
Use gRPC Protocol to Define Network Operations
with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automatedmechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only
TCP protocol.

Note

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:
syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

Use gRPC Protocol to Define Network Operations with Data Models
1

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};

rpc CommitReplace(CommitReplaceArgs) returns(CommitReplaceReply) {};
}
message ConfigGetArgs {

int64 ReqId = 1;
string yangpathjson = 2;

}

message ConfigGetReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message GetOperArgs {
int64 ReqId = 1;
string yangpathjson = 2;

}

message GetOperReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message ConfigArgs {
int64 ReqId = 1;
string yangjson = 2;

}

message ConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

}

message CliConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CommitReplaceArgs {
int64 ReqId = 1;
string cli = 2;
string yangjson = 3;

}

message CommitReplaceReply {
int64 ResReqId = 1;
string errors = 2;

}

Example for gRPCExec configuration:

Use gRPC Protocol to Define Network Operations with Data Models
2

Use gRPC Protocol to Define Network Operations with Data Models

service gRPCExec {
rpc ShowCmdTextOutput(ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput(ShowCmdArgs) returns(stream ShowCmdJSONReply) {};
rpc ActionJSON(ActionJSONArgs) returns(stream ActionJSONReply) {};

}

message ShowCmdArgs {
int64 ReqId = 1;
string cli = 2;

}

message ShowCmdTextReply {
int64 ResReqId =1;
string output = 2;
string errors = 3;

}

message ActionJSONArgs {
int64 ReqId = 1;
string yangpathjson = 2;
}

message ActionJSONReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;
}

Example for OpenConfiggRPC configuration:
service OpenConfiggRPC {

rpc SubscribeTelemetry(SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry(CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels(GetModelsInput) returns (GetModelsOutput) {};

}

message GetModelsInput {
uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;
enum MODLE_REQUEST_TYPE {

SUMMARY = 0;
DETAIL = 1;

}
MODLE_REQUEST_TYPE requestType = 5;

}

message GetModelsOutput {
uint64 requestId = 1;
message ModelInfo {

string name = 1;
string namespace = 2;
string version = 3;
GET_MODEL_TYPE modelType = 4;
string modelData = 5;

}
repeated ModelInfo models = 2;
OC_RPC_RESPONSE_TYPE responseCode = 3;
string msg = 4;

}

Use gRPC Protocol to Define Network Operations with Data Models
3

Use gRPC Protocol to Define Network Operations with Data Models

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster
programmatic and standards-based configuration of a network, as comapared to CLI.

• gRPC Operations, on page 4
• gRPC over UNIX Domain Sockets, on page 10
• gRPC Network Management Interface, on page 11
• OpenConfig Metadata for Configuration Annotations, on page 18
• gRPC Network Operations Interface , on page 20
• gRPC Network Security Interface , on page 26
• IANA Port Numbers For gRPC Services, on page 37
• Configure Interfaces Using Data Models in a gRPC Session, on page 40

gRPC Operations
The following are the defined manageability service gRPC operations for Cisco IOS XR:

DescriptiongRPC Operation

Retrieves the configuration from the router.GetConfig

Gets the supported Yang models on the routerGetModels

Merges the input config with the existing device configuration.MergeConfig

Deletes one or more subtrees or leaves of configuration.DeleteConfig

Replaces part of the existing configuration with the input configuration.ReplaceConfig

Replaces all existing configurationwith the new configuration provided.CommitReplace

Retrieves operational data.GetOper

Invokes the input CLI configuration.CliConfig

Returns the output of a show command in the text formShowCmdTextOutput

Returns the output of a show command in JSON form.ShowCmdJSONOutput

gRPC Operation to Get Configuration

This example shows how a gRPC GetConfig request works for CDP feature.

The client initiates a message to get the current configuration of CDP running on the router. The
router responds with the current CDP configuration.

Use gRPC Protocol to Define Network Operations with Data Models
4

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Operations

gRPC Response (Router to Client)gRPC Request (Client to Router)

{
"Cisco-IOS-XR-cdp-cfg:cdp": {
"timer": 50,
"enable": true,
"log-adjacency": [
null
],
"hold-time": 180,
"advertise-v1-only": [
null
]
}
}

{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": {
"timer": 60,
"enable": true,
"reinit": 3,
"holdtime": 150

}
}

rpc GetConfig
{
"Cisco-IOS-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"
]

}

rpc GetConfig
{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": [
"lldp": "running-configuration"
]

}

gRPC Authentication Modes
gRPC supports the following authentication modes to secure communication between clients and servers.
These authenticationmodes help ensure that only authorized entities can access the gRPC services, like gNOI,
gRIBI, and P4RT. Upon receiving a gRPC request, the device will authenticate the user and perform various
authorization checks to validate the user.

The following table lists the authentication type and configuration requirements:

Table 1: gRPC Authentication Modes and Configuration Requirements

Requirement From
Client

Configuration
Requirement

Authorization
Method

Authentication
Method

Type

username, password,
and CA

grpcusernameusername, passwordMetadata with TLS

username, passwordgrpc no-tlsusernameusername, passwordMetadata without
TLS

username, password,
client certificate,
client key, and CA

grpc tls-mutualusernameusername, passwordMetadata with
Mutual TLS

client certificate,
client key, and CA

grpc tls-mutual

and

grpc certificate
authentication

username from
client certificate's
common name field

client certificate's
common name field

Certificate based
Authentication

Use gRPC Protocol to Define Network Operations with Data Models
5

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Authentication Modes

Certificate based Authentication

In Extensible Manageability Services (EMS) gRPC, the certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes the following certificates for authentication:
/misc/config/grpc/ems.pem
/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

For clients to use the certificates, ensure to copy the certificates from /misc/config/grpc/Note

Generation of Certificates

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of Certificates

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that has been generated earlier to the location
and restart the server.

Custom Certificates

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate a custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the customCA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Authenticate gRPC Services

Typically, gRPC clients include the username and password in the gRPC metadata fields.Note

Use any one of the following configuration type to authenticate any gRPC service.

• Metadata with TLS

Router#config
Router(config)#grpc
Router(config-grpc)#commit

• Metadata without TLS

Router#config
Router(config)#grpc

Use gRPC Protocol to Define Network Operations with Data Models
6

Use gRPC Protocol to Define Network Operations with Data Models
Authenticate gRPC Services

Router(config-grpc)#no-tls
Router(config-grpc)#commit

• Metadata with Mutual TLS

Router#config
Router(config)#grpc
Router(config-grpc)#tls-mutual
Router(config-grpc)#commit

• Certificate based Authentication

Router(config)#grpc
Router(config-grpc)#tls-mutual
Router(config-grpc)#certificate-authentication
Router(config-grpc)#commit

Use gRPC Protocol to Define Network Operations with Data Models
7

Use gRPC Protocol to Define Network Operations with Data Models
Authenticate gRPC Services

Certificate Common-Name For Dial-in Using gRPC Protocol
Table 2: Feature History Table

DescriptionRelease InformationFeature Name

Introduced in this release on: NCS
5500 fixed port routers; NCS 5700
fixed port routers; NCS 5500
modular routers (NCS 5500 line
cards; NCS 5700 line cards [Mode:
Compatibility; Native])

You can now specify a
common-name for the certificate
generated by the router while using
gRPC dial-in. Earlier, the
common-name in the certificate
was fixed as ems.cisco.com andwas
not configurable. Using a specified
common-name avoids potential
certification failures where youmay
specify a hostname different from
the fixed common name to connect
to the router.

The feature introduces these
changes:

CLI:

• grpc certificate
common-name

YANG Data Model:

• New XPath for
Cisco-IOS-XR-um-grpc-cfg.yang

• New XPath for
Cisco-IOS-XR-man-ems-cfg

(see GitHub, YANG Data Models
Navigator)

Release 24.1.1Certificate Common-Name For
Dial-in Using gRPC Protocol

When using gRPC dial-in on Cisco IOS-XR router, the common-name associated with the certificate generated
by the router is fixed as ems.cisco.com and this caused failure during certificate verification.

