance Reports
ESC allows you to collect the performance information of the VNFs such as metrics and notifications using
the performance management job functionality. You must first create a performance management (PM) job.
After creating the PM job, you can perform the following tasks:

• Query, delete, or notify performance management jobs

• Read an individual report, or obtain the performance reports

• Configure the threshold of the performance management jobs

• Query, delete or notify the threshold of the performance management jobs

• Manage subscriptions, query, subscribe or terminate subscriptions

Performance Management Jobs
This section describes the performance management jobs.

Create Performance Management Job

You must create a performance management job to further query and run reports.

Method Type:

POST

VNFM Endpoint:
{api_root}/vnfpm/v1/pm_jobs (Data structure=CreatePmJobRequest)

Request Payload:

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
79

{
"objectInstanceIds": [
"cc6a34e5-0463-459a-b367-493ba997775f"

],
"criteria": {
"performanceMetric": [
"default"

],
"performanceMetricGroup": [
"default"

],
"collectionPeriod": 3600,
"reportingPeriod": 14400

}
}

Response Payload:

{
"id": "13963644-11b0-4302-a13b-26ca3d9eb8f8",
"objectInstanceIds": [
"cc6a34e5-0463-459a-b367-493ba997775f "

],
"criteria": {
"performanceMetric": [
"default"

],
"performanceMetricGroup": [
"default"

],
"collectionPeriod": 3600,
"reportingPeriod": 14400

},
"_links": {
"self": {
"href": "http://host:port/vnfpm/v1/pm_jobs/13963644-11b0-4302-a13b-26ca3d9eb8f8"

},
"objects": [
{
"href":

"http://host:port/vnflcm/v1/vnf_instances/cc6a34e5-0463-459a-b367-493ba997775f"
}

]
}

}

Query an Individual Performance Management Job

The NFVO queries for the individual performance management job.

Method Type:

GET

VNFM Endpoint:
{api_root}/vnfpm/v1/pm_jobs/{pmJobId} or GET {api_root}/vnfpm/v1/pm_jobs/{pmJobId}

Request Payload:

NA.

Response Payload:

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
80

Administering ESC
Performance Management Jobs

{
"id": "13963644-11b0-4302-a13b-26ca3d9eb8f8",
"objectInstanceIds": [
"cc6a34e5-0463-459a-b367-493ba997775f "

],
"criteria": {
"performanceMetric": [
"default"

],
"performanceMetricGroup": [
"default"

],
"collectionPeriod": 3600,
"reportingPeriod": 14400,
"reports": [
{
"href": "uri_where_report_can_be_obtained",
"readyTime": "2018-08-20T06:17:35.081+0000",
"expiryTime": "2018-10-20T06:17:35.081+0000",
"fileSize": "5000"

}
]

},
"_links": {
"self": {
"href": "http://host:port/vnfpm/v1/pm_jobs/13963644-11b0-4302-a13b-26ca3d9eb8f8"

},
"objects": [
{
"href":

"http://host:port/vnflcm/v1/vnf_instances/cc6a34e5-0463-459a-b367-493ba997775f"
}

]
}

}

A reports section is added to the response payload (as shown above) only if a report is available.

All the attribute names and the data types referenced from the attribute names in the response payload are
supported in the attribute-based filtering.

Note

Query All Performance Management Jobs

The NFVO gets the list of all the performance management jobs.

Method Type:

GET

VNFM Endpoint:
{api_root}/vnfpm/v1/pm_jobs or GET {api_root}/vnfpm/v1/pm_jobs

Request Payload:

NA.

Response Payload:

{

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
81

Administering ESC
Performance Management Jobs

"id": "13963644-11b0-4302-a13b-26ca3d9eb8f8",
"objectInstanceIds": [
"cc6a34e5-0463-459a-b367-493ba997775f "

],
"criteria": {
"performanceMetric": [
"default"

],
"performanceMetricGroup": [
"default"

],
"collectionPeriod": 3600,
"reportingPeriod": 14400,
"reports": [
{
"href": "uri_where_report_can_be_obtained",
"readyTime": "2018-08-20T06:17:35.081+0000",
"expiryTime": "2018-10-20T06:17:35.081+0000",
"fileSize": "5000"

}
]

},
"_links": {
"self": {
"href": "http://host:port/vnfpm/v1/pm_jobs/13963644-11b0-4302-a13b-26ca3d9eb8f8"

},
"objects": [
{
"href":

"http://host:port/vnflcm/v1/vnf_instances/cc6a34e5-0463-459a-b367-493ba997775f"
}

]
}

}

A reports section is added to the response payload (as shown above) only if a report is available.

