
Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
First Published: 2024-09-27

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

C H A P T E R 1
Overview

This section contains the following topics:

• Overview, on page 1

Overview
Workflow Adapters are tools that allow a workflow to interact with systems outside the CWM. You can see
them as agents and intermediaries between the CWMplatform and any external services. Their role is to cause
an action in an outside system that's part of a workflow stream, or to retrieve data required by a workflow to
progress.

Every adapter is developed for communicating with an intended target service. Target services can be generic,
such as REST APIs over HTTP, or specific, such as vendor products (Cisco's Network Services Orchestrator,
for example).

If a workflow needs to access one or more external services, you can develop custom adapters for each of
them using the Adapter SDK. You may also want to use four pre-built adapters which are available as part
of the CWM offering. These ready-made solutions include: the Network Services Orchestrator adapter, a
generic REST API adapter, an Email adapter, and a generic CLI adapter.

What's in an adapter
An adapter is developed using the Workflow Adapter SDK which uses Golang for defining adapter logic and
leverages Protocol Buffers for representing adapter interfaces.

Modules, packages, activities
Every adapter is a go module that represents a product by a vendor. The go module in turn is a collection of
product features organized into go packages. Inside the packages you define adapter activities, which are
particular actions that the adapter can trigger within a given external system. You can have multiple features
inside one adapter by bundling related activities into separate packages.

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
1

https://go.dev
https://protobuf.dev

Figure 1: Adapter schema

As shown in the picture, every adapter follows the vendor, product and feature naming convention which
corresponds to a standard go project layout with modules and packages as described above.

Interfaces
Each product feature is represented by a protobuf file located in the proto folder. The Adapter SDK provides
command arguments to create the adapter structure and files.

As mentioned before, the naming convention for the adapter features is <vendor>.<product>.<feature>,
for example, cisco.nso.restconf.

When you create an adapter, the Adapter SDK generates a .proto file for each interface (feature) you specified:
syntax = "proto3";

package <vendor>.<product>.<feature>;

option go_package = "<module>/<feature>";

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
2

Overview
Interfaces

The interface is defined as a list of RPCs in the service named 'Activities':
service Activities {

rpc <ActOne> (<ActOne>Request) returns (<ActOne>Response);
rpc <ActTwo> (<ActTwo>Request) returns (<ActTwo>Response);

}

Lastly, the input and output of each activity are defined as protobuf messages:
message <ActOne>Request {

...
}
message <ActOne>Response {

...
}
...

common.adapter.proto

Besides the .proto files representing the adapter interface, there is one additional file:
<vendor>.<product>.common.adapter.proto.

The common .proto file is used to define additional configuration required by the adapter as well as information
allowing the adapter to connect to a target system. The file is generated automatically by the Adapter SDK,
but the developer can do any manual updates required.

The common .proto file must define certain messages to enable the CWM Resource Manager to handle this
data correctly. This can be done directly inside the file (default) or by importing another .proto.

Note

// Can be defined anywhere and imported to common .proto file.
message Resource {

...
}
message Secret {

...
}

// Must be defined in common .proto file.
message Config {

Resource resource = 1;
Secret secret = 2;

}

Activities
The Adapter SDK generates activities to be implemented in Golang. Each activity is represented as a method
with the receiver being a pointer to an adapter struct. Each method definition is based on the activity RPC
defined in proto.
func (adp *Adapter) <ActivityName>(

ctx context.Context,
req *<ActivityName>Request,
cfg *common.Config) (*<ActivityName>Response, error) {

/* Activity implementation */
}

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
3

Overview
common.adapter.proto

There are no restrictions on how to implement an activity. The developer is free to import any available go
packages. One suggestion is to avoid panics by having robust error handling with the activity returning a
meaningful error code.

Note

Properties
Each adapter has a .properties file which serves the CWM as the source of basic data about the adapter.
Mandatory properties are described below with examples:

DescriptionProperty

Name of adapter developerauthor=cisco

Name of target system vendorvendor=cisco

Name of target systemproduct=nso

Adapter versionversion=1.0.0

Version of SDK used for developing the adaptercwmsdk=1.0.0

Compatible CWM versioncwmversion=1.0

Compatible resource type stored by CWMResourceManagerresourcetype=cisco.nso.resource.v1.0.0

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
4

Overview
Properties

C H A P T E R 2
Use Adapter SDK

This section contains the following topics:

• Prerequisites, on page 5
• Overview of commands, on page 6
• Export library to local directory, on page 9

Prerequisites
To start using the CWMAdapter SDK, you need to install aGolang environment, Protocol buffers, dedicated
go plugins and download the Adapter SDK contained in the CWM software package.