From Cisco IOS XR Release 24.1.1, you can now have the flexibility of specifying the common-name in the
certificate using the grpc certifcate common-name command. This allows gRPC clients to verify if the
domain name in the certificate matches the domain name of the gRPC server being accessed.

Configure Certificate Common Name For Dial-in
Configure a common name to be used in EMSD certificates for gRPC dial-in.

Use gRPC Protocol to Define Network Operations with Data Models
8

Use gRPC Protocol to Define Network Operations with Data Models
Certificate Common-Name For Dial-in Using gRPC Protocol

https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html#wp3441271847
https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html#wp3441271847
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Step 1 Configure a common name.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#certificate common-name cisco.com
Router(config-grpc)#commit

Use the show command to verify the common name:
Router#show grpc
Certificate common name : cisco.com

For the above configuration to be successful, ensure to regenerate the certificate. so that the new EMSD certificates
include the configured common name.

Note

To regenerate the self-signed certificate, perform the following steps.

Step 2 Remove the certificates: /misc/config/grpc/ems.pem, /misc/config/grpc/ems.key, and /misc/config/grpc/ca.cert
from /misc/config/grpc file.

Example:
Router#run ls -ltr /misc/config/grpc/

total 16
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 10:58 ems.pem
-rw-------. 1 root root 1675 Feb 14 10:58 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#run rm -rf /misc/config/grpc/ems.pem /misc/config/grpc/ems.key

Router#run ls -ltr /misc/config/grpc/

total 8
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Step 3 Restart gRPC server by toggling the TLS configuration.

Configure gRPC with non TLS and then re-configure with TLS.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#no-tls
Router(config-grpc)#commit

Router#run ls -ltr /misc/config/grpc/

total 8
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#config
Router(config)#grpc
Router(config-grpc)#no no-tls
Router(config-grpc)#commit

Router#run ls -ltr /misc/config/grpc/

total 16

Use gRPC Protocol to Define Network Operations with Data Models
9

Use gRPC Protocol to Define Network Operations with Data Models
Configure Certificate Common Name For Dial-in

drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 14:23 ems.pem
-rw-------. 1 root root 1675 Feb 14 14:23 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 14:23 ca.cert

Copy the newly generated /misc/config/grpc/ems.pem certificate in this path (from the device) to the gRPC client.

gRPC over UNIX Domain Sockets
Table 3: Feature History Table

DescriptionRelease InformationFeature Name

This feature allows local containers and scripts
on the router to establish gRPC connections
over UNIX domain sockets. These sockets
provide better inter-process communication
eliminating the need to manage passwords for
local communications. Configuring
communication over UNIX domain sockets
also gives you better control of permissions
and security because UNIX file permissions
come into force.

This feature introduces the grpc
local-connection command.

Release 7.5.1gRPC Connections over UNIX
domain sockets for Enhanced
Security and Control

You can use local containers to establish gRPC connections via a TCP protocol where authentication using
username and password is mandatory. This functionality is extended to establish gRPC connections over
UNIX domain sockets, eliminating the need to manage password rotations for local communications.

When gRPC is configured on the router, the gRPC server starts and then registers services such as gRPC
Network Management Interface and gRPC Network Operations Interface . After all the gRPC server
registrations are complete, the listening socket is opened to listen to incoming gRPC connection requests.
Currently, a TCP listen socket is created with the IP address, VRF, or gRPC listening port. With this feature,
the gRPC server listens over UNIX domain sockets that must be accessible from within the container via a
local connection by default. With the UNIX socket enabled, the server listens on both TCP and UNIX sockets.
However, if disable the UNIX socket, the server listens only on the TCP socket. The socket file is located at
/misc/app_host/ems/grpc.sock directory.

The following process shows the configuration changes required to enable or disable gRPC over UNIX domain
sockets.

Step 1 Configure the gRPC server.

Example:
Router(config)#grpc
Router(config-grpc)#local-connection
Router(config-grpc)#commit

To disable the UNIX socket use the following command.

Use gRPC Protocol to Define Network Operations with Data Models
10

Use gRPC Protocol to Define Network Operations with Data Models
gRPC over UNIX Domain Sockets

https://www.cisco.com/content/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html#wp7259355000
https://www.cisco.com/content/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html#wp7259355000

Router(config-grpc)#no local-connection

The gRPC server restarts after you enable or disable the UNIX socket. If you disable the socket, any active gRPC sessions
are dropped and the gRPC data store is reset.

The scale of gRPC requests remains the same and is split between the TCP and Unix socket connections. The maximum
session limit is 256, if you utilize the 256 sessions on Unix sockets, further connections on either TCP or UNIX sockets
is rejected.

Step 2 Verify that the local-connection is successfully enabled.

Example:
Router#show grpc status
Thu Nov 25 16:51:30.382 UTC
*************************show gRPC status**********************

transport : grpc
access-family : tcp4
TLS : enabled
trustpoint :
listening-port : 57400
local-connection : enabled
max-request-per-user : 10
max-request-total : 128
max-streams : 32
max-streams-per-user : 32
vrf-socket-ns-path : global-vrf
min-client-keepalive-interval : 300

A gRPC client must dial into the socket to send connection requests.

The following is an example of a Go client connecting to UNIX socket:
const sockAddr = "/misc/app_host/ems/grpc.sock"

...
func UnixConnect(addr string, t time.Duration) (net.Conn, error) {

unix_addr, err := net.ResolveUnixAddr("unix", sockAddr)
conn, err := net.DialUnix("unix", nil, unix_addr)
return conn, err

}

func main() {
...

opts = append(opts, grpc.WithTimeout(time.Second*time.Duration(*operTimeout)))
opts = append(opts, grpc.WithDefaultCallOptions(grpc.MaxCallRecvMsgSize(math.MaxInt32)))
...
opts = append(opts, grpc.WithDialer(UnixConnect))
conn, err := grpc.Dial(sockAddr, opts...)
...

}

gRPC Network Management Interface
gRPCNetworkManagement Interface (gNMI) is a gRPC-based networkmanagement protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and

Use gRPC Protocol to Define Network Operations with Data Models
11

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Network Management Interface

generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage
configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gNMI Wildcard in Schema Path
Table 4: Feature History Table

DescriptionRelease InformationFeature Name

You use a gRPC Network
Management Interface (gNMI) Get
request with wildcard key to
retrieve the configuration and
operational data of all the elements
in the data model schema paths. In
earlier releases, you had to specify
the correct key to retrieve data. The
router returned a JSON error
message if the key wasn't specified
in a list node.

For more information about using
wildcard search in gNMI requests,
see the Github repository.

Release 7.5.2Use gNMI Get Request With
Wildcard Key to Retrieve Data

gNMI protocol supports wildcards to indicate all elements at a given subtree in the schema. These wildcards
are used for telemetry subscriptions or gNMI Get requests. The encoding of the path in gNMI uses a structured
format. This format consists of a set of elements such as the path name and keys. The keys are represented as
string values, regardless of their type within the schema that describes the data. gNMI supports the following
options to retrieve data using wildcard search:

• Single-level wildcard: The name of a path element is specified as an asterisk (*). The following sample
shows a wildcard as the key name. This operation returns the description for all interfaces on a device.
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "*"

}
}
elem {
name: “config"

}
elem {
name: "description"

}
}

Use gRPC Protocol to Define Network Operations with Data Models
12

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Wildcard in Schema Path

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md

• Multi-level wildcard: The name of the path element is specified as an ellipsis (…). The following
example shows a wildcard search that returns all fields with a description available under /interfaces
path.
path {
elem {
name: "interfaces"

}
elem {
name: "..."