All the attribute names in the response payload and data types referenced from the attribute names are supported
in the attribute-based filtering.

Note

Delete a Performance Management Job

The NFVO sends a delete request to the existing performance management job.
DELETE {api_root}/vnfpm/v1/pm_jobs/{pmJobId}

TheNFVO is notified using the PerformanceInformationAvailableNotification notification.

Configuring Threshold for Performance Management Job
This seciton describes how to set the threshold for the performance management jobs.

Create a Threshold

The NFVO sends a create request to create a threshold for the performance management job.

Method Type:

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
82

Administering ESC
Configuring Threshold for Performance Management Job

POST

VNFM Endpoint:
{api_root}/vnfpm/v1/thresholds (Datastructure=CreateThresholdRequest)

Request Payload:

{
"objectInstanceId": "cc6a34e5-0463-459a-b367-493ba997775f",
"criteria": {
"performanceMetric": "default",
"thresholdType": "SIMPLE",
"simpleThresholdDetails": {
"thresholdValue": 0.8,
"hysteresis": 0.9

}
}

}

Response Payload:

{
"id": "23f52511-9f72-4797-881b-c0f72e60a052",
"objectInstanceId": "cc6a34e5-0463-459a-b367-493ba997775f",
"criteria": {
"performanceMetric": "default",
"thresholdType": "SIMPLE",
"simpleThresholdDetails": {
"thresholdValue": 0.8,
"hysteresis": 0.9

}
},
"_links": {
"self": {
"href": "http://host:port/vnfpm/v1/thresholds/23f52511-9f72-4797-881b-c0f72e60a052"

},
"object": [
{
"href":

"http://host:port/vnflcm/v1/vnf_instances/cc6a34e5-0463-459a-b367-493ba997775f"
}

]
}

}

Query an Individual Threshold

The NFVO can query the threshold of a performance management job.

GET

VNFM Endpoint:
{api_root}/vnfpm/v1/thresholds/{thresholdId}

Request Payload: NA

Response Payload:

{
"id": "23f52511-9f72-4797-881b-c0f72e60a052",
"objectInstanceId": "cc6a34e5-0463-459a-b367-493ba997775f",

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
83

Administering ESC
Configuring Threshold for Performance Management Job

"criteria": {
"performanceMetric": "default",
"thresholdType": "SIMPLE",
"simpleThresholdDetails": {
"thresholdValue": 0.8,
"hysteresis": 0.9

}
},
"_links": {
"self": {
"href": "http://host:port/vnfpm/v1/thresholds/23f52511-9f72-4797-881b-c0f72e60a052"

},
"object": [
{
"href":

"http://host:port/vnflcm/v1/vnf_instances/cc6a34e5-0463-459a-b367-493ba997775f"
}

]
}

}

Attribute-based filtering is not possible when specifying a threshold id.Note

Query All Thresholds

The NFVO can query the threshold of a performance management job.

Method Type:

GET

VNFM Endpoint:
{api_root}/vnfpm/v1/thresholds

Request Payload: NA

Response Payload:

{
"id": "23f52511-9f72-4797-881b-c0f72e60a052",
"objectInstanceId": "cc6a34e5-0463-459a-b367-493ba997775f",
"criteria": {
"performanceMetric": "default",
"thresholdType": "SIMPLE",
"simpleThresholdDetails": {
"thresholdValue": 0.8,
"hysteresis": 0.9

}
},
"_links": {
"self": {
"href": "http://host:port/vnfpm/v1/thresholds/23f52511-9f72-4797-881b-c0f72e60a052"

},
"object": [
{
"href":

"http://host:port/vnflcm/v1/vnf_instances/cc6a34e5-0463-459a-b367-493ba997775f"
}

]

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
84

Administering ESC
Configuring Threshold for Performance Management Job

}
}

All the attribute names in the response payload and data types referenced from the attribute names are supported
in the attribute-based filtering.

Note

Delete a Threshold

TheNFVO sends a delete request to delete the threshold configuration of the existing performancemanagement
job.
DELETE {api_root}/vnfpm/v1/thresholds/{thresholdId}

The NFVO receives the ThresholdCrossedNotification if ESC crosses a configured threshold.

Subscribing to Performance Management Job
This section describes subscribing to the performance management jobs.

Create a Performance Management Subscription

The NFVO can subscribe to the performance management jobs.