Install Protocol buffers
To define an adapter interface and generate the input and output parameters, you need the Protobufs compiler.
Follow the installation instructions dedicated for your OS: https://grpc.io/docs/protoc-installation/. Note that
you need at least version 3.15 (proto3).

Install Go and plugins
To develop and test an adapter, you need to install theGolang environment. Follow the installation instructions
dedicated for your OS: https://grpc.io/docs/protoc-installation/.

Step 1 Install additional protocol compiler plugins for go:
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.28
go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@v1.2
go install github.com/pseudomuto/protoc-gen-doc/cmd/protoc-gen-doc@latest

Step 2 Install protocol compiler plugin for JSON schema:
go install github.com/pubg/protoc-gen-jsonschema@latest

Step 3 Update your system PATH so that the protoc compiler can find the plugins:
export PATH="$PATH:$(go env GOPATH)/bin"

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
5

https://grpc.io/docs/protoc-installation/
https://go.dev/doc/install

Get CWM Adapter SDK
Go to Cisco Software Download page to download the CWM Software Package, where the Adapter SDK
binary resides.

Include the location of adapter developer binaries by setting the environment variable path:
export PATH=/path/to/adapter-dev-binaries:$PATH

Remember to replace the /path/to/adapter-dev-binaries with your actual path.Note

Overview of commands
The Adapter SDK application offers the following set of commands for managing an adapter:

• cwm-sdk version - display the version of cwm-sdk application.

• cwm-sdk create-adapter - create a go module with a package and the corresponding .proto files.

• cwm-sdk extend-adapter - add a new feature to an existing adapter (go package and .proto files).

• cwm-sdk update-adapter - update activities, input and output (go code).

• cwm-sdk upgrade-adapter - upgrade the adapter to match CWM.

• cwm-sdk create-installable - create an archive installable by CWM.

Create new adapter
To create an adapter, open a command-line terminal and run:
cwm-sdk create-adapter [options] -product <product-name>

While the -product parameter is required for adapter creation, other options can be skipped.Note

Options
These are the options you can add to the create-adapter command:

DescriptionRequirementData
type

Option

skip creation of the .resource.proto file from template.optionalstring-exclude-resource

provide name for the go package assigned to activities
(default: "<adapter-name>").

optionalstring-feature

provide name for the module assigned to the go.mod file
(default:
"www.cisco.com/cwm/adapters/<vendor>/<adapter-name>").

optionalstring-go-module

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
6

Use Adapter SDK
Get CWM Adapter SDK

DescriptionRequirementData
type

Option

skip generation of example code in the go and proto files.optional-ignore-template

point to adapter location (default: current directory).optionalstring-location

define architecture in which adapter is developed. Valid
options are: 'linux','mac-intel','mac-arm' and 'windows'
(default: "linux").

optionalstring-os-architecture

provide name for the go module corresponding to the product
name you create an adapter for.

requiredstring-product

provide unique name for the company creating the adapter
(default "cisco").

optionalstring-vendor

output progress info. Options are: off, on and very (default
"off").

optionalstring-verbose

Output
Once the command is executed, verify the generated output inside the new adapter directory:

• <adapter-name>/adapter.properties

• <adapter-name>/go/go.mod

• <adapter-name>/proto/<vendor\>.<product\>.common.adapter.proto

• <adapter-name>/proto/<vendor\>.<product\>.<feature\>.adapter.proto (if you defined the
-feature option)

• <adapter-name>/Makefile

Extend adapter with features
To add a feature (a go package) for an adapter, open a terminal and from your main adapter directory, run:
cwm-sdk extend-adapter [options] -feature <feature_name>

Options

DescriptionRequirementData
type

Option

Provide name for a new activity to add.optionalstring-activity

Provide name for the feature to add (default: "<adapter-name>").requiredstring-feature

Skip generation of example code in the go and proto files.optional-ignore-template

Point to the location of adapter to which you add the feature
(default: current directory).

optionalstring-location

Output progress info. Options are: off, on and very (default
"off").

optionalstring-verbose

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
7

Use Adapter SDK
Output

Output
Once the command is executed, verify the generated output inside the new adapter directory:

• <adapter-name>/proto/<vendor>.<module>.<package>.adapter.proto

Generate/update activity
Once you have an adapter with at least one feature added, you can proceed to creating activities. Activities
are defined within the .proto file for a specific feature (go package). You can do this manually or use the
OASX extension for OpenAPI-enabled services to automatically build of message logic in the .proto files.

Once the activities are defined, you can generate the input and output files for the adapter. Go to your main
adapter directory and run:
cwm-sdk update-adapter

Options
• -features string - provide a comma-separated list of features to update.