}
elem {
name: "description"

}
}

Example: gNMI Get Request with Unique Path to a Leaf

The following is a sample Get request to fetch the operational state of GigabitEthernet0/0/0/0
interface in particular.
path: <

origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
key: <

key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""

>
>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF

The following is a sample Get response:
notification: <
timestamp: 1597974202517298341
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""
>

>
elem: <

Use gRPC Protocol to Define Network Operations with Data Models
13

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Wildcard in Schema Path

name: "state"
>

>
val: <

json_ietf_val: im-state-admin-down
>

>
>
error: <
>

Example: gNMI Get Request Without a Key Specified in the Schema Path

The following is a sample Get request to fetch the operational state of all interfaces.
path: <

origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF

The following is a sample Get response:
path: <

origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF
notification: <
timestamp: 1597974202517298341
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <

Use gRPC Protocol to Define Network Operations with Data Models
14

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Wildcard in Schema Path

name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val: im-state-admin-down

>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/1\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val: im-state-admin-down

>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/2\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val: im-state-admin-down

>
>
update: <
path: <

Use gRPC Protocol to Define Network Operations with Data Models
15

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Wildcard in Schema Path

origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"MgmtEth0/RP0/CPU0/0\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val: im-state-admin-down

>
>

gNMI Bundling of Telemetry Updates
Table 5: Feature History Table

DescriptionRelease
Information

Feature Name

With gRPCNetworkManagement Interface (gNMI) bundling,
the router internally bundles multiple gNMI Updatemessages
meant for the same client into a single gNMI Notification
message and sends it to the client over the interface.

You can now optimize the interface bandwidth utilization by
accommodating more gNMI updates in a single notification
message to the client. We have now increased the gNMI
bundling size from 32768 to 65536 bytes, and enabled gNMI
bundling size configuration through Cisco native data model.

Prior releases allowed only a maximum bundling size of
32768 bytes, and you could configure only through CLI.

The feature introduces new XPaths to the
Cisco-IOS-XR-telemetry-model-driven-cfg.yang Cisco
native data model to configure gNMI bundling size.

To view the specification of gNMI bundling, see Github
repository.

Release 7.8.1gNMI Bundling Size
Enhancement

To send fewer number of bytes over the gNMI interface, multiple gNMI Update messages pertained to the
same client are bundled and sent to the client to achieve optimized bandwidth utilization.

The router internally bundles multiple gNMI Update messages in a single gNMI Notification message of
gNMI SubscribeResponse message. Cisco IOS XR software Release 7.8.1 supports gNMI bundling size up
to 65536 bytes.

Use gRPC Protocol to Define Network Operations with Data Models
16

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Bundling of Telemetry Updates

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

Router bundles multiple instances of the same client. For example, a router bundles interfaces
MgmtEth0/RP0/CPU0/0, FourHundredGigE0/0/0/0, FourHundredGigE0/0/0/1, and so on, of the following
path.

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

Router does not bundle messages of different client in a single gNMI Notification message. For example,

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/protocols

Data under the container of the client path cannot be split into different bundles.

The gNMI Notificationmessage contains a timestamp at which an event occurred or a sample is taken. The
bundling process assigns a single timestamp for all bundled Update values. The notification timestamp is the
first message of the bundle.

• ON-CHANGE subscription mode does not support gNMI bundling.

• Router does not enforce bundling size in the following scenarios:

• At the end of (N-1) message processing, if the notification message size is less than the configured
bundling size, router allows one extra instance which could result in exceeding the bundling size.

• Data of a single instance exceeding the bundling size.

• The XPath: network-instances/network-instance/afts does not support bundling.

Note

Configure gNMI Bundling Size
gNMI bundling is disabled by default and the default bundling size is 32,768 bytes. gNMI bundling size ranges
from 1024 to 65536 bytes. Prior to Cisco IOS XR software Release 7.8.1 the range was 1024 to 32768 bytes.
You can enable gNMI bundling to all gNMI subscribe sessions and specify the bundling size.

Configuration Example

This example shows how to enable gNMI bundling and configure bundling size.
Router# configure
Router(config)# telemetry model-driven
Router(config-model-driven)# gnmi
Router(config-gnmi)# bundling
Router(config-gnmi-bdl)# size 2000
Router(config-gnmi-bdl)# commit

Running configuration

This example shows the running configuration of gNMI bundle.
Router# show running-config
telemetry model-driven
gnmi
bundling
size 2000

Use gRPC Protocol to Define Network Operations with Data Models
17

Use gRPC Protocol to Define Network Operations with Data Models
Configure gNMI Bundling Size

!
!
!

OpenConfig Metadata for Configuration Annotations
Table 6: Feature History Table

DescriptionReleaseFeature Name

Introduced in this release on: NCS 5500 fixed port
routers; NCS 5700 fixed port routers; NCS 5500
modular routers (NCS 5500 line cards; NCS 5700
line cards [Mode: Compatibility; Native])

You can annotate the OpenConfig-metadata as
part of the OpenConfig edit-config request to the
Cisco IOS XR router and later fetch using the
OpenConfig get-config request or delete through
gNMI request only.

The Set or Get operations can be performed
through gNMI only; not through Netconf RPCs.

Release 7.10.1OpenConfig Metadata for
Configuration Annotations

In the Cisco IOS XR Software Release 7.10.1, the feature supports a specific RFC7952 based
OpenConfig-metadata annotation. Here, root level node contains the OpenConfig-metadata, which you
can set or delete through gNMI request only and can be read back while retrieving or verifying the device
configuration. Netconf RPC requests are not supported.

The usage guidelines in this document provides the OpenConfig YANG support for a specific metadata
annotation based on RFC7952 requirements for configuration commits only.

This solution is intended for the requirements of theOpenConfig-metadata annotation use case only and not
intended to be changed for any other use beyond the scope of this document.

Note

Following is an example for the item:
{
"@": {
"openconfig-metadata:config-metadata": "xyz" // xyz is base64 encoded string per RFC7951

encoding rules
}
// Rest of configurations

}

The OpenConfig-metadata annotation is persistent across system restart. The latest OpenConfig-metadata
annotation is preserved and it overwrites all the previous data. Also, the previous or oldOpenConfig-metadata
annotations cannot be retrieved with any operation (including configuration rollback). If the commit action
fails, then the OpenConfig-metadata annotation is not updated. During startup failures resulting in removal
of running configurations, the OpenConfig-metadata annotation at the time of last commit shall persist.

Use gRPC Protocol to Define Network Operations with Data Models
18

Use gRPC Protocol to Define Network Operations with Data Models
OpenConfig Metadata for Configuration Annotations

Example: Set Request

The following is a sample Set request for OpenConfig-metadata:
Request:

update: {
path: {
}
val: {
json_ietf_val: "{\"openconfig-lldp:lldp\":{\"config\":{

\"enabled\":true,\"system-description\":\"test-replace\"}},
\"@\":{\"openconfig-metadata:protobuf-metadata\":
\"012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789\"}}"
}

}

Response:

response: <
path: <
>
op: UPDATE

>
message: <
>
timestamp: 1662150302538441219

Example: Get Request

The following is a sample Get request for OpenConfig-metadata:
Request:

path: {
elem: {
name: "@"

}
elem: {
name: "protobuf-metadata"

}
}
type: CONFIG
encoding: JSON_IETF

Response:

notification: <
timestamp: 1662869232324390815
update: <
path: <
origin: "openconfig"
elem: <
name: "@"

>
elem: <
name: "protobuf-metadata"

>
>
val: <
json_ietf_val: "\"0123456789012345678901234567890

Use gRPC Protocol to Define Network Operations with Data Models
19

Use gRPC Protocol to Define Network Operations with Data Models
OpenConfig Metadata for Configuration Annotations

12345678901234567890123456789012345678901234567890
1234567890123456789\""

>
>

>
error: <
>

Verification

The OpenConfig-metadata annotations are stored persistently in the router and are opaque (not visible) to
the IOSXR routers. However, the show command displays the presence and size of theOpenConfig-metadata
annotation.

The following example displays the show command output:
Router#show cfgmgr commitdb
.
.
.
last-commit-metadata-len
[UINT32] 100000 (Ox186A0)
.
.
.

The show command displays only the presence and size of the OpenConfig-metadata annotation. If there
is noOpenConfig-metadata annotation stored in the persistent database, then the output of the show command
will not contain this entry.

Note

gRPC Network Operations Interface
gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. These services are to be used in conjunction with gRPC network
management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the
transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the
Github repository.

gNOI RPCs
To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig
proto files are located in the Github repository.

