
Use gRPC Protocol to Define Network Operations
with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automatedmechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only
TCP protocol.

Note

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:
syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

Use gRPC Protocol to Define Network Operations with Data Models
1

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};

rpc CommitReplace(CommitReplaceArgs) returns(CommitReplaceReply) {};
}
message ConfigGetArgs {

int64 ReqId = 1;
string yangpathjson = 2;

}

message ConfigGetReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message GetOperArgs {
int64 ReqId = 1;
string yangpathjson = 2;

}

message GetOperReply {
int64 ResReqId = 1;
string yangjson = 2;
string errors = 3;

}

message ConfigArgs {
int64 ReqId = 1;
string yangjson = 2;

}

message ConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

}

message CliConfigReply {
int64 ResReqId = 1;
string errors = 2;

}

message CommitReplaceArgs {
int64 ReqId = 1;
string cli = 2;
string yangjson = 3;

}

message CommitReplaceReply {
int64 ResReqId = 1;
string errors = 2;

}

Example for gRPCExec configuration:

Use gRPC Protocol to Define Network Operations with Data Models
2

Use gRPC Protocol to Define Network Operations with Data Models

service gRPCExec {
rpc ShowCmdTextOutput(ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput(ShowCmdArgs) returns(stream ShowCmdJSONReply) {};

}

message ShowCmdArgs {
int64 ReqId = 1;
string cli = 2;

}

message ShowCmdTextReply {
int64 ResReqId =1;
string output = 2;
string errors = 3;

}

Example for OpenConfiggRPC configuration:
service OpenConfiggRPC {

rpc SubscribeTelemetry(SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry(CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels(GetModelsInput) returns (GetModelsOutput) {};

}

message GetModelsInput {
uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;
enum MODLE_REQUEST_TYPE {

SUMMARY = 0;
DETAIL = 1;

}
MODLE_REQUEST_TYPE requestType = 5;

}

message GetModelsOutput {
uint64 requestId = 1;
message ModelInfo {

string name = 1;
string namespace = 2;
string version = 3;
GET_MODEL_TYPE modelType = 4;
string modelData = 5;

}
repeated ModelInfo models = 2;
OC_RPC_RESPONSE_TYPE responseCode = 3;
string msg = 4;

}

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster
programmatic and standards-based configuration of a network, as comapared to CLI.

• gRPC Operations, on page 4
• gRPC over UNIX Domain Sockets, on page 13
• gRPC Network Management Interface, on page 15
• gRPC Network Operations Interface , on page 36
• gRPC Network Security Interface , on page 46

Use gRPC Protocol to Define Network Operations with Data Models
3

Use gRPC Protocol to Define Network Operations with Data Models

• Manage certificates using Certz.proto, on page 56
• P4Runtime, on page 60
• IANA Port Numbers For gRPC Services, on page 62
• Configure Interfaces Using Data Models in a gRPC Session, on page 66

gRPC Operations
The following are the defined manageability service gRPC operations for Cisco IOS XR:

DescriptiongRPC Operation

Retrieves the configuration from the router.GetConfig

Gets the supported Yang models on the routerGetModels

Merges the input config with the existing device configuration.MergeConfig

Deletes one or more subtrees or leaves of configuration.DeleteConfig

Replaces part of the existing configuration with the input configuration.ReplaceConfig

Replaces all existing configurationwith the new configuration provided.CommitReplace

Retrieves operational data.GetOper

Invokes the input CLI configuration.CliConfig

Returns the output of a show command in the text formShowCmdTextOutput

Returns the output of a show command in JSON form.ShowCmdJSONOutput

gRPC Operation to Get Configuration

This example shows how a gRPC GetConfig request works for LLDP feature.

The client initiates a message to get the current configuration of LLDP running on the router. The
router responds with the current LLDP configuration.

Use gRPC Protocol to Define Network Operations with Data Models
4

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Operations

gRPC Response (Router to Client)gRPC Request (Client to Router)

{
"Cisco-IOS-XR-cdp-cfg:cdp": {
"timer": 50,
"enable": true,
"log-adjacency": [
null
],
"hold-time": 180,
"advertise-v1-only": [
null
]
}
}

{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": {
"timer": 60,
"enable": true,
"reinit": 3,
"holdtime": 150

}
}

rpc GetConfig
{
"Cisco-IOS-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"
]

}

rpc GetConfig
{
"Cisco-IOS-XR-ethernet-lldp-cfg:lldp": [
"lldp": "running-configuration"
]

}

gRPC Authentication Modes
gRPC supports the following authentication modes to secure communication between clients and servers.
These authenticationmodes help ensure that only authorized entities can access the gRPC services, like gNOI,
gRIBI, and P4RT. Upon receiving a gRPC request, the device will authenticate the user and perform various
authorization checks to validate the user.

The following table lists the authentication type and configuration requirements:

Table 1: gRPC Authentication Modes and Configuration Requirements

Requirement From
Client

Configuration
Requirement

Authorization
Method

Authentication
Method

Type

username, password,
and CA

grpcusernameusername, passwordMetadata with TLS

username, passwordgrpc no-tlsusernameusername, passwordMetadata without
TLS

username, password,
client certificate,
client key, and CA

grpc tls-mutualusernameusername, passwordMetadata with
Mutual TLS

client certificate,
client key, and CA

grpc tls-mutual

and

grpc certificate
authentication

username from
client certificate's
common name field

client certificate's
common name field

Certificate based
Authentication

Use gRPC Protocol to Define Network Operations with Data Models
5

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Authentication Modes

Certificate based Authentication

In Extensible Manageability Services (EMS) gRPC, the certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes the following certificates for authentication:
/misc/config/grpc/ems.pem
/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

For clients to use the certificates, ensure to copy the certificates from /misc/config/grpc/Note

Generation of Certificates

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of Certificates

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that has been generated earlier to the location
and restart the server.

Custom Certificates

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate a custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the customCA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Authenticate gRPC Services

Typically, gRPC clients include the username and password in the gRPC metadata fields.Note

Procedure

Use any one of the following configuration type to authenticate any gRPC service.

• Metadata with TLS

Router#config
Router(config)#grpc
Router(config-grpc)#commit

Use gRPC Protocol to Define Network Operations with Data Models
6

Use gRPC Protocol to Define Network Operations with Data Models
Authenticate gRPC Services

• Metadata without TLS

Router#config
Router(config)#grpc
Router(config-grpc)#no-tls
Router(config-grpc)#commit

• Metadata with Mutual TLS

Router#config
Router(config)#grpc
Router(config-grpc)#tls-mutual
Router(config-grpc)#commit

• Certificate based Authentication

Router(config)#grpc
Router(config-grpc)#tls-mutual
Router(config-grpc)#certificate-authentication
Router(config-grpc)#commit

Use gRPC Protocol to Define Network Operations with Data Models
7

Use gRPC Protocol to Define Network Operations with Data Models
Authenticate gRPC Services

SPIFFE ID-Based Authentication and Authorization Services for gRPC Services
Table 2: Feature History Table

DescriptionRelease InformationFeature Name

You can now securely manage service
identities for workloads that communicate over
gRPC. This capability is critical for
environments such as distributed systems,
where workloads move across different
platforms.

This security measure is feasible because
workloads can use the Secure Production
Identity Framework for Everyone (SPIFFE)
ID and SPIFFE Verifiable Identity Document
(SVID) to encrypt and authenticate gRPC
traffic.

This feature introduces the following changes:

CLI:

• aaa map-to username

Yang Data Models:

• New XPaths for
Cisco-IOS-XR-um-aaa-task-user-cfg.yang

• New XPaths for
Cisco-IOS-XR-aaa-locald-cfg.yang

(see GitHub, YANG Data Models Navigator)

Release 24.2.11SPIFFE ID-Based Authentication
and Authorization Services for
gRPC Services

The SPIFFE standard specifies a framework that can bootstrap and issue identities to services across diverse
environments and organizational boundaries. SPIFFE assigns a unique identity to each workload with a SPIFFE
ID and securely encapsulates it within a SPIFFE Verifiable Identity Document (SVID). The SVID, which is
short-lived, corresponds exclusively to its SPIFFE ID and can be encoded either as an X.509 certificate or as
a JSON Web Token (JWT). This dual-format capability facilitates robust identity verification.

This feature provides a mechanism for mapping a SPIFFE ID to an XR user for authorization purposes. This
feature enables ExtensibleManageability Services (EMS) to use the SVID, which are certificates that essentially
contain SPIFFE IDs, to perform the following operations:

• Authentication via mTLS

• AuthZ authorization using the SVID

The XR authorization occurs with the XR user which is mapped to the SPIFFE ID. Mapping the SPIFFE ID
to a username is required for gRPC services to perform IOS XR authentication and authorization before
executing any operations on the device. If the authz evaluation is successful then only the connection request
is processed; otherwise, access is denied.

Use gRPC Protocol to Define Network Operations with Data Models
8

Use gRPC Protocol to Define Network Operations with Data Models
SPIFFE ID-Based Authentication and Authorization Services for gRPC Services

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/system-management/b-system-management/m-manageability-commands.html#wp1516434744
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Workflow for SPIFFE ID-Based Authentication and Authorization for gRPC Services

The high-level workflow of SPIFFE ID-based authentication and authorization for gRPC services involves
the following steps:

1. The EMS starts searching for the spiffe-user-map.json file at the location
/misc/config/grpc/gnsi/credentialz/spiffe-user-map.json.

2. If the file exists, it is parsed, and the mapping is stored globally in the aaa/auth package.

3. If the file does not exist or parsing is unsuccessful, the mapping will be empty.

4. The EMS registers with the configuration manager to receive updates for the aaa configuration.

5. When processing requests in the Authentication interceptor, the spiffe-user mapping API checks for the
SPIFFE ID mapping in the map created in step 2.

6. If the mapping exists, the API responds with the corresponding username.

7. If the mapping does not exist but the aaa configuration exists, the API responds with the configured
username.

8. If neither the mapping nor the aaa configuration is present, the API responds with an empty string.

9. Upon a client connecting to the server, the server interceptor extracts the SPIFFE ID from the client's
certificate and uses themapping stored in theaaa/auth package to find the corresponding username.

10. The username identifies it and then includes the metadata into the context.

11. gRPC services that require XRAuthorization will later verify the access rights for the username identified
in the previous step when handling the request.

12. If the mapping is unsuccessful, the request is passed to the relevant service, such as gNMI, which then
decides whether to grant or deny access based on its authorization requirements.

Authenticate and Authorize gRPC Service Requests Using the SPIFFE Standard

Before you begin

Before authenticating and authorizing gRPC service requests using the SPIFFE standard, ensure the following
prerequisites are met:

• Enable mutual TLS authentication with the tls-mutual command.

• Enable certificate authentication with the certificate-authentication command to facilitate SPIFFE
ID recognition. For more information, see Authenticate gRPC Services, on page 6.

• Configure the gNSI Authz policy by setting the principal to the SPIFFE-ID for service-level authorization
(gNSI AuthZ).

After establishing the connection, the gRPC server extracts the SPIFFE ID from the client's certificate.