• -location string - point to location of adapter to update (default: current directory).

• -verbose string - output progress info. Options are: off, on and very (default "off").

Output
Once the command is executed, verify the generated output inside the adapter directory:

• go/<feature\>/<vendor>.<product>.<feature>.adapter.pb.go

• go/common/<vendor>.<product>.common.adapter.pb.go

The .pb.go files contain go structs defining the input and output parameters of the adapter. They shouldn't
be altered manually.

Once the command is executed, verify the generated output inside the adapter directory:

• go/<feature\>/activities.go

The activities.go file contains stubs for the gRPCs defined in the .adapter.proto. Once generated, you
can add functionality to the activities by defining the message.

Upgrade adapter
To upgrade the go module to contain matching versions for go and required imports, go to the root directory
of your adapter and run:
cwm-sdk upgrade-adapter [options]

Options
• -cwm-version string - provide the version of CWM to upgrade to (default is latest).

• -location string - point to location of adapter to upgrade (default: current directory).

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
8

Use Adapter SDK
Output

/Develop/xtensions/OASX/
/Develop/xtensions/OASX/

• -verbose string - output progress info. Options are: off, on and very (default "off").

Output
• go/go.mod

The go.mod file module will be modifed allowing the adapter to be installed correctly.

Export library to local directory
The cwm-sdk uses the SDK go module for performing tasks. In certain cases you might want to have the SDK
go module created in the adapter directory beforehand. For this purpose, use the export-lib command.

The export-lib command comes with the following options:

StatusDescriptionData
type

Option

optionalProvide location where SDK lib should be created. (default: current directory)string-location

optionalShow command progress info. Options are: off, on, or very.string-verbose

Create adapter installable version
To create a tar.gz archive for installing your adapter for different operating systems, go to the root directory
of your adapter and run:
cwm-sdk create-installable [options]

Generates code based on the proto file.

Options
• -cwmversion string - provide a CWM version to match the created installable (default is latest).

• -location string - point to where the installable should be created (default: current directory).

• -verbose string - output progress info. Options are: off, on and very (default "off").

Output
• out/<vendor>-<product>-v<X.Y.Z>.tar.gz

!!! note The generated archive contains the adapter go module and proto files. The go module is modified
using the go vendor command in order to not have any external dependencies.

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
9

Use Adapter SDK
Output

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
10

Use Adapter SDK
Output

C H A P T E R 3
Adapter example

This section contains the following topics:

• Step 1: Create a new adapter, on page 11
• Step 2: Define mock activity, on page 12
• Step 3: Generate adapter source code, on page 13
• Step 4: Add another feature, on page 14
• Step 5: Create an installable archive, on page 15

Step 1: Create a new adapter
In a terminal window, open a command-line terminal and run:
cwm-sdk create-adapter -vendor vendor1 -product product1 -feature feature1

Now you have a new catalog named vendor1.product1 at your home dierctory with the following contents:
Makefile
adapter.properties
docs
go
proto

./docs:
index.html
./go:
common
go.mod
feature1

./go/common:
errors.go
logger.go
./go/feature1:

./proto:
vendor1.product1.common.adapter.proto
vendor1.product1.feature1.adapter.proto

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
11

Step 2: Define mock activity
The Adapter SDK has generated the .proto files. In the vendor1.product1.feature1.adapter.proto file,
define the interface of the adapter:

Step 1 Open the vendor1.product1.feature1.adapter.proto file with a text editor or inside a terminal window. The contents
are as below.
syntax = "proto3";

package vendor1.product1.feature1;

option go_package = "cisco.com/cwm/adapters/vendor1/product1/feature1";

import "google/protobuf/struct.proto";

service Activities {

// CWM SDK NOTE: Activity functions are defined as RPCs here e.g.

/* Documentation for MyActivity */
rpc MyActivity(MyRequest) returns (MyResponse);
}

// CWM SDK NOTE: Messages here e.g.

/* Documentation for MyRequest */
message MyRequest {
string stringInput = 1;
int32 integerInput = 2;
bool booleanInput = 3;
google.protobuf.Value anyInput = 4; // CWM SDK NOTE: Useful for accepting a json object from

the workflow definition
}

/* Documentation for MyResponse */
message MyResponse {
string stringOutput = 1;
int32 integerOutput = 2;
bool booleanOutput = 3;
google.protobuf.Value anyOutput = 4; // CWM SDK NOTE: Useful for returning a json object to

the workflow definition
}

Step 2 To define your activity, replace the placeholder 'MyActivity' with a mock 'Hello' activity, along with the MyRequest and
MyResponse placeholder names and message parameters as shown below:
service Activities {
/* Documentation for Hello Activity */
rpc Hello(MyRequest) returns (MyResponse);
}