Use gRPC Protocol to Define Network Operations with Data Models
20

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Network Operations Interface

https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi

Table 7: Feature History Table

DescriptionRelease InformationFeature Name

You can now avail the services of CancelReboot
to terminate outstanding reboot request, and
KillProcess RPCs to restart the process on
device.

Release 7.8.1gNOI System Proto

gNOI supports the following remote procedure calls (RPCs):

System RPCs

The RPCs are used to perform key operations at the system level such as upgrading the software, rebooting
the device, and troubleshooting the network. The system.proto file is available in the Github repository.

DescriptionRPC

Reboots the target. The router supports the following reboot
options:

• COLD = 1; Shutdown and restart OS and all hardware

• POWERDOWN = 2; Halt and power down

• HALT = 3; Halt

• POWERUP = 7; Apply power

Reboot

Returns the status of the target reboot.RebootStatus

Places a software package including bootable images on the
target device.

SetPackage

Pings the target device and streams the results of the ping
operation.

Ping

Runs the traceroute command on the target device and streams
the result. The default hop count is 30.

Traceroute

Returns the current time on the target device.Time

Switches from the current route processor to the specified route
processor. If the target does not exist, the RPC returns an error
message.

SwitchControlProcessor

Cancels any pending reboot request.CancelReboot

Stops an OS process and optionally restarts it.KillProcess

File RPCs

The RPCs are used to perform key operations at the file level such as reading the contents if a file and its
metadata. The file.proto file is available in the Github repository.

Use gRPC Protocol to Define Network Operations with Data Models
21

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/system/system.proto
https://github.com/openconfig/gnoi/blob/main/file/file.proto

DescriptionRPC

Reads and streams the contents of a file from the target device.
The RPC streams the file as sequential messages with 64 KB of
data.

Get

Removes the specified file from the target device. The RPC
returns an error if the file does not exist or permission is denied
to remove the file.

Remove

Returns metadata about a file on the target device.Stat

Streams data into a file on the target device.Put

Transfers the contents of a file from the target device to a
specified remote location. The response contains the hash of the
transferred data. The RPC returns an error if the file does not
exist, the file transfer fails or an error when reading the file. This
is a blocking call until the file transfer is complete.

TransferToRemote

Certificate Management (Cert) RPCs

The RPCs are used to perform operations on the certificate in the target device. The cert.proto file is available
in the Github repository.

DescriptionRPC

Replaces an existing certificate on the target device by creating
a new CSR request and placing the new certificate on the target
device. If the process fails, the target rolls back to the original
certificate.

Rotate

Installs a new certificate on the target by creating a new CSR
request and placing the new certificate on the target based on
the CSR.

Install

Gets the certificates on the target.GetCertificates

Revokes specific certificates.RevokeCertificates

Asks a target if the certificate can be generated.CanGenerateCSR

Interface RPCs

The RPCs are used to perform operations on the interfaces. The interface.proto file is available in the Github
repository.

DescriptionRPC

Sets the loopback mode on an interface.SetLoopbackMode

Gets the loopback mode on an interface.GetLoopbackMode

Resets the counters for the specified interface.ClearInterfaceCounters

Use gRPC Protocol to Define Network Operations with Data Models
22

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/cert/cert.proto
https://github.com/openconfig/gnoi/blob/cc419f3696d3a6d3e1a3999b75c51231b4773ace/interface/interface.proto

Layer2 RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The layer2.proto file is available in the Github repository.

DescriptionFeature Name

Clears all the LLDP adjacencies on the specified interface.ClearLLDPInterface

BGP RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The bgp.proto file is available in the Github repository.

DescriptionFeature Name

Clears a BGP session.ClearBGPNeighbor

Diagnostic (Diag) RPCs

The RPCs are used to perform diagnostic operations on the target device. You assign each bit error rate test
(BERT) operation a unique ID and use this ID to manage the BERT operations. The diag.proto file is available
in the Github repository.

DescriptionFeature Name

Starts BERT on a pair of connected ports between devices in
the network.

StartBERT

Stops an already in-progress BERT on a set of ports.StopBERT

Gets the BERT results during the BERT or after the operation
is complete.

GetBERTResult

gNOI RPCs

The following examples show the representation of few gNOI RPCs:

Get RPC

Streams the contents of a file from the target.

RPC to 10.105.57.106:57900
RPC start time: 20:58:27.513638
---------------------File Get Request---------------------
RPC start time: 20:58:27.513668
remote_file: "harddisk:/giso_image_repo/test.log"

---------------------File Get Response---------------------
RPC end time: 20:58:27.518413
contents: "GNOI \n\n"

hash {
method: MD5

Use gRPC Protocol to Define Network Operations with Data Models
23

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto
https://github.com/openconfig/gnoi/blob/main/bgp/bgp.proto
https://github.com/openconfig/gnoi/blob/main/diag/diag.proto

hash: "D\002\375h\237\322\024\341\370\3619k\310\333\016\343"
}

Remove RPC

Remove the specified file from the target.

RPC to 10.105.57.106:57900
RPC start time: 21:07:57.089554
---------------------File Remove Request---------------------
remote_file: "harddisk:/sample.txt"

---------------------File Remove Response---------------------
RPC end time: 21:09:27.796217
File removal harddisk:/sample.txt successful

Reboot RPC

Reloads a requested target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Reboot Request---------------------
RPC start time: 21:12:49.811561
method: COLD
message: "Test Reboot"
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem {
name: "location"
}
}
---------------------Reboot Request---------------------
RPC end time: 21:12:50.023604

Set Package RPC

Places software package on the target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Set Package Request---------------------
RPC start time: 15:33:34.378745
Sending SetPackage RPC
package {
filename: "harddisk:/giso_image_repo/<platform-version>-giso.iso"
activate: true
}
method: MD5

Use gRPC Protocol to Define Network Operations with Data Models
24

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

hash: "C\314\207\354\217\270=\021\341y\355\240\274\003\034\334"
RPC end time: 15:47:00.928361

Reboot Status RPC

Returns the status of reboot for the target.

RPC to 10.105.57.106:57900
RPC start time: 22:27:34.209473
---------------------Reboot Status Request---------------------
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem
name: "location"
}
}

RPC end time: 22:27:34.319618

---------------------Reboot Status Response---------------------
Active : False
Wait : 0
When : 0
Reason : Test Reboot
Count : 0

CancelReboot RPC

Cancels any outstanding reboot
Request :
CancelRebootRequest
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0/CPU0"
}
}
elem {
name: "state"
}
elem {
name: "location"
}
}

Use gRPC Protocol to Define Network Operations with Data Models
25

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

CancelRebootResponse

(rhel7-22.24.10) -bash-4.2$

KillProcess RPC

Kills the executing process. Either a PID or process name must be specified, and a termination signal
must be specified.
KillProcessRequest
pid: 3451
signal: SIGNAL_TERM

KillProcessResponse
-bash-4.2$

gRPC Network Security Interface
Table 8: Feature History Table

Feature DescriptionRelease InformationFeature Name

Introduced in this release on: NCS
5500 fixed port routers; NCS 5700
fixed port routers; NCS 5500
modular routers (NCS 5500 line
cards; NCS 5700 line cards [Mode:
Compatibility; Native])

This release implements
authorization mechanisms to
restrict access to gRPC applications
and services based on client
permissions. This is made possible
by introducing an authorization
protocol buffer service for gRPC
Network Security Interface (gNSI).

Prior to this release, the gRPC
services in the gNSI systems could
be accessed by unauthorized users.

This feature introduces the
following change:

CLI:

• gnsi load service
authorization policy

• show gnsi service
authorization policy

To view the specification of gNSI,
see Github repository.

Release 7.11.1gRPC Network Security Interface

Use gRPC Protocol to Define Network Operations with Data Models
26

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Network Security Interface

https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html
https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html
https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html
https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

gRPC Network Security Interface (gNSI) is a repository which contains security infrastructure services
necessary for safe operations of an OpenConfig platform. The services such as authorization protocol buffer
manage a network device's certificates and authorization policies.