To authenticate and authorize gRPC service requests using the SPIFFE standard, follow these steps:

Use gRPC Protocol to Define Network Operations with Data Models
9

Use gRPC Protocol to Define Network Operations with Data Models
Authenticate and Authorize gRPC Service Requests Using the SPIFFE Standard

Procedure

Step 1 Configure the username in the system.

Example:

Router#show running-config aaa
Thu Oct 12 11:43:15.771 UTC
username cisco
group root-lr
group cisco-support
password 7 104D000A061843595F
!

Step 2 Map the SPIFFE ID to a username using the aaa map-to username command. This command assigns a default username
to any SPIFFE ID.
Router(config)#aaa map-to username cisco spiffe-id any
Router(config)#commit

Note
Each SPIFFE ID supports only one username.

Step 3 Evaluate the client's SPIFFE ID against the service-level authorization policy (gNSI AuthZ). For more information about
gNSI authz policies, see gRPC Network Security Interface , on page 46.

Use gRPC Protocol to Define Network Operations with Data Models
10

Use gRPC Protocol to Define Network Operations with Data Models
Authenticate and Authorize gRPC Service Requests Using the SPIFFE Standard

Certificate Common-Name For Dial-in Using gRPC Protocol
Table 3: Feature History Table

DescriptionRelease InformationFeature Name

You can now specify a
common-name for the certificate
generated by the router while using
gRPC dial-in. Earlier, the
common-name in the certificate
was fixed as ems.cisco.com andwas
not configurable. Using a specified
common-name avoids potential
certification failures where youmay
specify a hostname different from
the fixed common name to connect
to the router.

The feature introduces these
changes:

CLI:

• grpc certificate
common-name

YANG Data Model:

• New XPath for
Cisco-IOS-XR-um-grpc-cfg.yang

• New XPath for
Cisco-IOS-XR-man-ems-cfg

(see GitHub, YANG Data Models
Navigator)

Release 24.1.1Certificate Common-Name For
Dial-in Using gRPC Protocol

When using gRPC dial-in on Cisco IOS-XR router, the common-name associated with the certificate generated
by the router is fixed as ems.cisco.com and this caused failure during certificate verification.

From Cisco IOS XR Release 24.1.1, you can now have the flexibility of specifying the common-name in the
certificate using the grpc certifcate common-name command. This allows gRPC clients to verify if the
domain name in the certificate matches the domain name of the gRPC server being accessed.

Configure Certificate Common Name For Dial-in
Configure a common name to be used in EMSD certificates for gRPC dial-in.

Procedure

Step 1 Configure a common name.

Use gRPC Protocol to Define Network Operations with Data Models
11

Use gRPC Protocol to Define Network Operations with Data Models
Certificate Common-Name For Dial-in Using gRPC Protocol

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2846399442
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2846399442
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#certificate common-name cisco.com
Router(config-grpc)#commit

Use the show command to verify the common name:
Router#show grpc
Certificate common name : cisco.com

Note
For the above configuration to be successful, ensure to regenerate the certificate. so that the new EMSD certificates
include the configured common name.

To regenerate the self-signed certificate, perform the following steps.

Step 2 Remove the certificates: /misc/config/grpc/ems.pem, /misc/config/grpc/ems.key, and /misc/config/grpc/ca.cert
from /misc/config/grpc file.

Example:
Router#run ls -ltr /misc/config/grpc/

total 16
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 10:58 ems.pem
-rw-------. 1 root root 1675 Feb 14 10:58 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#run rm -rf /misc/config/grpc/ems.pem /misc/config/grpc/ems.key

Router#run ls -ltr /misc/config/grpc/

total 8
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Step 3 Restart gRPC server by toggling the TLS configuration.

Configure gRPC with non TLS and then re-configure with TLS.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#no-tls
Router(config-grpc)#commit

Router#run ls -ltr /misc/config/grpc/

total 8
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-r--r--. 1 root root 1505 Feb 14 10:58 ca.cert

Router#config
Router(config)#grpc
Router(config-grpc)#no no-tls
Router(config-grpc)#commit

Router#run ls -ltr /misc/config/grpc/

total 16
drwx------. 2 root root 4096 Feb 14 09:17 dialout
-rw-rw-rw-. 1 root root 1505 Feb 14 14:23 ems.pem

Use gRPC Protocol to Define Network Operations with Data Models
12

Use gRPC Protocol to Define Network Operations with Data Models
Configure Certificate Common Name For Dial-in

-rw-------. 1 root root 1675 Feb 14 14:23 ems.key
-rw-r--r--. 1 root root 1505 Feb 14 14:23 ca.cert

Copy the newly generated /misc/config/grpc/ems.pem certificate in this path (from the device) to the gRPC client.

gRPC over UNIX Domain Sockets
Table 4: Feature History Table

DescriptionRelease InformationFeature Name

This feature allows local containers and scripts
on the router to establish gRPC connections
over UNIX domain sockets. These sockets
provide better inter-process communication
eliminating the need to manage passwords for
local communications. Configuring
communication over UNIX domain sockets
also gives you better control of permissions
and security because UNIX file permissions
come into force.

This feature introduces the grpc
local-connection command.

Release 7.5.1gRPC Connections over UNIX
domain sockets for Enhanced
Security and Control

You can use local containers to establish gRPC connections via a TCP protocol where authentication using
username and password is mandatory. This functionality is extended to establish gRPC connections over
UNIX domain sockets, eliminating the need to manage password rotations for local communications.

When gRPC is configured on the router, the gRPC server starts and then registers services such as gRPC
Network Management Interface and gRPC Network Operations Interface . After all the gRPC server
registrations are complete, the listening socket is opened to listen to incoming gRPC connection requests.
Currently, a TCP listen socket is created with the IP address, VRF, or gRPC listening port. With this feature,
the gRPC server listens over UNIX domain sockets that must be accessible from within the container via a
local connection by default. With the UNIX socket enabled, the server listens on both TCP and UNIX sockets.
However, if disable the UNIX socket, the server listens only on the TCP socket. The socket file is located at
/var/lib/docker/ems/grpc.sock directory.

The following process shows the configuration changes required to enable or disable gRPC over UNIX domain
sockets.

Procedure

Step 1 Configure the gRPC server.

Example:
Router(config)#grpc
Router(config-grpc)#local-connection
Router(config-grpc)#commit

Use gRPC Protocol to Define Network Operations with Data Models
13

Use gRPC Protocol to Define Network Operations with Data Models
gRPC over UNIX Domain Sockets

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp7259355000
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp7259355000

To disable the UNIX socket use the following command.
Router(config-grpc)#no local-connection

The gRPC server restarts after you enable or disable the UNIX socket. If you disable the socket, any active gRPC sessions
are dropped and the gRPC data store is reset.

The scale of gRPC requests remains the same and is split between the TCP and Unix socket connections. The maximum
session limit is 256, if you utilize the 256 sessions on Unix sockets, further connections on either TCP or UNIX sockets
is rejected.

Step 2 Verify that the local-connection is successfully enabled.

Example:
Router#show grpc status
Thu Nov 25 16:51:30.382 UTC
*************************show gRPC status**********************

transport : grpc
access-family : tcp4
TLS : enabled
trustpoint :
listening-port : 57400
local-connection : enabled
max-request-per-user : 10
max-request-total : 128
max-streams : 32
max-streams-per-user : 32
vrf-socket-ns-path : global-vrf
min-client-keepalive-interval : 300

A gRPC client must dial into the socket to send connection requests.

The following is an example of a Go client connecting to UNIX socket:
const sockAddr =
"/var/lib/docker/ems/grpc.sock"
...
func UnixConnect(addr string, t time.Duration) (net.Conn, error) {

unix_addr, err := net.ResolveUnixAddr("unix", sockAddr)
conn, err := net.DialUnix("unix", nil, unix_addr)
return conn, err

}

func main() {
...

opts = append(opts, grpc.WithTimeout(time.Second*time.Duration(*operTimeout)))
opts = append(opts, grpc.WithDefaultCallOptions(grpc.MaxCallRecvMsgSize(math.MaxInt32)))
...
opts = append(opts, grpc.WithDialer(UnixConnect))
conn, err := grpc.Dial(sockAddr, opts...)
...

}

Use gRPC Protocol to Define Network Operations with Data Models
14

Use gRPC Protocol to Define Network Operations with Data Models
gRPC over UNIX Domain Sockets

gRPC Network Management Interface
gRPCNetworkManagement Interface (gNMI) is a gRPC-based networkmanagement protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and
generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage
configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gNMI Operations
Additional DetailsDescriptionSupported

Release
gNMI
Operation

—Retrieves the metadata of the
network device.

Release 7.0.1Capabilities

—Retrieve state data, configuration,
and operational information from a
network device

Release 7.0.1Get

—You can modify the state of a
network device such as router's
configuration, replace router's entire
configuration sections, or delete
specific parts of the configuration
using the Set operation.

Release 7.0.1Set

Stream Telemetry Data for LLDP
Statistics

Subscribes to a stream of updates for
specific paths within the device's
data model.

Release 24.2.1Subscribe

Use gRPC Protocol to Define Network Operations with Data Models
15

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Network Management Interface

https://www-author3.cisco.com/content/en/us/td/docs/iosxr/cisco8000/telemetry/24xx/configuration/guide/b-telemetry-cg-8000-24xx/enhancements-to-streaming-telemetry.html#lldp-using-gnmi
https://www-author3.cisco.com/content/en/us/td/docs/iosxr/cisco8000/telemetry/24xx/configuration/guide/b-telemetry-cg-8000-24xx/enhancements-to-streaming-telemetry.html#lldp-using-gnmi

gNMI Wildcard in Schema Path
Table 5: Feature History Table

DescriptionRelease InformationFeature Name

You use a gRPC Network
Management Interface (gNMI) Get
request with wildcard key to
retrieve the configuration and
operational data of all the elements
in the data model schema paths. In
earlier releases, you had to specify
the correct key to retrieve data. The
router returned a JSON error
message if the key wasn't specified
in a list node.

For more information about using
wildcard search in gNMI requests,
see the Github repository.

Release 7.5.2Use gNMI Get Request With
Wildcard Key to Retrieve Data

gNMI protocol supports wildcards to indicate all elements at a given subtree in the schema. These wildcards
are used for telemetry subscriptions or gNMI Get requests. The encoding of the path in gNMI uses a structured
format. This format consists of a set of elements such as the path name and keys. The keys are represented as
string values, regardless of their type within the schema that describes the data. gNMI supports the following
options to retrieve data using wildcard search:

• Single-level wildcard: The name of a path element is specified as an asterisk (*). The following sample
shows a wildcard as the key name. This operation returns the description for all interfaces on a device.
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "*"

}
}
elem {
name: “config"

}
elem {
name: "description"

}
}

• Multi-level wildcard: The name of the path element is specified as an ellipsis (…). The following
example shows a wildcard search that returns all fields with a description available under /interfaces
path.
path {
elem {
name: "interfaces"

}

Use gRPC Protocol to Define Network Operations with Data Models
16

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Wildcard in Schema Path

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md

elem {
name: "..."