Method Type:

POST

VNFM Endpoint:
{api_root}/vnfpm/v1/subscriptions(DataStructure=PmSubscriptionRequest)

Example 1:

Request Payload:

{
"callbackUri": "http://host:port/notification",
"filter": {

"notificationTypes": ["ThresholdCrossedNotification",
"PerformanceInformationAvailableNotification"],

"vnfInstanceSubscriptionFilter": {
"vnfdIds": ["25ec9e1c-ad9e-4613-9280-411920f3649a"],
"vnfInstanceIds": ["cc6a34e5-0463-459a-b367-493ba997775f"]

}
}

}

Response Payload:

{
"id": "4fba7dcb-e015-4674-9c50-8cee7059eb91"
"callbackUri": "http://host:port/notification",

"filter": {
"notificationTypes": ["ThresholdCrossedNotification",

PerformanceInformationAvailableNotification"],
"vnfInstanceSubscriptionFilter": {

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
85

Administering ESC
Subscribing to Performance Management Job

"vnfdIds": ["25ec9e1c-ad9e-4613-9280-411920f3649a"],
"vnfInstanceIds":

["cc6a34e5-0463-459a-b367-493ba997775f"] }
},
"_links": {

"self": {
"href":

"http://host:port/vnfpm/v1/subscriptions/4fba7dcb-e015-4674-9c50-8cee7059eb91"
}

}
}

Example 2:

Request Payload:

{
"callbackUri": "http://host:port/notification",
"filter": {

"notificationTypes": ["ThresholdCrossedNotification",
"PerformanceInformationAvailableNotification"],

"vnfInstanceSubscriptionFilter": {
"vnfProductsFromProviders": [{

"vnfProvider": "Cisco",
"vnfProducts": [{

"vnfProductName": "vnfd-1VDU",

"versions": [{

"vnfSoftwareVersion": "1.3.1",
"vnfdVersions":

["1.0", "1.1", "1.2"]
}]

}]
}],

"vnfInstanceNames":
["kaswaczy-TestETSIPmSubscriptionGet-114113"]

}
}

}

Response Payload:

{
"id": "4fba7dcb-e015-4674-9c50-8cee7059eb92"
"callbackUri": "http://host:port/notification",
"filter": {

"notificationTypes": ["ThresholdCrossedNotification",
"PerformanceInformationAvailableNotification"],

"vnfInstanceSubscriptionFilter": {
"vnfProductsFromProviders": [{

"vnfProvider": "Cisco",
"vnfProducts": [{

"vnfProductName":
"vnfd-1VDU",

"versions": [{

"vnfSoftwareVersion": "1.3.1",

"vnfdVersions": ["1.0", 1.1", 1.2"]
}]

}]
}],

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
86

Administering ESC
Subscribing to Performance Management Job

"vnfInstanceNames":
["kaswaczy-TestETSIPmSubscriptionGet-114113"]

}
},
"_links": {

"self": {
"href":

"http://host:port/vnfpm/v1/subscriptions/4fba7dcb-e015-4674-9c50-8cee7059eb92"
}

}
}

• The vnfdIds and vnfProductsFromProviders attributes are mutually exclusive. Only one of them can be
provided in a single create request.

• The vnfInstanceIds and vnfInstanceNames attributes are mutually exclusive. Only one of them can be
provided in a single create request.

• If the specified callbackUri and filter precisely matches an existing subscription, the create subscription
operation will fail with an error message stating duplicate subscriptions are not allowed.

Note

Query an Individual Performance Management Subscription

Method Type:

GET

VNFM Endpoint:
{api_root}/vnfpm/v1/subscriptions/{subscriptionId}

Request Payload: NA

Response Payload:

{
"id": "4fba7dcb-e015-4674-9c50-8cee7059eb91"
"callbackUri": "http://host:port/notification",
"filter": {

"notificationTypes": ["ThresholdCrossedNotification",
"PerformanceInformationAvailableNotification"],

"vnfInstanceSubscriptionFilter": {
"vnfdIds":

["25ec9e1c-ad9e-4613-9280-411920f3649a"],
"vnfInstanceIds":

["cc6a34e5-0463-459a-b367-493ba997775f"] }
},
"_links": {

"self": {
"href":

"http://host:port/vnfpm/v1/subscriptions/4fba7dcb-e015-4674-9c50-8cee7059eb91"
}

}
}

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
87

Administering ESC
Subscribing to Performance Management Job

Attribute-based filtering is not possible when specifying a subscription id.Note

Query all Performance Management Subscriptions

Method Type:

GET
{api_root}/vnfpm/v1/subscriptions

Request Payload: NA

Response Payload:

{
"_embedded": {

"pmSubscriptions": [{
"id":

"4fba7dcb-e015-4674-9c50-8cee7059eb91""callbackUri": "http://host:port/notification",
"filter": {

"notificationTypes":
["ThresholdCrossedNotification", "PerformanceInformationAvailableNotification"],

"vnfInstanceSubscriptionFilter": {
"vnfdIds":

["25ec9e1c-ad9e-4613-9280-411920f3649a"],

"vnfInstanceIds": ["cc6a34e5-0463-459a-b367-493ba997775f"]
}

},
"_links": {

"self": {
"href":

"http://host:port/vnfpm/v1/subscriptions/4fba7dcb-e015-4674-9c50-8cee7059eb91"
}

}
},
{

"id":
"4fba7dcb-e015-4674-9c50-8cee7059eb92""callbackUri": "http://host:port/notification",

"filter": {
"notificationTypes":

["ThresholdCrossedNotification", "PerformanceInformationAvailableNotification"],

"vnfInstanceSubscriptionFilter": {

"vnfProductsFromProviders": [{

"vnfProvider": "Cisco",

"vnfProducts": [{

"vnfProductName": "vnfd-1VDU",

"versions": [{

"vnfSoftwareVersion": "1.3.1",

"vnfdVersions": ["1.0", "1.1", "1.2"]

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
88

Administering ESC
Subscribing to Performance Management Job

}]

}]
}],

"vnfInstanceNames": ["kaswaczy-TestETSIPmSubscriptionGet-114113"]
}

},
"_links": {

"self": {
"href":

"http://host:port/vnfpm/v1/subscriptions/4fba7dcb-e015-4674-9c50-8cee7059eb92"
}

}
}]

}
}

All attribute names and data types referenced in the response payload are supported in attribute-based filtering
of the parameters.

Note

Terminate a Performance Management Subscription

The NFVO can terminate a subscription.
DELETE {api_root}/vnfpm/v1/subscriptions/{subscriptionId}

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
89

Administering ESC
Subscribing to Performance Management Job

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
90

Administering ESC
Subscribing to Performance Management Job

A P P E N D I X A
ETSI Production Properties

• ETSI Production Properties, on page 91

ETSI Production Properties
There are many properties that can be set to determine the behaviour of ESC. These properties enable integration
of ESC with the NFVO in the system architecture.

You can access the properties file in the following location:

/opt/cisco/esc/esc_database/etsi-production.properties

The following table describes the parameters that can be used to control the behaviour of ESC acting as a
VNFM within the ETSI NFV MANO stack.

Table 8: ETSI Production Properties

Default ValueTypeDescriptionProperty Name

StringThe host IP address on
which the ETSI service
is located. This is a
mandatory property if
the server has multiple
IP addresses, or if the
deployment is
configured for High
Availability (it should
then be set to the VIP).

server.host

falseBooleanWhere there are
multiple IP address
types assigned to the
server, use the IPv6
address over any IPv4
address.

server.host.preferInet6

8250IntegerThe port used to
communicate over
HTTP.

server.port

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
91

Default ValueTypeDescriptionProperty Name

8251IntegerThe port used to
communicate over
HTTPS.

server.port.https

trueBooleanDetermine whether to
validate a host in any
certificate presented
when using HTTPS.
Allows for looser
validation, especially
useful in testing.

certificate.validation

3IntegerThemaximumnumber
of threads utilised for
the notification service.

notification.maxThreads

trueBooleanUpon creating a new
subscription, determine
whether to test

notification.subscription.test

httpsEnumThe HTTP scheme
used for
communicating with
the NFVO for
notifications. Valid
values: http, https.

notification.links.httpScheme

5IntegerThe number of retries
for the notification
retry mechanism.

notification.retry.maxAttempt

1000IntegerThe interval for the
notification retry
mechanism.

notification.retry.backOff.delay

StringMandatory. This is
the REST API
username. It is set by
sudo escadm etsi set

--rest_user

<username>:<password>

and should be
synchronized here.

security.user.name

localhost:8280StringMandatory. The
apiRoot for the NFVO.

nfvo.apiRoot

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
92

ETSI Production Properties
ETSI Production Properties

Default ValueTypeDescriptionProperty Name

httpEnumThe HTTP scheme
used for
communicating with
the NFVO. Valid
values: http, https.

nfvo.httpScheme

trueBooleanDetermine if the
VNFM will attempt to
subscribe to package
notifications.