/* Documentation for MyRequest */
message MyRequest {
string name = 1;
}

/* Documentation for MyResponse */
message MyResponse {

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
12

Adapter example
Step 2: Define mock activity

string message = 1;
}

Step 3: Generate adapter source code

Step 1 Based on the adapter.proto file that you have edited and on the remaining .proto files, generate the source go code
for the adapter and inspect the files. In the main adapter directory, run:
cwm-sdk update-adapter && ls

The output will look like:

.go/
common
go.mod
feature1
main.go

go//common:
errors.go
logger.go
vendor1.product1.common.adapter.pb.go

go//feature1:
activities.go
adapter.go
vendor1.product1.feature1.adapter.pb.go

Step 2 Note The .adapter.pb.go files should not be edited manually.

The .adapter.pb.go files generated using the Protobufs compiler define all the messages from the adapter.proto
files.

Step 3 The generated activities.go file contains stubs for all the RPCs you have defined in the .adapter.proto file. Open
the file:
package feature1

import (
"cisco.com/cwm/adapters/vendor1/product1/common"
"context"
)

func (adp *Adapter) Hello(ctx context.Context, req *MyRequest, cfg *common.Config) (*MyResponse,
error) {

var res *MyResponse
var err error

// CWM SDK NOTE: Implement your activity logic here...

return res, err
}

Step 4 Edit the file to return a message:

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
13

Adapter example
Step 3: Generate adapter source code

func (adp *Adapter) Hello(ctx context.Context, req *MyRequest, cfg *Config) (*MyResponse, error) {
return &MyResponse {Message: "Hello, " + req.GetName() + "!"}, nil
}

Define another activity
If you wish to add another activity to the existing feature set (go package):

Step 1 Open and edit the adapter.proto file and define another activity underneath the existing one:
service Activities {
rpc Hello(MyRequest) returns (MyResponse);
rpc Fancy(MyRequest) returns (MyResponse);
}

Step 2 Update the activities go code using the SDK:
cwm-sdk extend-adapter -activity fancy -feature feature1

After you update the fancy activity part of the .adapter.proto file with a sample logic, update the adapter:
cwm-sdk update-adapter

Once the code is generated, the activities.go file is updated with the new 'Fancy' activity stub, while the code for the
'Hello' activity remains.

Step 4: Add another feature
If you wish to add another feature (go package) to the example adapter, use the extend-adapter command.
In the main adapter directory, run:
cwm-sdk extend-adapter -feature feature2

Step 1 A new vendor1.product1.feature2.adapter.proto file has been added for your adapter:
.proto/
vendor1.product1.common.adapter.proto
vendor1.product1.feature2.adapter.proto
vendor1.product1.feature1.adapter.proto

Step 2 To define activities for the new feature, open the vendor1.product1.feature2.adapter.proto file, and modify the
contents accordingly:
syntax = "proto3";

package vendor1.product1.feature2;

option go_package = "cisco.com/cwm/adapters/vendor1/product1/feature2";

import "google/protobuf/struct.proto";

service Activities {
/* Documentation for Goodbye Activity */

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
14

Adapter example
Define another activity

rpc Goodbye(MyRequest) returns (MyResponse);
}

/* Documentation for MyRequest */
message MyRequest {
string name = 1;
}

/* Documentation for MyResponse */
message MyResponse {
string message = 1;
}

Step 3 Generate the code for the 'feature2' package and activities.
cwm-sdk update-adapter -features feature2

.go/goodbyes
activities.go
adapter.go
vendor1.product1.feature2.adapter.pb.go

Step 5: Create an installable archive
cwm-sdk create-installable

The generated tar.gz archive contains the all required files of the adapter and can be installed in CWM. The
go vendor command has been executed in order to eliminate any external dependencies.

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
15

Adapter example
Step 5: Create an installable archive

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
16

Adapter example
Step 5: Create an installable archive

C H A P T E R 4
Adapter XDK

This section contains the following topics:

• Adapter XDK for Cisco NSO, on page 17
• Adapter XDK for OpenAPI, on page 21
• Export XDK module to local directory, on page 26
• Generate installable, on page 26
• Test adapter activity, on page 26

Adapter XDK for Cisco NSO
The Adapter XDK for NSO (cwm-nsox) is an application that helps you generate interfaces and logic for
custom adapters intended to interact with the Cisco Network Services Orchestrator(NSO).

The primary purpose of cwm-nsox is to reduce the time-consuming and error-prone manual process of
constructing paths and payloads required for CWM to communicate with NSO.