}
elem {
name: "description"

}
}

Example: gNMI Get Request with Unique Path to a Leaf

The following is a sample Get request to fetch the operational state of GigabitEthernet0/0/0/0
interface in particular.
path: <

origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
key: <

key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""

>
>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF

The following is a sample Get response:
notification: <
timestamp: 1597974202517298341
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""
>

>
elem: <

name: "state"
>

>
val: <

json_ietf_val: im-state-admin-down
>

>
>

Use gRPC Protocol to Define Network Operations with Data Models
17

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Wildcard in Schema Path

error: <
>

Example: gNMI Get Request Without a Key Specified in the Schema Path

The following is a sample Get request to fetch the operational state of all interfaces.
path: <

origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF

The following is a sample Get response:
path: <

origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <

name: "interfaces"
>
elem: <

name: "interface-xr"
>
elem: <

name: "interface"
>
elem: <

name: "state"
>

>
type: OPERATIONAL
encoding: JSON_IETF
notification: <
timestamp: 1597974202517298341
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/0\""

>
>
elem: <
name: "state"

Use gRPC Protocol to Define Network Operations with Data Models
18

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Wildcard in Schema Path

>
>
val: <
json_ietf_val: im-state-admin-down

>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/1\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val: im-state-admin-down

>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <
name: "interface"
key: <
key: "interface-name"
value: "\"GigabitEthernet0/0/0/2\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val: im-state-admin-down

>
>
update: <
path: <
origin: "Cisco-IOS-XR-pfi-im-cmd-oper"
elem: <
name: "interfaces"

>
elem: <
name: "interface-xr"

>
elem: <

Use gRPC Protocol to Define Network Operations with Data Models
19

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Wildcard in Schema Path

name: "interface"
key: <
key: "interface-name"
value: "\"MgmtEth0/RP0/CPU0/0\""

>
>
elem: <
name: "state"

>
>
val: <
json_ietf_val: im-state-admin-down

>
>

Example: gNMI Get Request with Unique Path to a CLI

The following is a sample Get request to fetch the system updates through CLI.
path: <
origin: "cli"
elem: <
name: "show version"

>
>
type: ALL
encoding: ASCII

The following is a sample Get response.
path: <
origin: "cli"
elem: <
name: "show version"

>
>

type: ALL
...
...

[
{
"source": "unix:///var/run/test_env.sock",
"timestamp": 1730123328800447525,
"time": "2024-10-28T06:48:48.800447525-07:00",
"updates": [
{
"Path": "show version",
"values": {
"show version":

"-------------------------------- show version ---------------------------------
Cisco IOS XR Software, Version 24.4.1.37I
Copyright (c) 2013-2024 by Cisco Systems, Inc.
Build Information:\n Built By : swtools
Built On : Mon Oct 21 03:16:32 PDT 2024
Built Host : iox-lnx-121\n Workspace :
/auto/iox-lnx-121-san2/prod/24.4.1.37I.SIT_IMAGE/ncs5500/ws
Version : 24.4.1.37I\n Location : /opt/cisco/XR/packages/
Label : 24.4.1.37I-EFT2LabOnly
cisco NCS-5500 () processor
System uptime is 3 days 22 hours 54 minutes\n\n\n"

}
}

]

Use gRPC Protocol to Define Network Operations with Data Models
20

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Wildcard in Schema Path

}
]

gNMI Bundling of Telemetry Updates
Table 6: Feature History Table

DescriptionRelease
Information

Feature Name

With gRPCNetworkManagement Interface (gNMI) bundling,
the router internally bundles multiple gNMI Updatemessages
meant for the same client into a single gNMI Notification
message and sends it to the client over the interface.

You can now optimize the interface bandwidth utilization by
accommodating more gNMI updates in a single notification
message to the client. We have now increased the gNMI
bundling size from 32768 to 65536 bytes, and enabled gNMI
bundling size configuration through Cisco native data model.

Prior releases allowed only a maximum bundling size of
32768 bytes, and you could configure only through CLI.

The feature introduces new XPaths to the
Cisco-IOS-XR-telemetry-model-driven-cfg.yang Cisco
native data model to configure gNMI bundling size.

To view the specification of gNMI bundling, see Github
repository.

Release 7.8.1gNMI Bundling Size
Enhancement

To send fewer number of bytes over the gNMI interface, multiple gNMI Update messages pertained to the
same client are bundled and sent to the client to achieve optimized bandwidth utilization.

The router internally bundles multiple gNMI Update messages in a single gNMI Notification message of
gNMI SubscribeResponse message. Cisco IOS XR software Release 7.8.1 supports gNMI bundling size up
to 65536 bytes.

Router bundles multiple instances of the same client. For example, a router bundles interfaces
MgmtEth0/RP0/CPU0/0, FourHundredGigE0/0/0/0, FourHundredGigE0/0/0/1, and so on, of the following
path.

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

Router does not bundle messages of different client in a single gNMI Notification message. For example,

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/generic-counters

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/latest/protocols

Data under the container of the client path cannot be split into different bundles.

The gNMI Notificationmessage contains a timestamp at which an event occurred or a sample is taken. The
bundling process assigns a single timestamp for all bundled Update values. The notification timestamp is the
first message of the bundle.

Use gRPC Protocol to Define Network Operations with Data Models
21

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Bundling of Telemetry Updates

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates

• ON-CHANGE subscription mode does not support gNMI bundling.

• Router does not enforce bundling size in the following scenarios:

• At the end of (N-1) message processing, if the notification message size is less than the configured
bundling size, router allows one extra instance which could result in exceeding the bundling size.

• Data of a single instance exceeding the bundling size.

• The XPath: network-instances/network-instance/afts does not support bundling.

Note

Configure gNMI Bundling Size
gNMI bundling is disabled by default and the default bundling size is 32,768 bytes. gNMI bundling size ranges
from 1024 to 65536 bytes. Prior to Cisco IOS XR software Release 7.8.1 the range was 1024 to 32768 bytes.
You can enable gNMI bundling to all gNMI subscribe sessions and specify the bundling size.

Configuration Example

This example shows how to enable gNMI bundling and configure bundling size.
Router# configure
Router(config)# telemetry model-driven
Router(config-model-driven)# gnmi
Router(config-gnmi)# bundling
Router(config-gnmi-bdl)# size 2000
Router(config-gnmi-bdl)# commit

Running configuration

This example shows the running configuration of gNMI bundle.
Router# show running-config
telemetry model-driven
gnmi
bundling
size 2000
!
!
!

Use gRPC Protocol to Define Network Operations with Data Models
22

Use gRPC Protocol to Define Network Operations with Data Models
Configure gNMI Bundling Size

Replace Router Configuration at Sub-tree Level Using gNMI
Table 7: Feature History Table

DescriptionRelease InformationFeature Name

Using the gNMI SetRequest message, you can replace
the router's existing configuration with a new set of
configurations at the subtree level within the samemodel.
Earlier you could replace router configurations at the
data tree root level.

To view the specification of gNMI replace, see Github
repository.

Release 7.8.1Replace Router
Configuration at Sub-tree
Level Using gNMI

The gNMI replace feature replaces the existing configuration on the router with the new configuration using
a SetRequest RPC message. It allows you to specify a path (a structured format for path elements, and any
associated key values) as the root prompt to perform a replace operation. Cisco IOS XR software Release
7.8.1 supports subtree-level replace operation. Prior to this release replace operation was performed at
datatree-level.

Replace operation either includes all the path elements which are defined under the root or only few of them.
If the omitted path elements are configured with default values, they are reverted to its default values during
the replace operation. If the omitted path elements are not configured with default values, they are deleted
from the data tree during the replace operation, and returned to its original unconfigured state. Consider the
following example:

In the following data tree schema, b has a default value of true and c has no default value. Both b and c are
set as False.
root +

|
+ a --+
| |
| +-- b
| |
| +-- c
|
|
+ d --+

+-- e
|
+-- f

When a replace operation is performed with e and f as set, and all other elements are omitted, b is reverted
to its default setting true, and c is deleted from the tree, and returned to its original unconfigured state.

Following example shows the SetRequest and SetResponse of gNMI replace operation.

gNMI Replace Example

This example shows the gNMI replace request and response messages.
Request Message:
replace: <
path: <
elem: <
name: "system"

>

Use gRPC Protocol to Define Network Operations with Data Models
23

Use gRPC Protocol to Define Network Operations with Data Models
Replace Router Configuration at Sub-tree Level Using gNMI

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

elem: <
name: "config"

>
elem: <
name: "hostname"

>
>
val: <
json_ietf_val: "\"testing123\""

>
>

Response Message:
path: <
elem: <
name: "system"

>
elem: <
name: "config"

>
elem: <
name: "hostname"

>
>
op: REPLACE

>
message: <
>
timestamp: 1662873319202107537

gNMI Union Replace Operation
Table 8: Feature History Table

DescriptionRelease
Information

Feature Name

You can now update your router's entire configuration in one
go to ensure that the actual settings of your network operating
system align with the intended setup. The update includes
OpenConfig (OC), Native YANG (NY), and CLI
configurations and is done using the gRPC Network
Management Interface (gNMI). The update is possible with
the gNMI union-replace operation in a gNMI SetRequestRPC
message which supports mixing of the configuration schemas.
The supported schema combinations are:

• OpenConfig (OC) and CLI

• OC and native YANG (NY)

To view the specification of gNMI union-replace, see the
Github repository.

Release 24.2.11gNMI Union Replace
Operation

Routers can be configured using different schemas including native YANG (NY) models, the command-line
interface (CLI), or OpenConfig (OC) YANG models. You can now update your router's entire configuration
in one go to ensure that the actual settings of your network operating system align with the intended setup.

Use gRPC Protocol to Define Network Operations with Data Models
24

Use gRPC Protocol to Define Network Operations with Data Models
gNMI Union Replace Operation

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-union_replace.md

The router update can be done by merging these different schemas and directly replace the existing router
settings using the gNMI union-replace operation.

gNMI Union-Replace Operation-Supported Schema Combinations

gNMI union-replace operation in a gNMI SetRequest RPC message supports the following two schema
combinations:

• OC and CLI

• OC and NY

gNMI union-replace operation Guidelines and Limitations
Using gNMIwhen a client sends the gNMI SetRequestRPCmessage with union-replace operations to a target
router:

• The state of the target router must not be changed until all the changes have been accepted successfully.

• If a particular path-value is specified in the gNMI request, the value replaces the current value in the
target router.

• If a particular path-value isn’t specified in the gNMI request and the path doesn’t have a default value
in the corresponding schema, it’s deleted.

• If a path-value isn’t specified in the gNMI request and the path does have a default value, the default
value is applied on the target router.

• A gNMI SetRequestRPCmessage containing union_replace operations must not contain delete, replace,
and update operations.

The origin field in the path message of a gNMI union-replace operation is set to one of the following:

• openconfig: Path and content are part of OC YANG models.

• cisco_native: Path and content are part of Cisco’s network operating system YANG models.

• cisco_cli: This origin represents an ASCII text or CLI configuration defined as command-line interface
(CLI) text.