This feature introduces a new authorization protocol buffer under gRPC gNSI. It contains gNSI.authz policies
which prevent unauthorized users to access sensitive information. It defines an API that allows the configuration
of the RPC service on a router. It also controls the user access and restricts authorization to update specific
RPCs.

By default, gRPC-level authorization policy is provisioned using Secure ZTP. If the router is in zero-policy
mode that is, in the absence of any policy, you can use gRPC authorization policy configuration to restrict
access to specific users. The default authorization policy at the gRPC level can permit access to all RPCs
except for the gNSI.authz RPCs.

If there is no policy specified or the policy is invalid, the router will fall back to zero-policy mode, in which
the default behavior allows access to all gRPC services to all the users if their profiles are configured. If an
invalid policy is configured, you can revert it by loading a valid policy using exec command gnsi load service
authorization policy. For more information on how to create user profiles and update authorization policy
for these user profiles, see How to Update gRPC-Level Authorization Policy, on page 27. Using show gnsi
service authorization policy command, you can see the active policy in a router.

We have introduced the following commands in this release :

• gnsi load service authorization policy: To load and update the gRPC-level authorization policy in a
router.

• show gnsi service authorization policy: To see the active policy applied in a router.

When both gNSI and gNOI are configured, gNSI takes precedence over gNOI. If niether gNSI nor gNOI is
configured, then tls trsutpoint's data is considered for certificate management.

Note

The following RPCs are used to perform key operations at the system level such as updating and displaying
the current status of the authorization policy in a router.

Table 9: Operations

DescriptionRPC

Updates the gRPC-level authorization policy.gNSI.authz.Rotate()

Verifies the authenticity of a user based on the defined policy of the gRPC-level
authorization policy engine.

gNSI.authz.Probe()

Shows the current instance of the gRPC-level authorization policy, including the version
and date of creation of the policy.

gNSI.authz.Get()

How to Update gRPC-Level Authorization Policy
gRPC-level authorization policy is configured by default at the time of router deployment using secure ZTP.
You can update the same gRPC-level authorization policy using any of two the following methods:

• Using gNSI Client.

Use gRPC Protocol to Define Network Operations with Data Models
27

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/b-setup-and-upgrade-cisco8k/secure-ztp.html

• Using exec command.

Updating the gRPC-Level Authorization Policy in the Router Using gNSI Client

Before you start

When a router boots for the first time, it should have the following prerequisites:

• The gNSI.authz service is up and running.

• The default gRPC-level authorization policy is added for all gRPC services.

• The default gRPC-level authorization policy allows access to all RPCs.

The following steps are used to update the gRPC-level authorization policy:

1. Initiate the gNSI.authz.Rotate() streaming RPC. This step creates a streaming connection between the
router and management application (client).

Only one gNSI.authz.Rotate() must be in progress at a time. Any other RPC request is rejected by the
server.

Note

2. The client uploads new gRPC-level authorization policy using the UploadRequest message.

• There must be only one gRPC-level authorization policy in the router. All the policies must be defined
in the same gRPC-level authorization policy which is being updated. As gNSI.authz.Rotate()method
replaces all previously defined or used policies once the finalize message is sent.

• The upgrade information is passed to the version and the created_on fields. These information are not
used by the gNSI.authz service. It is designed to help you to track the active gRPC-level authorization
policy on a particular router.

Note

3. The router activates the gRPC-level authorization policy.

4. The router sends the UploadResponse message back to the client after activating the new policy.

5. The client verifies the new gRPC-level authorization policy using separate gNSI.authz.Probe() RPCs.

6. The client sends the FinalizeRequest message, indicating the previous gRPC-level authorization policy
is replaced.

It is not recommended to close the stream without sending the finalize message. It results in the abandoning
of the uploaded policy and rollback to the one that was active before the gNSI.authz.Rotate() RPC started.

Note

Below is an example of a gRPC-level authorization policy that allows admins, V1,V2,V3 and V4, access to
all RPCs that are defined by the gNSI.ssh interface. All the other users won't have access to call any of the
gNSI.ssh RPCs:

Use gRPC Protocol to Define Network Operations with Data Models
28

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

{
"version": "version-1",
"created_on": "1632779276520673693",
"policy": {
"name": "gNSI.ssh policy",
"allow_rules": [{
"name": "admin-access",
"source": {
"principals": [
"spiffe://company.com/sa/V1",
"spiffe://company.com/sa/V2"

]
},
"request": {
"paths": [
"/gnsi.ssh.Ssh/*"

]
}

}],
"deny_rules": [{
"name": "sales-access",
"source": {
"principals": [
"spiffe://company.com/sa/V3",
"spiffe://company.com/sa/V4"

]
},
"request": {
"paths": [
"/gnsi.ssh.Ssh/MutateAccountCredentials",
"/gnsi.ssh.Ssh/MutateHostCredentials"

]
}

}]
}

}

Updating the gRPC-Level Authorization Policy file Using Exec Command

Use the following steps to update the authorization policy in the router.

1. Create the users profiles for the users who need to be added in the authorization policy. You can skip this
step if you have already defined the user profiles.

The following example creates three users who are added in the authorization policy.

Router(config)#username V1
Router(config-un)#group root-lr
Router(config-un)#group cisco-support
Router(config-un)#secret x
Router(config-un)#exit
Router(config)#username V2
Router(config-un)#group root-lr
Router(config-un)#password x
Router(config-un)#exit
Router(config)#username V3
Router(config-un)#group root-lr
Router(config-un)#password x
Router(config-un)#commit

2. Enable tls-mutual to establish the secure mutual between the client and the router.

Use gRPC Protocol to Define Network Operations with Data Models
29

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

Router(config)#grpc
Router(config-grpc)#port 0
Router(config-grpc)#tls-mutual
Router(config-grpc)#certificate-authentication
Router(config-grpc)#commit

3. Define the gRPC-level authorization policy.

The following sample gRPC-level authorization policy defines authorization policy for the users V1, V2
and V3.

{
"name": "authz",
"allow_rules": [

{
"name": "allow all gNMI for all users",
"source": {

"principals": [
"*"

]
},
"request": {

"paths": [
"*"

]
}

}
],
"deny_rules": [

{
"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V1"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Get".

]
}

},

{
"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V2"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Get"

]
}

},
{

"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V3"

]

Use gRPC Protocol to Define Network Operations with Data Models
30

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

},
"request": {

"paths": [
"/gnmi.gNMI/Set"

]
}

}
]

}

4. Copy the gRPC-level authorization policy to the router.

The following example copies the gNSI Authz policy to the router:
-bash-4.2$ scp test.json V1@192.0.2.255:/disk0:/
Password:
test.json

100% 993 161.4KB/s 00:00
-bash-4.2$

5. Activate the gRPC-level authorization policy to the router.

The following example loads the policy to the router.

Router(config)#gnsi load service authorization policy /disk0:/test.json
Successfully loaded policy

Verification

Use the show gnsi service authorization policy to verify if the policy is active in the router.
Router#show gnsi service authorization policy
Wed Jul 19 10:56:14.509 UTC{

"version": "1.0",
"created_on": 1700816204,
"policy": {

"name": "authz",
"allow_rules": [

{
"name": "allow all gNMI for all users",
"request": {

"paths": [
"*"

]
},
"source": {

"principals": [
"*"

]
}

}
],
"deny_rules": [

{
"name": "deny gNMI set for oper users",
"request": {

"paths": [
"/gnmi.gNMI/*"

]
},
"source": {

"principals": [

Use gRPC Protocol to Define Network Operations with Data Models
31

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

"User1"
]

}
}

]
}

}

In the following example, User1 user tries to access the get RPC request for which the permission is denied
in the above authorization policy.
bash-4.2$./gnmi_cli -address 198.51.100.255 -ca_crt
certs/certs/ca.cert -client_crt certs/certs/User1.pem -client_key
certs/certs/User1.key -server_name ems.cisco.com -get -proto get-oper.proto

Output

E0720 14:49:42.277504 26473 gnmi_cli.go:195]
target returned RPC error for Get("path:{origin:"openconfig-interfaces"
elem:{name:"interfaces"}
elem:{name:"interface" key:{key:"name" value:"HundredGigE0/0/0/0"}}}
type:OPERATIONAL encoding:JSON_IETF"):
rpc error: code = PermissionDenied desc = unauthorized RPC request rejected

gNSI Acctz Logging
Table 10: Feature History Table

Feature DescriptionRelease
Information

Feature
Name

Introduced in this release on: NCS 5500 fixed port routers; NCS 5700 fixed
port routers; NCS 5500 modular routers (NCS 5500 line cards; NCS 5700 line
cards [Mode: Compatibility; Native])

You can now log and monitor AAA (Authentication, Authorization, and
Accounting) accounting of gRPC operations and CLI accounting data through
gNSI Acctz for effective management of network for better performance and
resource utilization. You can also configure the number of gNSI accounting
records that can be streamed.