The tool complements the Adapter SDK and is able to automatically define interfaces in .proto files and
implementation of logic in the adapter go module. This is achieved by parsing yang files and points of interest
provided by the Adapter Developer.

Prerequisites
• Installed Adapter SDK and dependencies.

• The NSO src/ncs/yang folder for yang module imports. If you don't have it, you may install Cisco NSO
to get it as part of a full installation.

Get cwm-nsox

The cwm-nsox is a binary that comes with the Crosswork Workflow Manager Software Package.

Go to Cisco Software Download page to download the .tar file with the CWM Software Package, where the
cwm-nsox resides. Unpack the .tar and move the contents of the adapters folder to a desired location

!!! tip It's recommended that you put the binary in a common folder, with the cwm-sdk and other extension
binaries like cwm-oasx.

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
17

Remember to include the location of the cwm-nsox binary by setting the environment variable path:
export PATH=/path/to/adapter-dev-binaries:$PATH

Use cwm-nsox for creating custom NSO adapter
The cwm-nsox works with yang models of NSO services and NEDs files to identfiy yang paths that you'd like
to address using the adapter.

Step 1: Create an adapter stub with Adapter SDK
Run the following command to create a new adapter using SDK:
cwm-sdk create-adapter \
-vendor cisco \
-product nsox \
-feature services \
-ignore-template

The ignore-template option eliminates tips and descriptions from the generated .proto files.Note

Step 2: Display yang paths and adapter code

display-paths

Use the cwm-nsox display-paths command to extract paths for activities from a source yang file. With the
-src option, you specify the desired yang configuration file:
cwm-nsox display-paths -src ../path/to/source/file.yang

You will see a list of yang paths based on which you can generate adapter activities.

display-proto

Optionally, use the display-proto command with the -poi option to display the output for the activity based
on your chosen point of interest:
cwm-nsox display-proto \
-src ../path/to/source/file.yang \
-poi your-nsoservice:your-nsoservice-list=%s/example-leaf

The output will look similar to this:
service Activities {

/*
* Description for activity NsoActivity
*/
rpc NsoActivity (NsoActivityRequest) returns (cisco.cwmlib.nso.Response);

}

/*
* Description for NsoActivityRequest
*/
message NsoActivityRequest {

string deviceName = 1; // devices/device={deviceName}
optional string dummyLeaf = 2; // tailf-ned-cwm-dmycli:dummy-leaf
cisco.cwmlib.nso.PutQuery queries = 3;

}

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
18

Adapter XDK
Use cwm-nsox for creating custom NSO adapter

The following options are available:

StatusDescriptionData
type

Option

optionalDefine paths to yang imports (comma separated list).string-deps

requiredPoint to desired yang path (point of interest)string-poi

requiredPoint to path of yang configuration file.string-src

optionalShow command progress info. Options are: off, on, or very.string-verbose

display-json

Optionally, use the display-json command with the required -poi and -src options to display the data
payload for the activity based on your chosen point of interest (path):
cwm-nsox display-json \
-src ../path/to/source/file.yang \
-poi your-nsoservice:your-nsoservice-list=%s/example-leaf

StatusDescriptionData
type

Option

optionalDefine paths to yang imports (comma separated list).string-deps

requiredPoint to desired yang path (point of interest)string-poi

requiredPoint to path of yang configuration file.string-src

optionalShow command progress info. Options are: off, on, or very.string-verbose

Step 3: Generate activity
Using the path defined in the previous section, you can now run the generate-activity command.

Go to the main directory of your adapter and execute the following command (adjust the path, activity name,
request type and point-of-interest name accordingly):
cwm-nsox generate-activity \
-src ../path/to/source/file.yang \
-feature services \
-activity NsoActivity \
-request PUT \
-poi your-nsoservice:your-nsoservice-list=%s/example-leaf

This will generate a new adapter activity with a predefined rpc and I/Omessages in the .proto files (see example
in the section above), as well as a ready-to-execute implementation in the .go files.

Here's an example of the output generated by the cwm-nsox and inserted in the activities.go file:
package services

import (
"context"

"www.cisco.com/cwm/adapters/cisco/nsox/common"
"www.cisco.com/cwm/sdk/adapters/logger"
"www.cisco.com/cwm/sdk/adapters/nso"
)

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
19

Adapter XDK
display-json

func (adp *Adapter) NsoActivity(ctx context.Context,
req *NsoActivityRequest, cfg *common.Config) (*nso.Response, error) {

logger.GetLogger(ctx).Info("Activity cisco.nsox.services.NsoActivity called...")
return nso.SendCustomRequest(ctx, req, cfg)
}

Create activity (optional)

Optionally, you can create a new activity for a selected feature but without indicating the source file. This
will create an activity implementation in the .go files and a stub for you to fill in the logic inside the .proto
file:
cwm-nsox create-activity \
-feature device \
-activity TestActivity \
-request GET \

Here's an example of the activity stub generated by the cwm-nsox inserted in the .proto file:
service Activities {

...