If the origin field is unspecified, the origin value is set to OpenConfig.

gNMI Union Replace Operation Examples
The following schema combination examples show the union_replace operation in the gNMI SetRequestRPC
message:

• OC and CLI Origin, on page 25

• OC and NY Origin, on page 27

OC and CLI Origin

gNMI union_replace operation in gNMI SetRequestRPCmessagewith OC andCLI origin schema combination
example is as follows:

Use gRPC Protocol to Define Network Operations with Data Models
25

Use gRPC Protocol to Define Network Operations with Data Models
gNMI union-replace operation Guidelines and Limitations

union_replace: {

path: {

origin: "cisco_cli"

}

val: {

ascii_val: "hostname myhost"

}

}

union_replace: {

path: {

elem: {

name: "interfaces"

}

elem: {

name: "interface"

key: {

key: "name"

value: "FourHundredGigE0/0/0/0"

}

}

elem: {

name: "config"

}

elem: {

name: "description"

}

}

val: {

json_ietf_val: "\"true\""

}

}

Use gRPC Protocol to Define Network Operations with Data Models
26

Use gRPC Protocol to Define Network Operations with Data Models
OC and CLI Origin

Replacement Sequence for the OC and CLI Origin Schema Combination

The configurations from both the schemas are merged and the merged configuration replaces the router's
existing configuration.

If the CLI and OC configuration values overlap, the CLI configuration takes higher precedence and overwrites
the value set by OC.

Note

Guidelines for OC and CLI Origin

Ensure that you don't use a union-replace operation with an empty path under OC or CLI origins. Doing so
removes all the content of the respective origin on the target router.

A union-replace operationwith OC and CLI schema combination containing bootz configuration, the processing
order of the configuration application on the target router is as follows: OC->CLI->bootz.

OC and NY Origin

A gNMI union_replace operation in the gNMI SetRequest RPC message with OC and NY origin schema
combination example is as follows.
union_replace: {

path: {

origin: "cisco_native"

elem: {

name: "Cisco-IOS-XR-shellutil-cfg:host-names"

}

elem: {

name: "host-name"

}

}

val: {

json_ietf_val: "\"abc\""

}

}

union_replace: {

path: {

elem: {

name: "interfaces"

}

Use gRPC Protocol to Define Network Operations with Data Models
27

Use gRPC Protocol to Define Network Operations with Data Models
OC and NY Origin

elem: {

name: "interface"

key: {

key: "name"

value: "FourHundredGigE0/0/0/0"

}

}

elem: {

name: "config"

}

elem: {

name: "description"

}

}

val: {

json_ietf_val: "\"true\""

}

}

Guidelines for OC and NY Origin

The configurations from both the schemas are merged and the merged configuration replaces the router's
existing configuration.

If the OC and NY schema configuration values overlap, the NY configuration takes higher precedence and
overwrites the value set by OC.

If an OC and NY union-replace requests explicitly set configuration items that are overlapping, the RPC
doesn't return INVALID_ARGUMENT.

RPC Error Scenarios

The RPC message returns INVALID_ARGUMENT if:

• One of the origins from the supported schema combinations is missing or if the union_replace operation
has no specified path value for one of the origins.

• Union-replace operations for all three origins (“cisco_native”, “cisco_cli”, and “openconfig”) are present
in the gNMI SetRequest RPC message.

• A gNMI SetRequest RPC message with union_replace operations contain delete, replace, or update
operations.

Use gRPC Protocol to Define Network Operations with Data Models
28

Use gRPC Protocol to Define Network Operations with Data Models
RPC Error Scenarios

gNMI XPath-Based Authorization
Table 9: Feature History Table

DescriptionRelease
Information

Feature Name

We’ve introduced gNMI authorization through the gNSI pathz
policy which is adding authorization of a user or a group to
access a specified YANG XPath through gNMI. The policy
configurations can be done on the router either when the router
boots up or dynamically when the router is up and running.
When a user or a group sends a gNMI SetRequest message
using a certain XPath, the system validates the request against
the permissions specified in the policies associated with that
user or the group.

To view the specification of gNSI for the OpenConfig
XPath-based Authorization, see the Github repository.

The feature introduces these changes:

CLI:

• show gnsi path authorization policy

• show gnsi path authorization counters

• show gnsi trace pathz

• show gnsi path authorization statistics

• show tech-support gnsi

• clear gnsi path authorization counters

Release 24.2.11gNMI XPath-Based
Authorization

How gNSI pathz Policy Works

Upon receiving a gNMI SetRequest message for a configuration change, the router applies an XPath-based
pathz policy to determine the request's authorization. The pathz policy originates from a gNSI RPC within
the router. The policy configurations can be established during the router's boot process or dynamically adjusted
while the router is operational.

The router securely receives the initial pathz policy either through Secure Zero Touch Provisioning (sZTP)
or a secure bootstrapping protocol like bootz when booting up. The policy includes the user or group name
and a list of rules defining XPaths and their associated access permissions. The policy is enforced before
processing any gNMI requests.

Authorization by the gNSI pathz policy is granted or denied based on user or group credentials, permitting
or declining the gNMI SetRequest accordingly.

gNMI Authorization Using gNSI pathz Policy

Starting from Release 24.2.11, you can perform gNMI XPath-based authorization using gNSI pathz policies.

Use gRPC Protocol to Define Network Operations with Data Models
29

Use gRPC Protocol to Define Network Operations with Data Models
gNMI XPath-Based Authorization

https://github.com/openconfig/gnsi/blob/main/pathz/pathz.proto
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3523621590
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp6319799690
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1425306918
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1800459808
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1590368878
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1987264608

The gnsi-pathz YANGmodel defines the following counters and timestamps for each configured rule READ,
WRITE, PERMIT, and DENY.

• access-rejects: 64-bit

• last-access-reject: timestamp

• access-accepts: 64-bit

• last-access-accept: timestamp

The counters get incremented per accepted or rejected XPath (Example, per gNMI request).

Define Authorization Policy for a gNSI Pathz

The authorization policy for gNSI Pathz consists of three components.

Table 10: Authorization Policy Components

DetailsAuthorization Policy
Component

Individuals named in rules or group definitions.Users

A group of users in the administrative domain, such as operators or administrators.

• The matching policy gives precedence to a specific user over a group.

• Match rules enable authorization against either a user or a group, but not
both simultaneously.

Groups of users

Each rule defines a single authorization policy.

• Authorization (how the policy is defined) is performed for a specific user
in a predefined group of users on a specific gNMI path and a specific access
methodology (example: READ or WRITE).

• The wildcard character (*):

• Replaces the missing keys in keyed path elements. Absence of
keys implies a wildcard by default.

• Masks all the values entirely, it doesn’t permit partial value
masking (Example: /this/is/a/keyed[name=Ethernet1/*/3]/things
is invalid).

Policy rules

How Authorization Policy Matching Rules Work

DescriptionPolicy Matching Rule

The authorization process evaluates the rule with the longest
match when granting access, rather than defaulting to the
first rule encountered.

Multiple rules

Use gRPC Protocol to Define Network Operations with Data Models
30

Use gRPC Protocol to Define Network Operations with Data Models
gNMI XPath-Based Authorization

https://github.com/openconfig/public/blob/master/release/models/gnsi/openconfig-gnsi-pathz.yang

DescriptionPolicy Matching Rule

The defined KEY in the keyed path is preferred over the
wildcard.

For example, the router prefers /a/b[key=FOO]/c/d over
/a/b[key=*]/c/d due to its more precise key match.

A defined KEY and wildcard in a keyed path

The rule that corresponds to a specific user is prioritized
over the one that matches with a user's group.

A user-specific rule and a corresponding group
rule for the same user

A mode that matches with the request (READ or WRITE)
is considered.

Permission mode

DENY takes priority over PERMIT when other conditions
are equal, and multiple matching rules are present.

DENY or PERMIT

Policy evaluation results with a single best match rule for the provided {user, path, or mode}. If multiple best
matches emerge, an error is logged, and the evaluation fails.

If no matching rule is found, an implicit DENY is applied and detailed in a log entry.

The authorization evaluation process results in a PERMIT or DENY decision, along with the version of the
policy and the identifier of the rule applied.

Scenario for Authorization Policy Rules

ModeActionPathGroupUserRule

READPERMIT/interfaces/interface[FourHundredGigE0/0/0/0]—Bob1

WRITEPERMIT/interfaces/interface[FourHundredGigE0/0/0/0]—Bob2

WRITEDENY/interfaces/interface[FourHundredGigE1/1/1/1]—Bob3

WRITEPERMIT/interfaces/interface[*]Admin—4

READPERMIT/interfaces—Bob5

WRITEPERMIT/interfaces/interface[FourHundredGigE0/0/0/0]Admin—6

WRITEDENY/interfaces/interface[FourHundredGigE0/0/0/0]—Jim7

For user Bob, the following authorization rules apply:

• READ or WRITE (gNMI request) access to the XPath /interfaces/interface[FourHundredGigE0/0/0/0]
is granted under rules 1 and 2.

• READ access to the XPath /interfaces/interface[FourHundredGigE1/1/1/1] is granted under rule 5 due
to the longest match criterion, which specifies READmode. WRITE access to this path is denied by rule
3.

• WRITE access to the XPath /interfaces/interface[FourHundredGigE2/2/2/2] is granted being a member
of the Admins group as specified by rule 4. Without the Admin membership, access is denied by the
default deny all rule.

Use gRPC Protocol to Define Network Operations with Data Models
31

Use gRPC Protocol to Define Network Operations with Data Models
gNMI XPath-Based Authorization

• READ access to the XPath /interfaces/interface[FourHundredGigE2/2/2/2] is granted under rule 5,
independent of group affiliation.

For user Jim, the following authorization rule applies:

• Access to the XPath /interfaces/interface[FourHundredGigE0/0/0/0] is controlled by a policy that favors
personal user permissions over group permissions. As a result, although the admins group is allowed
access, Jim is individually denied access because the policy emphasizes user-specific rules.

gNSI Pathz Authorization Policy Configuration
To set a gNSI pathz authorization policy, you can perform either of the following methods:

• Load gNSI Pathz Policies at Boot-time, on page 32

• Rotate, Finalize, and Get the gNSI Pathz Policy, on page 32

Load gNSI Pathz Policies at Boot-time

To load gNSI pathz policies at boot-time into the router, you can use either sZTP or bootstrapping.

For details on loading gNSI pathz policy through sZTP, refer to Secure Zero Touch Provisioning section of
Cisco IOS XR Setup and Upgrade Guide for Cisco 8000 Series Routers guide.

Rotate, Finalize, and Get the gNSI Pathz Policy

When the router is up and running, you can rotate (update), finalize (commit), and get (read) the gNSI pathz
policy using the gNSI pathz gRPC operations. To view the specification of gNSI pathz policy rotation, see
the Github repository.

gNSI pathz supports the following policy instances:

• Active policy—Used for authorizing gNMI requests.

• Potential or candidate policy—Used to test a policy before rotation.

Rules for Authorization Policy Rotation

• The node holds on to the candidate policy indefinitely until either:

• The candidate is committed or again rotated, or

• The RPC session is closed (this event removes the candidate instance).

• A single policy rotation RPC can be active at any given time. Concurrent RPC requests for policy rotation
is rejected with the gRPC error code UNAVAILABLE.

• gNMI allows different encodings, including JSON. IOS XR applies the gNSI pathz policy based
on each leaf of the flattened JSON model for authorizing the gNMI request.

Metrics of gNSI Authorization Rules
IOS-XR pathz supports the following statistics, counters, diagnostics, and trace data commands for the gNSI
authorization rules:

Use gRPC Protocol to Define Network Operations with Data Models
32

Use gRPC Protocol to Define Network Operations with Data Models
gNSI Pathz Authorization Policy Configuration

https://github.com/openconfig/gnsi/blob/main/pathz/pathz.proto.