Previously, you could monitor the AAA accounting data through syslog only.

The feature introduces these changes:

CLI:

• grpc aaa accounting queue-size

• show gnsi acctz statistics

To view the specification of gNSI Accounting (Acctz) RPCs and messages,
see the Github repository.

Release 24.3.1gNSI
Acctz
Logging

gNSI Acctz Data Logging

The gNSI accounting (Acctz) is a gNSI accounting protocol that collects and transfers accounting records
from a router to a remote collection service over a gRPC transport connection.

Use gRPC Protocol to Define Network Operations with Data Models
32

Use gRPC Protocol to Define Network Operations with Data Models
gNSI Acctz Logging

https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html
https://www.cisco.com/content/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html#wp2296165079
https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto

Starting from Release 24.3.1, you can log gRPC AAA accounting data through gNSI accounting (Acctz). The
gNSI Acctz data is logged, stored in accounting records, and send to gNSI client for monitoring purposes.
These gNSI Acctz accounting records contain

• users' login or logout times,

• network access resources such as interface IP and port, and

• duration of each session.

The gNSI Acctz logging can be done using the RecordSubscribe() gRPC request to a router. For more
information on the RecordSubscribe() RPC, see the GitHub repository.

gNSI Acctz Logging Stream Capacity

The gNSI Acctz logs are recorded in a queue, maintaining a history of the 10 most recent records. When the
accounting queue is full and no gNSI Acctz collectors are connected, the stream drops the records. Besides
the 10 records stored for streaming, up to 512 additional records are stored during processing. As new records
arrive, the data stream continues until the gNSI session ends or an error occurs, such as a client disconnection
due to network issues or the server going down. If the server's output buffer remains full for an extended
period, new records are dropped until the collector starts receiving them.

When the queue reaches its full capacity, the system automatically replaces the oldest records with the newest
ones. The router then transmits this logged information through gNSI to gNSI client for real-time monitoring
purposes. You can configure the queue size using the grpc aaa accounting queue-size command.

Supported Records for gNSI Acctz Logging

gNSI Acctz logging system supports Command and gRPC service records.

Table 11: CLI and gRPC Accounting Records

gRPC Services Accounting RecordsCommand Services Accounting Records

The gRPC accounting records are generated for the
RPCs executed by gRPC services and sent to gNSI
Acctz collectors. The details logged include:

• Session Info: remote/local IP addresses,
remote/local ports, and channel ID.

• Authentication details: Identity and privilege
level.

• RPC Service Request: Service type, RPC name,
payload, and configuration metadata.

• gRPC Service Status: PERMIT/DENY.

• Timestamp: The time at which the event was
generated.

The command accounting records are generated for
the commands executed in CLImode and sent to gNSI
Acctz collectors. The details logged include:

• Session Info: remote/local IP addresses,
remote/local ports, and channel ID.

• Authentication details: Identity, privilege level,
authentication status (PERMIT/DENY), and the
cause of denial (if applicable).

• Command andCommand status: authentication
status (PERMIT/DENY).

• Timestamp: The time when the event was
generated.

Use gRPC Protocol to Define Network Operations with Data Models
33

Use gRPC Protocol to Define Network Operations with Data Models
gNSI Acctz Logging

https://github.com/openconfig/gnsi/blob/v1.2.4/acctz/acctz.proto

Default Behavior and Verification of gNSI Acctz Logging

By default, gNSI Acctz records are logged when the configuration is enabled. You can verify the gNSI Acctz
using show gnsi state, show gnsi acctz statistics, and show aaa accounting statistics commands.

Configure gNSI Acctz Logging
Monitor AAA information through gNSI Acctz logs.

Step 1 Monitor gNSI state in the router.

Example:
Router# show gnsi state
Wed Jun 26 09:26:39.035 UTC
----------------GNSI state--------------
Global:

Main Thread cerrno : Success
Acctz Thread cerrno : Success
State : Active
RDSFS State : Active

Step 2 Obtain gRPC port number.

Example:
show grpc
Tue Aug 13 14:21:50.995 IST

Server name : DEFAULT
Address family : dual
Port : 57400

Service ports
gNMI : none
P4RT : none
gRIBI : none

DSCP : Default
TTL : 64
VRF :
Server : enabled
TLS : disabled
TLS mutual : disabled
Trustpoint : none
Certificate Authentication : disabled
Certificate common name : ems.cisco.com
TLS v1.0 : disabled
Maximum requests : 128
Maximum requests per user : 10
Maximum streams : 32
Maximum streams per user : 32
Maximum concurrent streams : 32
Memory limit (MB) : 1024
Keepalive time : 30
Keepalive timeout : 20
Keepalive enforcement minimum time : 300

TLS cipher suites
Default : none
Default TLS1.3 : aes_128_gcm_sha256

: aes_256_gcm_sha384

Use gRPC Protocol to Define Network Operations with Data Models
34

Use gRPC Protocol to Define Network Operations with Data Models
Configure gNSI Acctz Logging

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/security/b-system-security-cr-cisco8000/authentication-authorization-and-accounting-commands.html#wp2834182384

: chacha20_poly1305_sha256

Enable : none
Disable : none

Operational enable : none
Operational disable : none

Listen addresses : ANY

Step 3 Configure gNSI queue size.

Example:
Router# configure
Router(config)# grpc aaa accounting queue-size 30
Router(config)# end

Step 4 Monitor gNSI Acctz statistics in the router.

Example:
Router# show gnsi acctz statistics
Tue Aug 13 05:57:24.210 UTC
SentToAAA Queue:
Grpc services:
GNMI: 4998 sent, 0 dropped
GNOI: 0 sent, 0 dropped
GNSI: 2 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped

Stats:
Total Sent: 5000
Total Drops: 0

Streams:
Grpc services:
GNMI: 4996 sent, 2 dropped
GNOI: 0 sent, 0 dropped
GNSI: 1 sent, 0 dropped
GRIBI: 0 sent, 0 dropped
P4RT: 0 sent, 0 dropped
UNSPECIFIED: 0 sent, 0 dropped

Stats:
Total Sent: 4997
Total Drops: 2

Cmd services:
CLI: 3 sent, 0 dropped

Stats:
Total Sent: 3
Total Drops: 0

Router#

Step 5 Provide port and IP address to the Acctz gNSI client.

Example:
acctz_collector -server_addr 192.0.2.111:57400 -username <user name> -password <passwod> -dieafter
600

--------------- gSNI Remote Collector ---------------
2024/08/25 22:59:13 Connecting to gNSI Server.
2024/08/25 22:59:13 gNSI Server connected.
2024/08/25 22:59:13 Started new acctz client.
2024/08/25 22:59:13 Initiate Acctz RecordSubscribe with server .

Use gRPC Protocol to Define Network Operations with Data Models
35

Use gRPC Protocol to Define Network Operations with Data Models
Configure gNSI Acctz Logging

2024/08/25 22:59:13 Stream started
2024/08/25 22:59:13 Waiting for response from server.

Step 6 Verify the accounting record from the router.