nfvo.isPackageNotificationSupported

httpsEnumThe HTTP scheme
used for
communicating with
the NFVO when
polling for responses.
Valid values: http,

https.

nfvo.callback.httpScheme

StringThe username for
NFVO credentials.

nfvo.userName

StringThe password for
NFVO credentials,
required in plain text.

nfvo.password

1000IntegerThe number of retries
for the exponential
retry mechanism.

retryTemplate.expotential.retryPolicy.maxAttempt

1000IntegerThe starting interval
for the exponential
retry mechanism.

retryTemplate.expotential.backOffPolicy.interval.initial

50IntegerThe number of retries
for the simple retry
mechanism.

retry.simple.maxAttempt

1000IntegerThe interval for the
simple retry
mechanism.

retry.simple.backOff.delay

StringThe value to use to
filter packages on the
NFVO when querying
for packages.

nfvo.allPackagesFilter

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
93

ETSI Production Properties
ETSI Production Properties

Default ValueTypeDescriptionProperty Name

usernameStringProvide an alternate
attribute name when
specifying the
username in
accessInfo.

mapping.vimConnectionInfo.accessInfo.username

passwordStringProvide an alternate
attribute name when
specifying the
password in
accessInfo.

mapping.vimConnectionInfo.accessInfo.password

projectStringProvide an alternate
attribute name when
specifying the project
in accessInfo.

mapping.vimConnectionInfo.accessInfo.project

projectDomainStringProvide an alternate
attribute name when
specifying the
projectDomain in
accessInfo.

mapping.vimConnectionInfo.accessInfo.projectDomain

userDomainStringProvide an alternate
attribute name when
specifying the
userDomain in
accessInfo.

mapping.vimConnectionInfo.accessInfo.userDomain

vim_projectStringProvide an alternate
attribute name when
specifying the
vim_project in
accessInfo.

mapping.vimConnectionInfo.accessInfo.vim_project

vim_vdcStringProvide an alternate
attribute name when
specifying the vim_vdc
in accessInfo.

mapping.vimConnectionInfo.accessInfo.vim_vdc

5IntegerThe number of retries
for failedGrantRequest
attempts.

nfvo.grantRequest.retry.maxAttempt

1000IntegerThe interval for the
retries for failed
GrantRequest attempts.

nfvo.grantRequest.retry.backOff.delay

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
94

ETSI Production Properties
ETSI Production Properties

Default ValueTypeDescriptionProperty Name

yyyy-MM-dd'T'HH:mm:ss.SSSXXXStringA string to represent a
date format to allow
for varying NFVO
implementations to
read dates correctly.

spring.jackson.date-format

StringSetting the
authentication type of
the NFVO that is being
used. Required
property. Valid options
are "BASIC",
"OAUTH2", "OFF".
All other Strings will
be treated the same as
"OFF". Use this to
enable Basic and
OAuth2 authentication.

nfvo.authenticationType

StringFor NFVO OAuth2
Authentication. Client
ID.

nfvo.clientID

StringFor NFVO OAuth2
Authentication. Client
Secret.

nfvo.clientSecret

StringFor NFVO OAuth2
Authentication. The
endpoint for ETSI to
retrieve a OAuth2
token from the NFVO.

nfvo.tokenEndpoint

IntegerSet the bucket capacity
for read (GET)
requeusts to the ETSI
REST API.

By default this is
disabled.

rate.limit.capacity.read

DoubleSets the rate (per
second) at which the
bucket empties for the
read (GET) requests to
the ETSI REST API.

By default this is
disabled.

rate.limit.perSecond.read

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
95

ETSI Production Properties
ETSI Production Properties

Default ValueTypeDescriptionProperty Name

IntegerSet the bucket capacity
for write (POST, PUT,
PATCH, DELETE)
requeusts to the ETSI
REST API.

By default this is
disabled.

rate.limit.capacity.write

DoubleSets the rate (per
second) at which the
bucket empties for the
write (POST, PUT,
PATCH, DELETE)
requests to the ETSI
REST API.

By default this is
disabled.

rate.limit.perSecond.write

falseBooleanThe flag to enable
logging response for
query multiple VNF
instances and response
for query multiple
VNF lifecycle
management operation
occurrences.

log.multiple.query

1IntegerSet the interval value
for the VnfLcmOpOcc
cleanup task.