• gNSI Pathz Policy and Statistics

• gNSI Path Authorization Counters

• gNSI Pathz Trace Data

• gNSI State Details

gNSI Path Authorization Counters

The gNSI path authorization counters show the counters for a given gRPC server-name for all XPaths, or the
specified XPath. Providing the XPath and server-name is optional. To view the gNSI Path Authorization
counters, use the show gnsi path authorization counters command.

• Router# show gnsi path authorization counters
Mon Apr 1 08:05:46.297 UTC
----------------Pathz Counters Info--------------

/system/config/hostname:
Read Write

Rejects : 0 0
Last : N/A N/A

Accepts : 0 3
Last : N/A Mon, 01 Apr 2024 08:05:25 +0000

Total path records received 1

Router# show gnsi path authorization counters server-name 64.103.223.33
Mon Apr 1 08:33:25.194 UTC
----------------Pathz Counters Info--------------

/:
Read Write

Rejects : 0 2
Last : N/A Mon, 01 Apr 2024 08:32:37 +0000

Accepts : 0 0
Last : N/A N/A

/system/config/hostname:
Read Write

Rejects : 0 6
Last : N/A Mon, 01 Apr 2024 08:32:36 +0000

Accepts : 0 0
Last : N/A N/A

Total path records received 2
Router#

Router# show gnsi path authorization counters path /system/config/hostname
Mon Apr 1 08:32:46.468 UTC
----------------Pathz Counters Info--------------

/system/config/hostname:
Read Write

Rejects : 0 6
Last : N/A Mon, 01 Apr 2024 08:32:36 +0000

Accepts : 0 0
Last : N/A N/A

Total path records received 1
Router#

• To clear the gNSI path authorization counters, use the clear gnsi path authorization counters command.
Router# clear gnsi path authorization counters
Router#

Use gRPC Protocol to Define Network Operations with Data Models
33

Use gRPC Protocol to Define Network Operations with Data Models
gNSI Path Authorization Counters

gNSI Pathz Policy and Statistics

To display the configured gNSI policy and statistics, use the are following commands:

• show gnsi path authorization policy—Shows the running gNSI path authorization policy.

• show gnsi path authorization statistics—Shows gNSI path authorization statistics.

Router# show gnsi path authorization policy
Mon Apr 1 04:29:37.905 UTC
version:"1" created_on:1711946719670313 policy:{rules:{user:"cafyauto"
path:{origin:"openconfig" elem:{name:"system"} elem:{name:"config"} elem:{name:"hostname"}}
action:ACTION_PERMIT mode:MODE_WRITE}}
Router#

Router# show gnsi path authorization statistics
Mon Apr 1 04:29:23.259 UTC
----------------Pathz Info--------------
Engine:

State:
Active Policy:
Version : 1
Created On (UTC) : Wed, 09 Dec 54251401 07:58:33 +0000

Sandbox Policy:
Version : N/A
Created On (UTC) : N/A

Policy Rotation in Progress: False

Stats:
Rotations in Progress Count: 0
Policy Rotations : 0
Policy Rotation Errors : 0
Policy Upload Requests : 0
Policy Upload Errors : 0
Policy Finalize : 0
Policy Finalize Errors : 0
Probe Requests : 0
Probe Errors : 0
Get Requests : 0
Get Errors : 0
Policy Unmarshall Errors : 0
Sandbox Policy Errors : 0

Counters:
No Policy Auth Requests : 0
gNMI Path Leaves : 0
gNMI Authorizations : 0
gNMI Set Path Permit : 0
gNMI Set Path Deny : 0
gNMI Get Path Permit : 0
gNMI Get Path Deny : 0

Errors:
Path To String : 0
Origin Type : 0
Bad Mode : 0
Bad Action : 0
JSON Flatten : 0
String To Path : 0
Join Paths : 0
Nil Path : 0
Nil SetRequest : 0
Empty User : 0

Use gRPC Protocol to Define Network Operations with Data Models
34

Use gRPC Protocol to Define Network Operations with Data Models
gNSI Pathz Policy and Statistics

Probe Internal : 0
Path Counters:
Increment : 0
Find : 0
Clear : 0
Walk : 0

gNSI Pathz Trace Data

To trace the configured gNSI policy, use the show gnsi trace pathz command.
Router# show gnsi trace pathz all
Mon Apr 1 04:31:26.689 UTC
61 wrapping entries (21760 possible, 512 allocated, 0 filtered, 61 total)
Apr 1 04:07:09.681 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(178) 'Trying to load policy'
'/mnt/rdsfs/ems/gnsi/pathz_policy.txt'
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(173) 'Set Sandbox policy'
'1(54251382-02-18 11:34:58 +0000 UTC)'
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(179) 'Set Policy from'
'/mnt/rdsfs/ems/gnsi/pathz_policy.txt'
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(249) 'Pathz Policy Clearing
Counters' ' '
Apr 1 04:07:09.685 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code (79): 'Engine Initialized'
Apr 1 04:08:05.761 gnsi/pathz 0/RP0/CPU0 t11794 Pathz: Code(63) 'Pathz.Get()'
'5.38.4.111:52126'
Apr 1 04:08:05.761 gnsi/pathz_err 0/RP0/CPU0 t11794 Pathz ERROR: Code (65): 'Nil Policy'
Apr 1 04:08:05.788 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(63) 'Pathz.Get()'
'5.38.4.111:52126'
Apr 1 04:08:05.788 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(176) 'Get'
'POLICY_INSTANCE_ACTIVE 1(1711946094752098)'
Apr 1 04:08:05.791 gnsi/pathz_deny 0/RP0/CPU0 t11481 Pathz DENY: Code(235) 'Upd/Rep Denied
path' 'cafyauto@/system/config/hostname,|1,1711946094752098'
Apr 1 04:08:05.808 gnsi/pathz_deny 0/RP0/CPU0 t11383 Pathz DENY: Code(234) 'Del Denied
path' 'cafyauto@/system/config/hostname,|1,1711946094752098'
Apr 1 04:08:05.821 gnsi/pathz_deny 0/RP0/CPU0 t11480 Pathz DENY: Code(235) 'Upd/Rep Denied
path' 'cafyauto@/system/config/hostname,|1,1711946094752098'
Apr 1 04:08:07.348 gnsi/pathz_deny 0/RP0/CPU0 t11383 Pathz DENY: Code(235) 'Upd/Rep Denied
path' 'cafyauto@/lldp/config/enabled,|1,1711946094752098'
Apr 1 04:08:08.205 gnsi/pathz 0/RP0/CPU0 t11383 Pathz: Code(63) 'Pathz.Get()'
'5.38.4.111:52126'
Apr 1 04:08:08.205 gnsi/pathz_err 0/RP0/CPU0 t11383 Pathz ERROR: Code (65): 'Nil Policy'
Apr 1 04:08:08.221 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(63) 'Pathz.Get()'
'5.38.4.111:52126'
Apr 1 04:08:08.221 gnsi/pathz 0/RP0/CPU0 t11480 Pathz: Code(176) 'Get'
'POLICY_INSTANCE_ACTIVE 1(1711946094752098)'
Apr 1 04:08:08.238 gnsi/pathz_deny 0/RP0/CPU0 t11481 Pathz DENY: Code(235) 'Upd/Rep Denied
path' 'cafyauto@/system/config/hostname,|1,1711946094752098'
Apr 1 04:08:08.281 gnsi/pathz_deny 0/RP0/CPU0 t11480 Pathz DENY: Code(234) 'Del Denied
path' 'cafyauto@/system/config/hostname,|1,1711946094752098'
Router#

gNSI State Details

To collect diagnostic information of gNSI, use the show tech-support gnsi command.
Router# show tech-support gnsi
Mon Apr 1 06:55:51.482 UTC
++ Show tech start time: 2024-Apr-01.065551.UTC ++
Mon Apr 1 06:55:52 UTC 2024 Waiting for gathering to complete
...
Mon Apr 1 06:56:01 UTC 2024 Compressing show tech output
Show tech output available at Router#:
/harddisk:/showtech/showtech-mtb_sf2-gnsi-2024-Apr-01.065551.UTC.tgz
++ Show tech end time: 2024-Apr-01.065601.UTC ++

Use gRPC Protocol to Define Network Operations with Data Models
35

Use gRPC Protocol to Define Network Operations with Data Models
gNSI Pathz Trace Data

show tech-support gnsi command places the collected diagnostic information in a file, example Router#:
/harddisk: /showtech/showtech-mtb_sf2-gnsi-2024-Apr-01.065551.

gRPC Network Operations Interface
gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. These services are to be used in conjunction with gRPC network
management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the
transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the
Github repository.

gNOI RPCs
To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig
proto files are located in the Github repository.

Table 11: Feature History Table

DescriptionRelease InformationFeature Name

The RPCs defined in the proto file can be used
to perform Multiprotocol Label Switching
(MPLS) operations on the router.

Release 7.5.4gNOI MPLS Proto

The RPCs defined in the proto file can be used
to install the software, activate the software
version and verify that the installation is
successful.

Release 7.9.1gNOI OS Proto

You can now avail the services of CancelReboot
to terminate outstanding reboot request, and
KillProcess RPCs to restart the process on
device.

Release 7.8.1gNOI System Proto

gNOI supports the following remote procedure calls (RPCs):

System RPCs

The RPCs are used to perform key operations at the system level such as upgrading the software, rebooting
the device, and troubleshooting the network. The system.proto file is available in the Github repository.

Use gRPC Protocol to Define Network Operations with Data Models
36

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Network Operations Interface

https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi/blob/main/system/system.proto

DescriptionRPC

Reboots the target. The router supports the following reboot
options:

• COLD = 1; Shutdown and restart OS and all hardware

• POWERDOWN = 2; Halt and power down

• HALT = 3; Halt

• POWERUP = 7; Apply power

Reboot

Returns the status of the target reboot.RebootStatus

Places a software package including bootable images on the
target device.

SetPackage

Pings the target device and streams the results of the ping
operation.

Ping

Runs the traceroute command on the target device and streams
the result. The default hop count is 30.

Traceroute

Returns the current time on the target device.Time

Switches from the current route processor to the specified route
processor. If the target does not exist, the RPC returns an error
message.

SwitchControlProcessor

Cancels any pending reboot request.CancelReboot

Stops an OS process and optionally restarts it.KillProcess

File RPCs

The RPCs are used to perform key operations at the file level such as reading the contents if a file and its
metadata. The file.proto file is available in the Github repository.

DescriptionRPC

Reads and streams the contents of a file from the target device.
The RPC streams the file as sequential messages with 64 KB of
data.

Get

Removes the specified file from the target device. The RPC
returns an error if the file does not exist or permission is denied
to remove the file.

Remove

Returns metadata about a file on the target device.

Note
gNOI File.Stat returns only the filename in the response, which
can cause incorrect handling, especially during recursive
processing, as the file might be mistakenly treated as a directory.

Stat

Use gRPC Protocol to Define Network Operations with Data Models
37

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/file/file.proto

DescriptionRPC

Streams data into a file on the target device.Put

Transfers the contents of a file from the target device to a
specified remote location. The response contains the hash of the
transferred data. The RPC returns an error if the file does not
exist, the file transfer fails or an error when reading the file. This
is a blocking call until the file transfer is complete.