Example:

gNSI Acctz RPC RecordSubscribe() response to the Acctz gRPC client

session_info:
{
local_address:"192.0.2.111"
local_port:57400
remote_address:"192.0.2.1"
remote_port:44374
ip_proto:6
user:
{
identity:"lab"

}
}
timestamp:
{
seconds:1718971022 nanos:105825300

}
grpc_service:
{
service_type:GRPC_SERVICE_TYPE_GNSI
rpc_name:"/gnsi.acctz.v1.AcctzStream/RecordSubscribe" payload_istruncated:true
authz:
{
status:AUTHZ_STATUS_PERMIT

}
}

AAA Accounting Statistics

Router# show aaa accounting statistics
Sat Aug 17 17:10:43.055 UTC
Successfully logged events:
Total events: 0
XR CLI: 0
XR SHELL: 0
GRPC:
GNMI: 0
GNSI: 2
GNOI: 0
GRIBI: 0
P4RT: 0
SLAPI: 0
NETCONF: 0
SysAdmin:
CLI: 0
SHELL: 0
Host:
SHELL: 0

Errors:
Invalid requests: 0

Max. records in buffer: 100

Use gRPC Protocol to Define Network Operations with Data Models
36

Use gRPC Protocol to Define Network Operations with Data Models
Configure gNSI Acctz Logging

Total records in buffer: 0
Router#

IANA Port Numbers For gRPC Services
Table 12: Feature History Table

DescriptionRelease InformationFeature Name

Introduced in this release on: NCS 5500 fixed
port routers; NCS 5700 fixed port routers; NCS
5500 modular routers (NCS 5500 line cards;
NCS 5700 line cards [Mode: Compatibility;
Native]).

You can now efficientlymanage and customize
port assignments for gNMI, gRIBI, and P4RT
services without port conflicts. This is possible
because Cisco IOS XR now supports the
Internet Assigned Numbers Authority
(IANA)-assigned specific ports for P4RT (Port
9559), gRIBI (Port 9340), and gNMI (Port
9339). You can now use both IANA-assigned
and user-specified ports for these gRPC
services across any specified IPv4 or IPv6
addresses. As part of this support, a new
submode for gNMI in gRPC is introduced.

This feature introduces the following changes:

CLI:

• port (gRPC)

• gnmi

Release 24.1.1IANA Port Numbers For gRPC
Services

IANA (Internet Assigned Numbers Authority) manages the allocation of port numbers for various protocols.
These port numbers help in distinguishing different services on a network. Service names and port numbers
are used to distinguish between different services that run over transport protocols such as TCP, UDP, DCCP,
and SCTP. Port numbers are assigned in various ways, based on three ranges: System Ports (0-1023), User
Ports (1024-49151), and the Dynamic and/or Private Ports (49152-65535).

Earlier, the gRPC server configuration on IOS-XR allowed a usable port range of 10000-57999, with a default
listening port of 57400 and all services registered to the gRPC server utilized this port for connectivity.
Service-based filtering of requests on any of the ports was unavailable. Hence, the request for a specific service
sent on a port designated to another service (for example, gRIBI request on gNMI port) was accepted.

From Cisco IOS XR Release 24.1.1, a new submode for gNMI is introduced in the configuration model to
allow for service-level port customization. The existing gRPC configuration model includes submodes for
P4RT and gRIBI. This submode will enable you to configure specific ports for gNMI, gRIBI, and P4RT
services independently. You can configure gNMI, gRIBI, and P4RT services using the gRPC submode

Use gRPC Protocol to Define Network Operations with Data Models
37

Use gRPC Protocol to Define Network Operations with Data Models
IANA Port Numbers For gRPC Services

https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html#wp3687650536
https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html#wp4022790341

command to set the default port for each service. The port command under service submode, allows you to
modify the port as needed, while adhering to the defined port range.

Disabling the port command will cause the service to use the default or IANA port.

You can set custom ports for gNMI, gRIBI, and P4RT services within the defined range, including default
IANA ports like 9339, 9340, and 9559 (respectively). The gRPC service will continue to maintain its default
port within the specified range (57344-57999). Any changes made to the gRPC default port will not impact
the service port configurations for gNMI, gRIBI, and P4RT. Requests which are sent on a port designated for
a specific service (example, gRIBI request on gNMI port) will be accepted. This flexibility allows for seamless
communication across different service ports and the general gRPC port.

Starting from Release 24.2.1, the allowed port range is 1024-65535.

Configure gRPC Service-Level Port
To configure a default listening port for the gRPC services such as gNMI, gRIBI, and P4RT, use the respective
service command (gnmi, gribi, or p4rt) under the gRPC configuration mode.

To specify a port number for gRPC, gNMI, gRIBI, and P4RT services within the defined range, use the port
command under respective submodes.

XR Ephemeral port range: 15232–57343

If the configured port is in the range of IANA registered ports (1024-49151) or XR ephemeral ports
(15232-57343), a syslog is generated with a NOTICE to warn the user for a possible application conflict.

Resetting the port reverts to the default service port, and disabling the service stops listening on that port.

Note

Configure the port number for a service.

The following examples display the service-level port configurations.

• For gNMI service:

This configuration creates a gRPC listener with the default or IANA ratified gNMI port of 9339.
Router(config-grpc)#gnmi
Router(config-grpc-gnmi)#commit

Verify the listening port created for gNMI service.
Router#show running-config grpc
grpc
gnmi

!

The port command under gNMI submode allows the port to be modified in the port range or IANA ratified port.
Router(config-grpc)#gnmi
Router(config-grpc-gnmi)#port 9339
Router(config-grpc-gnmi)#commit

Verify the port number.
Router#show running-config grpc
grpc
gnmi

Use gRPC Protocol to Define Network Operations with Data Models
38

Use gRPC Protocol to Define Network Operations with Data Models
Configure gRPC Service-Level Port

port 9339
!

• For P4RT service:

This configuration creates a gRPC listener with the default or IANA ratified P4RT port of 9559.
Router(config-grpc)#p4rt
Router(config-grpc-p4rt)#commit

Verify the listening port created for P4RT service.
Router#show running-config grpc
grpc
p4rt

!

The port command under P4RT submode allows the port to be modified in the port range or IANA ratified port.
Router(config-grpc)#p4rt
Router(config-grpc-p4rt)#port 9559
Router(config-grpc-p4rt)#commit

Verify the port number.
Router#show running-config grpc
grpc
p4rt
port 9559

!

• For gRIBI service:

This configuration creates a gRPC listener with the default or IANA ratified gRIBI port of 9340.
Router(config-grpc)#gribi
Router(config-grpc-gribi)#commit

Verify the listening port created for gRIBI service.
Router#show running-config grpc
grpc
gribi

!

The port command under gRIBI submode allows the port to be modified in the port range or IANA ratified port.
Router(config-grpc)#gribi
Router(config-grpc-gribi)#port 9340
Router(config-grpc-gribi)#commit

Verify the port number.
Router#show running-config grpc
grpc
gribi
port 9340

!

Unconfiguring the port command in a service

and

Unconfiguring a service under gRPC

• Unconfiguring the port command results in using the default port for the respective service.

Example:

Use gRPC Protocol to Define Network Operations with Data Models
39

Use gRPC Protocol to Define Network Operations with Data Models
Configure gRPC Service-Level Port

Unconfiguring the port command will result in a gNMI service using the default gNMI port.
Router(config-grpc)#gnmi
Router(config-grpc-gnmi)#no port
Router(config-grpc-gnmi)#commit

Verify the service port configuration.
Router#show running-config grpc
grpc
gnmi

!

• Unconfiguring a service removes the listener for the respective port and no requests will be accepted on that port.

Example:

Unconfiguring gNMI disables the requests on port 9339.
Router(config-grpc)#no gnmi
Router(config-grpc-gnmi)#commit

Verify the port configuration.
Router#show running-config grpc
grpc
!

Configure Interfaces Using Data Models in a gRPC Session
Table 13: Feature History Table

DescriptionRelease InformationFeature Name

You can prevent potential security attacks by
disallowing any single gRPC server client on
Cisco IOS XR from consuming excessive
resources and monopolizing connection
resources, both of which can be potential attack
vectors. Such prevention is possible because
you now have the option to configure the
gRPC server to limit the number of concurrent
streams per gRPC connection.

The feature introduces the grpc
max-concurrent-streams command.