/*
* Description for activity Testactivity
*/
rpc Testactivity (TestactivityRequest) returns (TestactivityResponse);

}
...

/*
* Description for TestactivityRequest
*/
message TestactivityRequest {

// NOTE: Developer needs to set vars
}

message TestactivityResponse {
// NOTE: Developer needs to set vars

}

Step 4: Test your adapter
To test your adapter, generate an installable file and install the adapter in CWM.

Generate installable

Go to the main directory of your adapter and run the following command:
cwm-sdk create-installable

Test adapter activity

This will create a .tar file that can be then uploaded into CWM. Follow the detailed instructions in the Install
NSO adapter section to install and deploy the adapter, then run a workflow that uses the newly added adapter
activity.

Generate installable

Go to the main directory of your adapter and run the following command:
cwm-sdk create-installable

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
20

Adapter XDK
Create activity (optional)

Test adapter activity

The command will produce a .tar file that can be then installed in CWM and tested for proper functioning.

Adapter XDK for OpenAPI
Use Adapter XDK for OpenAPI (cwm-oasx) to automatically build interfaces and message logic for custom
adapters that require communicating with OpenAPI-based systems. With the cwm-oasx tool, you point to an
OpenAPI operation defined in JSON, which cwm-oasx will then use to generate a new adapter activity with
a predefined rpc and I/O messages in the .proto files, as well as a ready-to-execute implementation in the
adapter .go files.

Prerequisites
• Installed Adapter SDK and dependencies.

• A JSON or YAML schema file of an OpenAPI or Swagger-enabled API.

Get cwm-oasx

The cwm-oasx is a binary that comes with the Crosswork Workflow Manager Software Package.

Go to Cisco Software Download page to download the .tar file with the CWM Software Package, where the
cwm-oasx resides. Unpack the .tar and move the contents of the adapters folder to a desired location.

!!! tip It's recommended that you put the binary in a common folder, with the cwm-sdk and other extension
binaries like cwm-nsox.

Remember to include the location of the cwm-oasx binary by setting the environment variable path:
export PATH=/path/to/adapter-dev-binaries:$PATH

Use cwm-oasx for implementing adapter activities
The cwm-oasxworks with OpenAPI JSON/YAML schemas to identify endpoint paths and methods that you'd
like to call using the adapter. Follow this instruction to create a single adapter activity based on a single API
path and method.

As an example, we'll use the NetBox REST API schema in YAML format downloaded from the NetBox
Swagger API. Using a JSON schema is also supported.

Note

Step 1: Create an adapter stub with Adapter SDK
Run the following command to create a new adapter using SDK:
cwm-sdk create-adapter \
-vendor cisco \
-product oasx \
-feature services \
-ignore-template

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
21

Adapter XDK
Test adapter activity

The ignore-template option eliminates tips and descriptions from the generated .proto files.Note

Step 2: Display paths and adapter code

display-paths

Use the cwm-oasx display-paths to extract paths and methods for activities from a source JSON/YAML
file. Use the -src option to point to the desired JSON/YAML API schema file:
cwm-oasx display-paths -src ../path/to/source/NetBox_REST_API.yaml

A list of paths will be displayed. In the example, we're interested in first of the four that define operations on
ipam/prefixes:
/api/ipam/prefixes/ : [GET POST PUT PATCH DELETE]
/api/ipam/prefixes/{id}/ : [GET PUT PATCH DELETE]
/api/ipam/prefixes/{id}/available-ips/ : [GET POST]
/api/ipam/prefixes/{id}/available-prefixes/ : [GET POST]

display-proto

Optionally, use the display-proto command with the -oper, -path, and -src options to display the output
for the activity based on your chosen point of interest:
cwm-oasx display-proto \
-oper POST \
-path /api/ipam/prefixes/ \
-src ../path/to/source/NetBox_rest.yaml

The output will look similar to this:
Proto messages for activity:
message ProtoRequest {
message Data {
optional string comments = 1;
optional string customFields = 2;
optional string description = 3;
optional bool isPool = 4; // All IP addresses within this prefix are considered usable
optional bool markUtilized = 5; // Treat as 100% utilized
string prefix = 6;
optional int32 role = 7; // The primary function of this prefix
optional int32 site = 8;
optional string status = 9; // Operational status of this prefix\n\n* `container` -