TransferToRemote

Certificate Management (Cert) RPCs

The RPCs are used to perform operations on the certificate in the target device. The cert.proto file is available
in the Github repository.

DescriptionRPC

Replaces an existing certificate on the target device by creating
a new CSR request and placing the new certificate on the target
device. If the process fails, the target rolls back to the original
certificate.

Rotate

Installs a new certificate on the target by creating a new CSR
request and placing the new certificate on the target based on
the CSR.

Install

Gets the certificates on the target.GetCertificates

Revokes specific certificates.RevokeCertificates

Asks a target if the certificate can be generated.CanGenerateCSR

Loads a bundle of CA certificates on the target. This CA
certificate bundle is used to verify the client certificate when
mutual TLS is enabled.

LoadCertificateAuthorityBundle

Interface RPCs

The RPCs are used to perform operations on the interfaces. The interface.proto file is available in the Github
repository.

DescriptionRPC

Sets the loopback mode on an interface.SetLoopbackMode

Gets the loopback mode on an interface.GetLoopbackMode

Resets the counters for the specified interface.ClearInterfaceCounters

Layer2 RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The layer2.proto file is available in the Github repository.

Use gRPC Protocol to Define Network Operations with Data Models
38

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/cert/cert.proto
https://github.com/openconfig/gnoi/blob/cc419f3696d3a6d3e1a3999b75c51231b4773ace/interface/interface.proto
https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto

DescriptionFeature Name

Clears all the LLDP adjacencies on the specified interface.ClearLLDPInterface

BGP RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The bgp.proto file is available in the Github repository.

DescriptionFeature Name

Clears a BGP session.ClearBGPNeighbor

Diagnostic (Diag) RPCs

The RPCs are used to perform diagnostic operations on the target device. You assign each bit error rate test
(BERT) operation a unique ID and use this ID to manage the BERT operations. The diag.proto file is available
in the Github repository.

DescriptionFeature Name

Starts BERT on a pair of connected ports between devices in
the network.

StartBERT

Stops an already in-progress BERT on a set of ports.StopBERT

Gets the BERT results during the BERT or after the operation
is complete.

GetBERTResult

MPLS RPCs

The RPCs are used to perform MPLS operations on the target device. The mpls.proto file is available in the
Github repository.

DescriptionFeature Name

Checks basic connectivity usingMPLS ping operation. See RFC
4379.

In Cisco IOS XR Release 7.5.4, the RPC supports ldp_fec and
rsvpte_lsp_name destination types. The destination types
fec129_pwe and rsvpte_lsp are not supported.

MPLSPing

Clears a single tunnel.ClearLSP

Clears theMPLS counters for the specified Label Switched Path
(LSP).

ClearLSPCounters

Operating System (OS) RPCs

The OS service provides an interface for the OS installation on a target device. The RPCs replace the router
software to upgrade the system. No concurrent installation is allowed on the same target. The os.proto file is
available in the Github repository.

Use gRPC Protocol to Define Network Operations with Data Models
39

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

https://github.com/openconfig/gnoi/blob/main/bgp/bgp.proto
https://github.com/openconfig/gnoi/blob/main/diag/diag.proto
https://github.com/openconfig/gnoi/blob/main/mpls/mpls.proto
https://github.com/openconfig/gnoi/blob/main/os/os.proto

DescriptionFeature Name

Transfers an OS package onto the target.

Note
Only Golden ISO installation is supported; RPM installation
is not supported.

Install

Sets the requested OS version as the version that is used at the
next reboot. If booting up the requested OS version fails, the
system recovers by rolling back to the previously running OS
package.

Activate

Verifies the running OS version.

The following gNOI OS verify information returns based on the
install state:

• If success, verify returns the installed version.

• If failure, verify the version returned by install and set
the activation_fail_message to the error returned by the
install.

• If in-progress, verify returns version returned by install
and set the activation_fail_message to in-progress.

• If the install state was not retrieved, verify that the version
returned is unknown and set the activaiton_fail_message to
Failed to verify the current version.

Verify

gNOI RPCs

The following examples show the representation of few gNOI RPCs:

Get RPC

Streams the contents of a file from the target.

RPC to 10.105.57.106:57900
RPC start time: 20:58:27.513638
---------------------File Get Request---------------------
RPC start time: 20:58:27.513668
remote_file: "harddisk:/giso_image_repo/test.log"

---------------------File Get Response---------------------
RPC end time: 20:58:27.518413
contents: "GNOI \n\n"

hash {
method: MD5
hash: "D\002\375h\237\322\024\341\370\3619k\310\333\016\343"
}

Remove RPC

Use gRPC Protocol to Define Network Operations with Data Models
40

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

Remove the specified file from the target.

RPC to 10.105.57.106:57900
RPC start time: 21:07:57.089554
---------------------File Remove Request---------------------
remote_file: "harddisk:/sample.txt"

---------------------File Remove Response---------------------
RPC end time: 21:09:27.796217
File removal harddisk:/sample.txt successful

Reboot RPC

Reloads a requested target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Reboot Request---------------------
RPC start time: 21:12:49.811561
method: COLD
message: "Test Reboot"
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem {
name: "location"
}
}
---------------------Reboot Request---------------------
RPC end time: 21:12:50.023604

Set Package RPC

Places software package on the target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536
---------------------Set Package Request---------------------
RPC start time: 15:33:34.378745
Sending SetPackage RPC
package {
filename: "harddisk:/giso_image_repo/<platform-version>-giso.iso"
activate: true
}
method: MD5
hash: "C\314\207\354\217\270=\021\341y\355\240\274\003\034\334"
RPC end time: 15:47:00.928361

Reboot Status RPC

Returns the status of reboot for the target.

Use gRPC Protocol to Define Network Operations with Data Models
41

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

RPC to 10.105.57.106:57900
RPC start time: 22:27:34.209473
---------------------Reboot Status Request---------------------
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0"
}
}
elem {
name: "state"
}
elem
name: "location"
}
}

RPC end time: 22:27:34.319618

---------------------Reboot Status Response---------------------
Active : False
Wait : 0
When : 0
Reason : Test Reboot
Count : 0

CancelReboot RPC

Cancels any outstanding reboot
Request :
CancelRebootRequest
subcomponents {
origin: "openconfig-platform"
elem {
name: "components"
}
elem {
name: "component"
key {
key: "name"
value: "0/RP0/CPU0"
}
}
elem {
name: "state"
}
elem {
name: "location"
}
}

CancelRebootResponse

(rhel7-22.24.10) -bash-4.2$

KillProcess RPC

Use gRPC Protocol to Define Network Operations with Data Models
42

Use gRPC Protocol to Define Network Operations with Data Models
gNOI RPCs

Kills the executing process. Either a PID or process name must be specified, and a termination signal
must be specified.
KillProcessRequest
pid: 3451
signal: SIGNAL_TERM

KillProcessResponse
-bash-4.2$

gNOI Packet Link Qualification
Table 12: Feature History Table

Feature DescriptionRelease
Information

Feature Name

You can now check and assess the reliability of the link speed
and packet drops between the two network devices (generator
and the reflector) by performing the gNOI packet-based link
qualification service.

This can be achieved by sending the packets from the generator
to the reflector, and receiving the looped back packets from
the reflector within a certain tolerance limit.

The link transimmision rate and the link's capacity range for
that interface can be obtained from the following gNSI Packet
Link Qualification RPC messages:

• Capabilities—Minimum and maximum rate of the
transmission link

• Get—Expected rate and actual rate of link transmission

Release 24.2.11gNOI Packet Link
Qualification

The gRPC Network Operations Interface (gNOI) Packet Link Qualification service provides a way to certify
link quality between a generator and a reflector device. The generator device generates test traffic and sends
it out of the requested interface, maintaining counters of the sent, received, errored, and dropped packets. The
reflector device loops back the traffic on the requested interface. The Packet-Based Link Qualification service
verifies that the packets are sent and received on the requested interface. You can obtain the transmission rate
and the link's capacity range for that interface from the gNSI Packet Link Qualification RPC messages:
Capabilities and Get.

To view the packet link qualification specification, see the Github repository.

Use gRPC Protocol to Define Network Operations with Data Models
43

Use gRPC Protocol to Define Network Operations with Data Models
gNOI Packet Link Qualification

https://github.com/openconfig/gnoi/blob/main/packet_link_qualification/packet_link_qualification.proto

Table 13: Packet Link Qualification (PLQ) RPCs

DescriptionRPC

Fetches the capabilities of the device as a link qualification service. The
capabilities result includes:

• The roles supported on the device (Packet generator, Physical Medium
Dependent (PMD) loopback reflector)

• Information on whether the NTP synchronization is supported or not.

• Information on whether the current device time is synchronized through
NTP or not.

• The Maximum number of results stored per interface

Capabilities

Creates a set of link qualifications on the device.

Each element in a Create message specifies the following parameters:

• A unique qualification ID

• The interface on which to run the qualification

• The endpoint type (the role of the device)

• Role-specific configuration

• Timing information in the form of either NTP-based or RPC-based
timing For more information, see Link Qualifications Based on

Timing table.

Note
Packet generator and PMD loopback roles are supported

The packet injector and ASIC loopback roles are not supported.

Create

Deletes a set of qualifications by their IDs.

Stops all the running qualification tests listed and deletes their records from
the device.

The qualifications are automatically deleted from the device 24 hours either
after successful completion or in the event of any error.

Delete

Gets the status of each of the unique qualification IDs that you specify. For
generator qualifications, it returns the number of packets sent, received,
errored, dropped, and the expected and achieved rate in bytes per second.
This data isn’t present for reflector qualifications.

Get

This RPC lists all the qualifications on the device.List

Link Qualifications Based on Timing

When you run the Create RPC (see table Packet Link Qualification (PLQ) RPCs), it creates a set of link
qualifications based on either it’s NTP-based or RPC-based timing.

Use gRPC Protocol to Define Network Operations with Data Models
44

Use gRPC Protocol to Define Network Operations with Data Models
gNOI Packet Link Qualification

For both NTP-based and RPC-based timings, the qualification start time must be set no earlier than the
minimum setup duration from the current time, as specified in the CapabilitiesRPC (see table Packet Link

Qualification (PLQ) RPCs) response message.

NTP-based timing specifies:

• Specific start time

• Specific end time

• Teardown time

RPC-based timing specifies:

• Presync duration (duration from the current time to when the setup should start)

• Setup duration

• Qualification duration

• Postsync duration (duration from the end of the qualification to when the teardown should start)

• Teardown duration

Use gRPC Protocol to Define Network Operations with Data Models
45

Use gRPC Protocol to Define Network Operations with Data Models
gNOI Packet Link Qualification

gRPC Network Security Interface
Table 14: Feature History Table

Feature DescriptionRelease InformationFeature Name

This release implements
authorization mechanisms to
restrict access to gRPC applications
and services based on client
permissions. This is made possible
by introducing an authorization
protocol buffer service for gRPC
Network Security Interface (gNSI).

Prior to this release, the gRPC
services in the gNSI systems could
be accessed by unauthorized users.