The combination of
interval.value and
interval.unit will
determine the
frequency that the
cleanup task is
executed.

scheduled.cleanup[vnfLcmOpOcc].interval.value

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
96

ETSI Production Properties
ETSI Production Properties

Default ValueTypeDescriptionProperty Name

DAYSSet the interval unit for
the VnfLcmOpOcc
cleanup task.

The combination of
interval.value and
interval.unit will
determine the
frequency that the
cleanup task is
executed.

Valid values:

NANOS, MICROS,

MILLIS, SECONDS,

MINUTES, HOURS,

HALF_DAYS, DAYS

scheduled.cleanup[vnfLcmOpOcc].interval.unit

60IntegerSet the age value for
the VnfLcmOpOcc
cleanup task.

The combination of
age.value and age.unit
will determine the age
of orphan records to be
deleted.

scheduled.cleanup[vnfLcmOpOcc].age.value

DAYSSet the age unit for the
VnfLcmOpOcc
cleanup task.

The combination of
age.value and age.unit
will determine the age
of orphan records to be
deleted.

Valid values:

NANOS, MICROS,

MILLIS, SECONDS,

MINUTES, HOURS,

HALF_DAYS, DAYS

scheduled.cleanup[vnfLcmOpOcc].age.unit

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
97

ETSI Production Properties
ETSI Production Properties

Default ValueTypeDescriptionProperty Name

0IntegerSetting a value > 0
turns on paging for
query endpoints.

This value represents
the number of results
to be included per
page.

If a response is paged
and there are further
pages then the
response will include a
header named "Link"
with rel="next" for
example:

<http://example.com

/resources?nextpage_opaque

_marker=abc123>;
rel="next"

The link url will
retrieve the next page.

If there are no further
pages to be retrieved
then the Link header
will be omitted.

paging.size

falseBooleanSetting the value to
true will change the
behaviour of ETSI
query endpoints to
return the full set of
attributes if an attribute
selector is not provided
(all_fields).

attribute.selector.default.all_fields

For information on resource definitions, see Resource Definitions for ETSI API, on page 3.

Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
98

ETSI Production Properties
ETSI Production Properties

	Cisco Elastic Services Controller 5.2 ETSI NFV MANO User Guide
	Full Cisco Trademarks with Software License
	Contents
	About This Guide
	Audience
	Terms and Definitions
	Related Documentation
	Obtaining Documentation Request

	ETSI NFV MANO Northbound API Overview
	ETSI NFV MANO Northbound API Overview

	Managing Resources
	Managing Resources
	Resource Definitions for ETSI API
	Updating Resource Definitions

	OAuth (Open Authorization) 2.0 Authentication

	Managing VIM Connectors
	VIM Connectors Overview
	Creating New VIM Connectors
	Using an Existing VIM Connector
	Updating the VIM Connector

	Understanding Virtual Network Function Descriptors
	Virtual Network Function Descriptor Overview
	Defining Extensions to the Virtual Network Function Descriptor

	Managing VNF Lifecycle Operations
	Managing the VNF Lifecycle
	VNF Lifecycle Operations
	Creating the VNF Identifier
	Instantiating Virtual Network Functions
	Querying Virtual Network Functions
	Modifying Virtual Network Functions
	Operating Virtual Network Functions
	Terminating Virtual Network Functions
	Deleting Virtual Network Function Resource Identifier

	Monitoring Virtual Network Functions
	Monitoring Virtual Network Functions Using ETSI API
	VM Monitoring Operations
	Notification for VM Monitoring Status

	Monitoring VNF Using D-MONA
	Onboarding D-MONA
	Deploying D-MONA
	Configuring D-MONA
	Deploying VNF Using D-MONA
	Monitoring Using D-MONA

	Healing Virtual Network Functions
	Healing Virtual Network Functions Using ETSI API
	Updating an Existing Deployment During Healing

	Scaling Virtual Network Functions
	Scaling Virtual Network Functions Using ETSI API
	VNFD Policies for Scaling
	Dependencies on Multiple IP Addresses
	Autoscaling of VNFs

	Error Handling Procedures
	VNF Lifecycle Management Error Handling Procedures

	Alarms and Notifications for ETSI LCM Operations
	ETSI Alarms
	Subscribing to Notifications
	ETSI Failure and Load Notifications for VNFs
	Auto-Scaling VNFs Using KPI Instructions
	Healing VNFs Using KPI Instructions

	Administering ESC
	ETSI Performance Reports
	Performance Management Jobs
	Configuring Threshold for Performance Management Job
	Subscribing to Performance Management Job

	ETSI Production Properties
	ETSI Production Properties