Container\n* `active` - Active\n* `reserved` - Reserved\n* `deprecated` - Deprecated
message Tags {
optional string color = 1;
string name = 2;
string slug = 3;
}
repeated Tags tags = 10;
optional int32 tenant = 11;
optional int32 vlan = 12;
optional int32 vrf = 13;
}
Data data = 3;
}

message ProtoResponse {
int32 status = 1;

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
22

Adapter XDK
Step 2: Display paths and adapter code

google.protobuf.Value data = 2;
}

Note that three of four available options are required:

StatusDescriptionData
type

Option

requiredPoint to specific operation: GET, POST, PUT, PATCH or DELETE.string-oper

requiredPoint to specific API path.string-path

requiredPoint to desired JSON API schema file.string-src

optionalShow command progress info. Options are: off, on, or very.string-verbose

display-json

Optionally, use the display-json command with the required -oper, -path, and -src options to display the
data payload for the activity based on your chosen point of interest (path):
cwm-oasx display-json \
-oper POST \
-path /api/ipam/prefixes/ \
-src ../path/to/source/NetBox_rest.yaml

The output will look similar to this:
Data payload for activity:
{
"comments": "%s",
"custom_fields": "{{'{'}}%s{{'}'}}",
"description": "%s",
"is_pool": %t,
"mark_utilized": %t,
"prefix": "%s",
"role": %d,
"site": %d,
"status": "%s",
"tags": [
"color": "%s",
"name": "%s",
"slug": "%s"
],
"tenant": %d,
"vlan": %d,
"vrf": %d
}

Note that three of four available options are required:

StatusDescriptionData
type

Option

requiredPoint to specific operation: GET, POST, PUT, PATCH or DELETE.string-oper

requiredPoint to specific API path.string-path

requiredPoint to desired JSON API schema file.string-src

optionalShow command progress info. Options are: off, on, or very.string-verbose

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
23

Adapter XDK
display-json

Step 3: Generate activity
Using the path defined in the previous section, you can now run the generate-activity command.

Go to the main directory of your adapter and execute the following command (adjust the feature and activity
name, operation, path, and source accordingly):
cwm-oasx generate-activity \
-feature services \
-activity PostPrefix \
-oper POST \
-path /api/ipam/prefixes/ \
-src ../path/to/source/NetBox_rest.yaml

This will generate a new adapter activity with a predefined rpc and I/Omessages in the .proto files (see example
in the display-proto section above), as well as a ready-to-execute implementation in the .go files. Here's an
example of the function generated by the cwm-oasx and inserted in the activities.go file:
func (adp *Adapter) PostPrefix(ctx context.Context, req *PostPrefixRequest, cfg
*common.Config) (*PostPrefixResponse, error) {
return oas.SendRequest[*PostPrefixResponse](ctx, req, cfg.GetResource(), cfg.GetSecret())
}

Create activity (optional)

Optionally, you can create a new activity for a selected feature but without indicating the source json/yaml
file. This will create an activity implementation in the .go files and a stub for you to fill in the logic inside the
.proto file:
cwm-oasx create-activity \
-feature services \
-activity TestActivity \
-oper POST \

Here's an example of the activity stub generated by the cwm-oasx inserted in the .proto file:
service Activities {

...

/*
* Description for activity Testactivity
*/
rpc Testactivity (TestactivityRequest) returns (TestactivityResponse);

}
...

/*
* Description for TestactivityRequest
*/
message TestactivityRequest {

// NOTE: Developer needs to set vars
}

message TestactivityResponse {
// NOTE: Developer needs to set vars

}

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
24

Adapter XDK
Step 3: Generate activity

Step 4: Generate feature (optional)
Use this command to bulk create activities for new or existing features. If you point to a path, generate-feature
will pick all the endpoints existing down this path and generate activity code based on each, for all available
methods. Set verbose to on or very to see details of command execution.

For example, let's use the CWM JSON API specification and pass /secret as the path parameter for feature
services.
cwm-oasx generate-feature \
-src ../path/to/source/cwm.json \
-feature services \
-path /secret \
-verbose on

See the sample to see what the generated output will look like in the activities.go file:

go package services
import (
"context"