This feature introduces the
following change:

CLI:

• gnsi load service
authorization policy

• show gnsi service
authorization policy

To view the specification of gNSI,
see Github repository.

Release 7.11.1gRPC Network Security Interface

gRPC Network Security Interface (gNSI) is a repository which contains security infrastructure services
necessary for safe operations of an OpenConfig platform. The services such as authorization protocol buffer
manage a network device's certificates and authorization policies.

This feature introduces a new authorization protocol buffer under gRPC gNSI. It contains gNSI.authz policies
which prevent unauthorized users to access sensitive information. It defines an API that allows the configuration
of the RPC service on a router. It also controls the user access and restricts authorization to update specific
RPCs.

By default, gRPC-level authorization policy is provisioned using Secure ZTP. If the router is in zero-policy
mode that is, in the absence of any policy, you can use gRPC authorization policy configuration to restrict
access to specific users. The default authorization policy at the gRPC level can permit access to all RPCs
except for the gNSI.authz RPCs.

If there is no policy specified or the policy is invalid, the router will fall back to zero-policy mode, in which
the default behavior allows access to all gRPC services to all the users if their profiles are configured. If an
invalid policy is configured, you can revert it by loading a valid policy using exec command gnsi load service
authorization policy. For more information on how to create user profiles and update authorization policy
for these user profiles, see How to Update gRPC-Level Authorization Policy, on page 47. Using show gnsi
service authorization policy command, you can see the active policy in a router.

Use gRPC Protocol to Define Network Operations with Data Models
46

Use gRPC Protocol to Define Network Operations with Data Models
gRPC Network Security Interface

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/programmability/command/reference/programmability-command-reference-for-cisco-asr-9000-series-routers/grpc-commands.html#wp4002833490
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/programmability/command/reference/programmability-command-reference-for-cisco-asr-9000-series-routers/grpc-commands.html#wp4002833490
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/programmability/command/reference/programmability-command-reference-for-cisco-asr-9000-series-routers/grpc-commands.html#wp1939822889
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/programmability/command/reference/programmability-command-reference-for-cisco-asr-9000-series-routers/grpc-commands.html#wp1939822889
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#3521-bundling-of-telemetry-updates
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/b-setup-and-upgrade-cisco8k/secure-ztp.html

We have introduced the following commands in this release :

• gnsi load service authorization policy: To load and update the gRPC-level authorization policy in a
router.

• show gnsi service authorization policy: To see the active policy applied in a router.

When both gNSI and gNOI are configured, gNSI takes precedence over gNOI. If niether gNSI nor gNOI is
configured, then tls trsutpoint's data is considered for certificate management.

Note

The following RPCs are used to perform key operations at the system level such as updating and displaying
the current status of the authorization policy in a router.

Table 15: Operations

DescriptionRPC

Updates the gRPC-level authorization policy.gNSI.authz.Rotate()

Verifies the authenticity of a user based on the defined policy of the gRPC-level
authorization policy engine.

gNSI.authz.Probe()

Shows the current instance of the gRPC-level authorization policy, including the version
and date of creation of the policy.

gNSI.authz.Get()

How to Update gRPC-Level Authorization Policy
gRPC-level authorization policy is configured by default at the time of router deployment using secure ZTP.
You can update the same gRPC-level authorization policy using any of two the following methods:

• Using gNSI Client.

• Using exec command.

Updating the gRPC-Level Authorization Policy in the Router Using gNSI Client

Before you start

When a router boots for the first time, it should have the following prerequisites:

• The gNSI.authz service is up and running.

• The default gRPC-level authorization policy is added for all gRPC services.

• The default gRPC-level authorization policy allows access to all RPCs.

The following steps are used to update the gRPC-level authorization policy:

1. Initiate the gNSI.authz.Rotate() streaming RPC. This step creates a streaming connection between the
router and management application (client).

Use gRPC Protocol to Define Network Operations with Data Models
47

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

Only one gNSI.authz.Rotate() must be in progress at a time. Any other RPC request is rejected by the
server.

Note

2. The client uploads new gRPC-level authorization policy using the UploadRequest message.

• There must be only one gRPC-level authorization policy in the router. All the policies must be defined
in the same gRPC-level authorization policy which is being updated. As gNSI.authz.Rotate()method
replaces all previously defined or used policies once the finalize message is sent.

• The upgrade information is passed to the version and the created_on fields. These information are not
used by the gNSI.authz service. It is designed to help you to track the active gRPC-level authorization
policy on a particular router.

Note

3. The router activates the gRPC-level authorization policy.

4. The router sends the UploadResponse message back to the client after activating the new policy.

5. The client verifies the new gRPC-level authorization policy using separate gNSI.authz.Probe() RPCs.

6. The client sends the FinalizeRequest message, indicating the previous gRPC-level authorization policy
is replaced.

It is not recommended to close the stream without sending the finalize message. It results in the abandoning
of the uploaded policy and rollback to the one that was active before the gNSI.authz.Rotate() RPC started.

Note

Below is an example of a gRPC-level authorization policy that allows admins, V1,V2,V3 and V4, access to
all RPCs that are defined by the gNSI.ssh interface. All the other users won't have access to call any of the
gNSI.ssh RPCs:
{
"version": "version-1",
"created_on": "1632779276520673693",
"policy": {
"name": "gNSI.ssh policy",
"allow_rules": [{
"name": "admin-access",
"source": {
"principals": [
"spiffe://company.com/sa/V1",
"spiffe://company.com/sa/V2"

]
},
"request": {
"paths": [
"/gnsi.ssh.Ssh/*"

]
}

}],
"deny_rules": [{
"name": "sales-access",

Use gRPC Protocol to Define Network Operations with Data Models
48

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

"source": {
"principals": [
"spiffe://company.com/sa/V3",
"spiffe://company.com/sa/V4"

]
},
"request": {
"paths": [
"/gnsi.ssh.Ssh/MutateAccountCredentials",
"/gnsi.ssh.Ssh/MutateHostCredentials"

]
}

}]
}

}

Updating the gRPC-Level Authorization Policy file Using Exec Command

Use the following steps to update the authorization policy in the router.

1. Create the users profiles for the users who need to be added in the authorization policy. You can skip this
step if you have already defined the user profiles.

The following example creates three users who are added in the authorization policy.

Router(config)#username V1
Router(config-un)#group root-lr
Router(config-un)#group cisco-support
Router(config-un)#secret x
Router(config-un)#exit
Router(config)#username V2
Router(config-un)#group root-lr
Router(config-un)#password x
Router(config-un)#exit
Router(config)#username V3
Router(config-un)#group root-lr
Router(config-un)#password x
Router(config-un)#commit

2. Enable tls-mutual to establish the secure mutual between the client and the router.

Router(config)#grpc
Router(config-grpc)#port 0
Router(config-grpc)#tls-mutual
Router(config-grpc)#certificate-authentication
Router(config-grpc)#commit

3. Define the gRPC-level authorization policy.

The following sample gRPC-level authorization policy defines authorization policy for the users V1, V2
and V3.

{
"name": "authz",
"allow_rules": [

{
"name": "allow all gNMI for all users",
"source": {

"principals": [
"*"

]

Use gRPC Protocol to Define Network Operations with Data Models
49

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

},
"request": {

"paths": [
"*"

]
}

}
],
"deny_rules": [

{
"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V1"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Get".

]
}

},

{
"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V2"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Get"

]
}

},
{

"name": "deny gNMI set for oper users",
"source": {

"principals": [
"V3"

]
},
"request": {

"paths": [
"/gnmi.gNMI/Set"

]
}

}
]

}

4. Copy the gRPC-level authorization policy to the router.

The following example copies the gNSI Authz policy to the router:
-bash-4.2$ scp test.json V1@192.0.2.255:/disk0:/
Password:
test.json

100% 993 161.4KB/s 00:00
-bash-4.2$

5. Activate the gRPC-level authorization policy to the router.

Use gRPC Protocol to Define Network Operations with Data Models
50

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

The following example loads the policy to the router.

Router(config)#gnsi load service authorization policy /disk0:/test.json
Successfully loaded policy

Verification

Use the show gnsi service authorization policy to verify if the policy is active in the router.
Router#show gnsi service authorization policy
Wed Jul 19 10:56:14.509 UTC{

"version": "1.0",
"created_on": 1700816204,
"policy": {

"name": "authz",
"allow_rules": [

{
"name": "allow all gNMI for all users",
"request": {

"paths": [
"*"

]
},
"source": {

"principals": [
"*"

]
}

}
],
"deny_rules": [

{
"name": "deny gNMI set for oper users",
"request": {

"paths": [
"/gnmi.gNMI/*"

]
},
"source": {

"principals": [
"User1"

]
}

}
]

}
}

In the following example, User1 user tries to access the get RPC request for which the permission is denied
in the above authorization policy.
bash-4.2$./gnmi_cli -address 198.51.100.255 -ca_crt
certs/certs/ca.cert -client_crt certs/certs/User1.pem -client_key
certs/certs/User1.key -server_name ems.cisco.com -get -proto get-oper.proto

Output

E0720 14:49:42.277504 26473 gnmi_cli.go:195]
target returned RPC error for Get("path:{origin:"openconfig-interfaces"
elem:{name:"interfaces"}
elem:{name:"interface" key:{key:"name" value:"HundredGigE0/0/0/0"}}}
type:OPERATIONAL encoding:JSON_IETF"):
rpc error: code = PermissionDenied desc = unauthorized RPC request rejected

Use gRPC Protocol to Define Network Operations with Data Models
51

Use gRPC Protocol to Define Network Operations with Data Models
How to Update gRPC-Level Authorization Policy

gNSI Credentialz Update
Table 16: Feature History Table

DescriptionRelease
Information

Feature Name

To improve communication confidentiality and security, you
can now update or rotate account-specific and host-specific
SSH credentials on a router. You can access the latest SSH
credentials through the gNMI credentialz RPC. The updated
SSH credentials encompass passwords, host keys, and
certificates.

To view the specification of gNSI credentialz RPCs and
messages, see the Github repository.

Release 24.2.11gNSICredentialzUpdate

Rotation is the process of changing or updating SSH credentials such as passwords, keys, or certificates in a
network. You can now update the account-related and host-related SSH credentials through the gNSI credentialz
RPC when the router is up and running.

gNSI Rotate Credentialz RPC
Starting from Release 24.2.1, Cisco IOS XR supports four RPCs to change the existing SSH credentials.

For More InformationRun This WhengNSI Rotate Credentialz RPC

See, Rotate Account CredentialsYou want to specify an SSH
authentication service policy for the
network element.

If the policy is valid, it replaces the
existing policy.

RotateAccountCredentials

See, Rotate Host ParametersYou want to change both the
Certificate Authority (CA) public
key and the key and certificate used
by the SSH server.

RotateHostParameters

See, CanGenerateKeyYou want to check whether the
target can generate a public or
private key pair.

CanGenerateKey

See, GetPublicKeyYou want to get the current public
keys from the host. It returns each
configured key in the provided list.

GetPublicKeys

Rotate Account Credentials

This RPC automates secure credential rotation on routers, updating passwords and SSH keys to enforce
security and prevent unauthorized access. It updates the user-specific authorized keys, authorized principles,
invalidates old credentials, logs activities, and notifies stakeholders, enhancing overall network security.