YANG Data Models:

• Cisco-IOS-XR-man-ems-oper.yang

• Cisco-IOS-XR-man-ems-cfg.yang

(see GitHub, YANG Data Models Navigator)

Release 24.1.1Set Limit on Concurrent Streams
for gRPC Server

Use gRPC Protocol to Define Network Operations with Data Models
40

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html#wp1516434744
https://www.cisco.com/c/en/us/td/docs/routers/ncs5500/software/programmability/command/reference/programmability-command-reference-for-cisco-ncs-5500-series-routers/grpc-commands.html#wp1516434744
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6
address families. The client applications use this protocol to request information from the router, and make
configuration changes to the router.

The process for using data models involves:

• Obtain the data models.

• Establish a connection between the router and the client using gRPC communication protocol.

• Manage the configuration of the router from the client using data models.

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

Note

In this section, you use native data models to configure loopback and ethernet interfaces on a router using a
gRPC session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Use gRPC Protocol to Define Network Operations with Data Models
41

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

Figure 1: Network Topology for gRPC session

You use Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang to programmatically configure router
LER1.

Before you begin

• Retrieve the list of YANGmodules on the router using NETCONFmonitoring RPC. For more information

• Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport
with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is
not configured, the authentication credentials are transferred over the network unencrypted. Enabling
TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure
internal network.

Step 1 Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example,
you enable gRPC protocol on LER1, the server.

Cisco IOS XR 64-bit platforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.Note

a) Enable gRPC over an HTTP/2 connection.

Example:

Router#configure
Router(config)#grpc
Router(config-grpc)#port <port-number>

The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.

Starting Release 24.1.1, you can now configure IANA port numbers for specified gRPC services. To see the port
numbers for the various gRPC services, see Support IANA Port Numbers.

Use gRPC Protocol to Define Network Operations with Data Models
42

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

b) Set the session parameters.

Example:
Router(config)#grpc {address-family | certificate-authentication | dscp | max-concurrent-streams
| max-request-per-user | max-request-total | max-streams |
max-streams-per-user | no-tls | tlsv1-disable | tls-cipher | tls-mutual | tls-trustpoint |
service-layer | vrf}

where:

• address-family: set the address family identifier type.

• certificate-authentication: enables certificate based authentication

• dscp: set QoS marking DSCP on transmitted gRPC.

• max-concurrent-streams: set the limit on the maximum concurrent streams per gRPC connection to be applied
on the server.

• max-request-per-user: set the maximum concurrent requests per user.

• max-request-total: set the maximum concurrent requests in total.

• max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128
requests. The default is 32 requests.

• max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription
limit is 128 requests. The default is 32 requests.

• no-tls: disable transport layer security (TLS). The TLS is enabled by default

• tlsv1-disable: disable TLS version 1.0

• service-layer: enable the grpc service layer configuration.

This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, , and Cisco
NCS540 Series Routers.

• tls-cipher: enable the gRPC TLS cipher suites.

• tls-mutual: set the mutual authentication.

• tls-trustpoint: configure trustpoint.

• server-vrf: enable server vrf.

After gRPC is enabled, use the YANG data models to manage network configurations.

Step 2 Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang. You gain
an understanding about the various gRPC operations while you configure the interface. For the complete list of operations,
see gRPCOperations, on page 4. In this example, youmerge configurations with merge-configRPC, retreive operational
statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of
the data model using YANG validator tools such as pyang.

LER1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not
support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not
configure a sub interface with tag 0.

Note

Use gRPC Protocol to Define Network Operations with Data Models
43

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

https://github.com/mbj4668/pyang

a) Explore the XR configuration model for interfaces and its IPv4 augmentation.

Example:

controller:grpc$ pyang --format tree --tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang
Cisco-IOS-XR-ipv4-io-cfg.yang
module: Cisco-IOS-XR-ifmgr-cfg

+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations

+--rw interface-configuration* [active interface-name]
+--rw dampening
| ...
+--rw mtus
| ...
+--rw encapsulation
| ...
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string
+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ipv4-io-cfg:ipv4-network
| ...
+--rw ipv4-io-cfg:ipv4-network-forwarding ...

b) Configure a loopback0 interface on LER1.

Example:
controller:grpc$ more xr-interfaces-lo0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations":
{ "interface-configuration": [
{
"active": "act",
"interface-name": "Loopback0",
"description": "LOCAL TERMINATION ADDRESS",
"interface-virtual": [
null
],
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {
"addresses": {

"primary": {
"address": "172.16.255.1",
"netmask": "255.255.255.255"

}
}
}
}
]

}
}

c) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json

Use gRPC Protocol to Define Network Operations with Data Models
44

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

emsMergeConfig: Sending ReqId 1
emsMergeConfig: Received ReqId 1, Response '
'

d) Configure the ethernet interface on LER1.

Example:

controller:grpc$ more xr-interfaces-gi0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"description": "CONNECTS TO LSR1 (g0/0/0/0)",
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {

"addresses": {
"primary": {

"address": "172.16.1.0",
"netmask": "255.255.255.254"

}
}
}
}
]
}
}

e) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json
emsMergeConfig: Sending ReqId 1
emsMergeConfig: Received ReqId 1, Response '
'

f) Enable the ethernet interface GigabitEthernet 0/0/0/0 on LER1 to bring up the interface. To do this, delete shutdown
configuration for the interface.

Example:

controller:grpc$ grpcc -username admin -password admin -oper delete-config
-server_addr 198.18.1.11:57400 -yang_path "$(< xr-interfaces-gi0-shutdown-cfg.json)"
emsDeleteConfig: Sending ReqId 1, yangJson {
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [
null

]
}
]
}
}
emsDeleteConfig: Received ReqId 1, Response ''

Step 3 Verify that the loopback interface and the ethernet interface on router LER1 are operational.

Use gRPC Protocol to Define Network Operations with Data Models
45

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

Example:

controller:grpc$ grpcc -username admin -password admin -oper get-oper
-server_addr 198.18.1.11:57400 -oper_yang_path "$(< xr-interfaces-briefs-oper-filter.json)"
emsGetOper: Sending ReqId 1, yangPath {
"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": [
null
]

}
}
{ "Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": {
"interface-brief": [
{
"interface-name": "GigabitEthernet0/0/0/0",
"interface": "GigabitEthernet0/0/0/0",
"type": "IFT_GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
},
{
"interface-name": "GigabitEthernet0/0/0/1",
"interface": "GigabitEthernet0/0/0/1",
"type": "IFT_GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
},
{
"interface-name": "Loopback0",
"interface": "Loopback0",
"type": "IFT_LOOPBACK",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "loopback",
"encapsulation-type-string": "Loopback",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

},
{

"interface-name": "MgmtEth0/RP0/CPU0/0",
"interface": "MgmtEth0/RP0/CPU0/0",
"type": "IFT_ETHERNET",
"state": "im-state-up",

Use gRPC Protocol to Define Network Operations with Data Models
46

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000

},
{

"interface-name": "Null0",
"interface": "Null0",
"type": "IFT_NULL",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "null",
"encapsulation-type-string": "Null",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

}
]
}
}
}
emsGetOper: ReqId 1, byteRecv: 2325

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models
with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network
provisioning operations.

Use gRPC Protocol to Define Network Operations with Data Models
47

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

Use gRPC Protocol to Define Network Operations with Data Models
48

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

	Use gRPC Protocol to Define Network Operations with Data Models
	gRPC Operations
	gRPC Authentication Modes
	Authenticate gRPC Services
	Certificate Common-Name For Dial-in Using gRPC Protocol
	Configure Certificate Common Name For Dial-in

	gRPC over UNIX Domain Sockets
	gRPC Network Management Interface
	gNMI Wildcard in Schema Path
	gNMI Bundling of Telemetry Updates
	Configure gNMI Bundling Size

	OpenConfig Metadata for Configuration Annotations
	gRPC Network Operations Interface
	gNOI RPCs

	gRPC Network Security Interface
	How to Update gRPC-Level Authorization Policy
	gNSI Acctz Logging
	Configure gNSI Acctz Logging

	IANA Port Numbers For gRPC Services
	Configure gRPC Service-Level Port

	Configure Interfaces Using Data Models in a gRPC Session