"cisco.com/cwm/lib/xdk/oas"
"cisco.com/cwm/adapters/cisco/oasx/common"
)

func (adp *Adapter) GetType(ctx context.Context, req *GetTypeRequest, cfg *common.Config)
(*GetTypeResponse, error) {
return oas.SendRequest[*GetTypeResponse](ctx, req, cfg.GetResource(), cfg.GetSecret())
}

func (adp *Adapter) Get(ctx context.Context, req *GetRequest, cfg *common.Config)
(*GetResponse, error) {
return oas.SendRequest[*GetResponse](ctx, req, cfg.GetResource(), cfg.GetSecret())
}

func (adp *Adapter) Post(ctx context.Context, req *PostRequest, cfg *common.Config)
(*PostResponse, error) {
return oas.SendRequest[*PostResponse](ctx, req, cfg.GetResource(), cfg.GetSecret())
}

func (adp *Adapter) GetWithSecretId(ctx context.Context, req *GetWithSecretIdRequest, cfg
*common.Config) (*GetWithSecretIdResponse, error) {
return oas.SendRequest[*GetWithSecretIdResponse](ctx, req, cfg.GetResource(),
cfg.GetSecret())
}

func (adp *Adapter) PatchWithSecretId(ctx context.Context, req *PatchWithSecretIdRequest,
cfg *common.Config) (*PatchWithSecretIdResponse, error) {
return oas.SendRequest[*PatchWithSecretIdResponse](ctx, req, cfg.GetResource(),
cfg.GetSecret())
}

func (adp *Adapter) DeleteWithSecretId(ctx context.Context, req *DeleteWithSecretIdRequest,
cfg *common.Config) (*DeleteWithSecretIdResponse, error) {
return oas.SendRequest[*DeleteWithSecretIdResponse](ctx, req, cfg.GetResource(),
cfg.GetSecret())
}

func (adp *Adapter) GetTypeWithSecretTypeId(ctx context.Context, req
*GetTypeWithSecretTypeIdRequest, cfg *common.Config) (*GetTypeWithSecretTypeIdResponse,
error) {
return oas.SendRequest[*GetTypeWithSecretTypeIdResponse](ctx, req, cfg.GetResource(),

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
25

Adapter XDK
Step 4: Generate feature (optional)

cfg.GetSecret())
}

The generate-feature command comes with the following options:

StatusDescriptionData
type

Option

requiredPoint to desired JSON/YAML API schema file.string-src

requiredGive name of adapter feature to be updated.string-feature

requiredPoint to specific API path.string-path

optionalShow command progress info. Options are: off, on, or very.string-verbose

Export XDK module to local directory
The cwm-oasx uses the XDK gomodule for performing tasks, and some of them can share some of the resources
with the NSOX extension.While the XDKmodule is exported to the directory of your adapter upon executing
the generate-activity command, in certain cases you might want to have the XDK go module created in
the adapter directory beforehand. For this purpose, use the export-lib command.

The export-lib command comes with the following options:

StatusDescriptionData
type

Option

optionalProvide location where XDK lib should be created. (default: current directory)string-location

optionalShow command progress info. Options are: off, on, or very.string-verbose

Generate installable
Go to the main directory of your adapter and run the following command:
cwm-sdk create-installable

Test adapter activity
The command will produce a .tar file that can be then installed in CWM and tested for proper functioning.

Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
26

Adapter XDK
Export XDK module to local directory

	Cisco Crosswork Workflow Manager 1.2 Adapter Developer guide
	Overview
	Overview
	What's in an adapter
	Modules, packages, activities
	Interfaces
	common.adapter.proto

	Activities
	Properties

	Use Adapter SDK
	Prerequisites
	Install Protocol buffers
	Install Go and plugins
	Get CWM Adapter SDK

	Overview of commands
	Create new adapter
	Options
	Output

	Extend adapter with features
	Options
	Output

	Generate/update activity
	Options
	Output

	Upgrade adapter
	Options
	Output

	Export library to local directory
	Create adapter installable version
	Options
	Output

	Adapter example
	Step 1: Create a new adapter
	Step 2: Define mock activity
	Step 3: Generate adapter source code
	Define another activity

	Step 4: Add another feature
	Step 5: Create an installable archive

	Adapter XDK
	Adapter XDK for Cisco NSO
	Prerequisites
	Get cwm-nsox
	Use cwm-nsox for creating custom NSO adapter
	Step 1: Create an adapter stub with Adapter SDK
	Step 2: Display yang paths and adapter code
	display-paths
	display-proto
	display-json

	Step 3: Generate activity
	Create activity (optional)

	Step 4: Test your adapter
	Generate installable
	Test adapter activity
	Generate installable
	Test adapter activity

	Adapter XDK for OpenAPI
	Prerequisites
	Get cwm-oasx
	Use cwm-oasx for implementing adapter activities
	Step 1: Create an adapter stub with Adapter SDK
	Step 2: Display paths and adapter code
	display-paths
	display-proto
	display-json

	Step 3: Generate activity
	Create activity (optional)

	Step 4: Generate feature (optional)

	Export XDK module to local directory
	Generate installable
	Test adapter activity