Use gRPC Protocol to Define Network Operations with Data Models
52

Use gRPC Protocol to Define Network Operations with Data Models
gNSI Credentialz Update

https://github.com/openconfig/gnsi/blob/main/credentialz/credentialz.proto

Prerequisites

• Configure a user account on your router.

• Configure SSH Version 2.

The following table outlines the messages that Rotate Account Credentials RPC supports, along with their
descriptions.

DescriptionMessage

This message defines the authorized key list for password-less SSH accepted
by the router's SSH service.

The gNSI client dispatches an AuthorizedKeysRequest to the router to
update or replace credentials on the SSH service. The router responds with
a AuthorizedKeysResponse message to the gNSI client.

It supports the following keys:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

AuthorizedKeysRequest

This message performs a user authorization check. User authorization can
be done using both static and dynamic methods.

Static Authorization: You can perform static authorization based on a
principal name (unique identifier for a user) using Cisco SSH. For static
authorization, use the AuthorizedUsersRequest message.

Dynamic authorization: For dynamic authorization, use the
AuthorizedPrincipalCheckRequest message. For details, see Rotate Host
Parameters, on page 53

CiscoSSH supports the user authorization using AuthorizedPrincipalsFile.
AuthorizedPrincipalsFile contains pairs of account names and their
corresponding principal names that the router recognizes for certificate-based
authentication. For more details, see AuthorizedPrincipalsFile

AuthorizedUsersRequest

Rotate Host Parameters

The RotateHostParametersRPC updates and verifies host account credentials on network devices to enhance
security and ensure stable SSH access. If updates fail, the system either adopts new credentials after successful
validation or reverts to the old ones to maintain uninterrupted access. The router automatically falls back to
prevent lockouts and preserve network integrity.

Prerequisites

• Configure a user account on your router.

• Configure SSH Version 2.

The following table outlines the messages that Rotate Host Parameters RPC supports, along with their
descriptions.

Use gRPC Protocol to Define Network Operations with Data Models
53

Use gRPC Protocol to Define Network Operations with Data Models
Rotate Host Parameters

https://man.openbsd.org/sshd_config#AuthorizedPrincipalsFile

DescriptionMessage

The SSH server uses the CA public key message to verify the gNSI client
certificates presented during connection establishment.

Without Host Identity Based Authorization (HIBA), the following keys are
supported:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

CA public key

The Server keys message includes host keys and router certificates that
serve as credentialz for the gNSI client.

If the host keys are generated externally, they must be specified in the Server
keys request.

It supports the following keys:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

It supports the following router certificates:

• Router certificates with HIBA Support

• ssh-rsa-cert-v01@openssh.com

• Router certificates without HIBA support:

• ecdsa-sha2-nistp256-cert-v01@openssh.com

• ecdsa-sha2-nistp521-cert-v01@openssh.com

• ssh-ed25519-cert-v01@openssh.com

• rsa-sha2-256-cert-v01@openssh.com

• rsa-sha2-512-cert-v01@openssh.com

Server keys

The Generate Keymessage is used for host key management in SSH.When
the host keys are generated by the router, this message triggers the creation
of new host keys for SSH host keymanagement. The Generate keymessage
supports the following keys:

It supports the following keys:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

Generate key

Use gRPC Protocol to Define Network Operations with Data Models
54

Use gRPC Protocol to Define Network Operations with Data Models
Rotate Host Parameters

ssh-rsa-cert-v01@openssh.com
mailto:ecdsa-sha2-nistp256-cert-v01@openssh.com
mailto:ecdsa-sha2-nistp521-cert-v01@openssh.com
mailto:ssh-ed25519-cert-v01@openssh.com
mailto:rsa-sha2-256-cert-v01@openssh.com
mailto:rsa-sha2-512-cert-v01@openssh.com

DescriptionMessage

The AllowedAuthenticationRequest message specifies the permissible
authentication methods for the gNSI client authentication.

The supported authentication methods are as follows:

• Keyboard interactive

• Password-based

• Pubkey-based

• OpenSSH certificate-based

• Public key-based

By default, the SSH server allows all authentication methods.

AllowedAuthenticationRequest

The AuthorizedPrincipalCheckRequest message supports the dynamic
authorization of the user against the principal name using the OpenSSH or
CiscoSSH.

Setting the TOOL_HIBA_DEFAULT flag prompts the router to use the
HIBA binary for dynamic authorization. Un setting the HIBA_DEFAULT
flag switches the router to use a static authorization.

Dynamic Authorization: You can enforce the user for authorization check
using HIBA.

Note
The support is only for ssh-rsa-cert-v01@openssh.com

CiscoSSH supports AuthorizedPrincipalCheck using
AuthorizedPrincipalsCommand and AuthorizedPrincipalsCommandUser

AuthorizedPrincipalsCommand:

This command generates the list of allowed certificate principals by executing
a HIBA binary (By setting the TOOL_HIBA_DEFAULT flag).

AuthorizedPrincipalsCommandUser:

This command specifies the user account under which the system executes
the AuthorizedPrincipalsCommand. For more details on the specification,
see AuthorizedPrincipalsCommandUser

AuthorizedPrincipalCheckRequest

CanGenerateKey

This RPC checks if the router can generate a public or private key pair.

It supports the following key pairs:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

Use gRPC Protocol to Define Network Operations with Data Models
55

Use gRPC Protocol to Define Network Operations with Data Models
CanGenerateKey

http://ssh-rsa-cert-v01@openssh.com
https://man.openbsd.org/sshd_config#AuthorizedPrincipalsCommandUser

GetPublicKey

This RPC gets the available public keys from the router and displays them. It supports the following keys:

• RSA 2048, RSA 4096 bits

• ECDSA-p-256, ECDSA-p-521

• Ed25519

Manage certificates using Certz.proto
Table 17: Feature History Table

Feature DescriptionRelease InformationFeature Name

Instead of using multiple RPCs,
Certz.proto provides a bidirectional
Rotate RPC to replace, revoke, or
load a certificate. It also provides
additional APIs to install Public
Key Infrastructure (PKI) entities
such as like identity certificates,
trust-bundles, and Certificate
Revocation Lists (CRLs) for a
gRPC Server.

This feature introduces the
following changes:

CLI:

• grpc gnsi service certz
ssl-profile-id

• show grpc certificate

Yang Data Models:

• Cisco-IOS-XR-man-ems-cfg.yang
(see Github, YANG Data
Models Navigator)

Release 24.1.1Manage certificates using
Certz.proto

Certz RPCs

The Certz RPCs are specific methods used for executing operations on the certificate that resides in the target
device. The certz.proto file is available in the Github repository.

In cert.proto, a certificate identifier differentiates between leaf certificates. However, the CA bundle lacks an
identifier, meaning a new request to load a bundle could overwrite the existing one. On the other hand, in
certz.proto, entities like Certificate, CA bundle, key, CRL, and authentication policy are tied to a unique SSL
profile.

Use gRPC Protocol to Define Network Operations with Data Models
56

Use gRPC Protocol to Define Network Operations with Data Models
GetPublicKey

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2880688975
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2880688975
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1676784286
https://github.com/openconfig/gnsi/tree/main/certz
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://github.com/openconfig/gnsi/tree/main/certz

In cert.proto, a certificate identifier differentiates between leaf certificates. However, the CA bundle lacks an
identifier, meaning a new request to load a bundle could overwrite the existing one. On the other hand, in
certz.proto, entities like Certificate, CA bundle, key, CRL, and authentication policy are tied to a unique SSL
profile.

The certz.proto differs from the cert.proto in the way that it handles the upload of all entities.While in cert.proto,
separate RPCs are used to replace, load, and revoke a certificate, in certz.proto, a single Rotate() RPC is used
to upload all entities at once. This includes the certificate, the key, the CA bundle, and the CRL.

In addition to these features, certz.proto also provides support for different cryptographic algorithms, including
Rivest-Shamir-Adleman (RSA), Elliptic Curve Digital Signature Algorithm (ECDSA), and ED25519, a
public-key signature system.

These functionalities make certz.proto a comprehensive solution for managing SSL profiles, providing a
streamlined process for handling cryptographic entities and algorithms.

If neither cert.proto nor certz.proto is configured, then tls trustpoint data is considered for certificate
management.

Note

The following table describes the RPCs supported under Certz.proto.

Table 18: Certz RPCs

DescriptionRPC

AddProfile is part of SSL profile management. It allows adding a new SSL profile. When
an SSL profile is added, all its elements, that is, certificate, CA trusted bundle and a set
of certificate revocation lists are NULL/Empty. So, before an SSL profile can be used
these entities have to be 'rotated' using the `Rotate()` RPC.

Note
An attempt to add an already existing profile is rejected with an error.

AddProfile

Rotate replaces/adds an existing device certificate and/or CA certificates (trust bundle)
or/and a certificate revocation list bundle on the target. The new device certificate can be
created from a target-generated or client-generated CSR (Certificate Signing Request). In
the latter case, the client must provide the corresponding private key with the signed
certificate.

Rotate

DeleteProfile is part of SSL profile management. It allows for removing an existing SSL
profile.

Note
An attempt to delete a not existing profile results in an error. The profile used by the gRPC
server can’t be deleted and an attempt to remove it will be rejected with an error.

DeleteProfile

GetProfileList is part of SSL profile management. It allows for retrieving a list of IDs of
SSL profiles present on the target.

GetProfileList

An RPC to ask a target if it can generate a CSR.CanGenerateCSR

SSL Profile

Use gRPC Protocol to Define Network Operations with Data Models
57

Use gRPC Protocol to Define Network Operations with Data Models
Manage certificates using Certz.proto

An SSL profile is a named set of SSL settings that determine how end-user systems connect to or from
SSL-based applications or interfaces. The settings in an SSL profile include information about the version of
SSL/TLS to be used, certificates, keys, and other parameters related to SSL/TLS communication. By using
profiles, administrators can manage and apply these settings more easily across multiple applications or
connections.

Here are some key-points regarding SSL profile:

• SSL profiles logically groups certificate, private key, Certificate Authority chain of certificates (a.k.a. a
CA trust bundle) and a list of Certificate Revocation Lists into a single set that then can be assigned to
a gRPC server.

• There’s at least one profile present on a target - the one that is used by the gRPC server. Its ID is gNxI
but when the ssl_profile_id field in the RotateCertificateRequest message isn’t set (or set to an empty
string) it also refers to this SSL profile by default.

• You can’t remove the gRPC SSL profile (gNxI).

Configure gNSI Certz

Before you begin

• Ensure you've created and stored SSL-Profile at cd/misc/config/grpc/gnsi/certz/ssl_profiles/

Procedure

Step 1 Create SSL-Profile using AddProfile RPC.
Step 2 Rotate SSL-profile using Rotate RPC. You can't rotate SSL-profile using a command line interface.
Step 3 Activate the profile using grpc gnsi service certz ssl-profile-id.

Example:

Router (config-grpc) #gnsi service certz profile ssl-profile id <ssl-profile-name>

Step 4 Verify that certz.proto is configured using the show grpc certificate.

Example:
Router#show grpc certificate
Certificate:

Data:
Version: 3 (0x2)
Serial Number: 32 (0x20)
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=localhost,O=OpenConfig,C=US
Validity

Not Before: Nov 8 08:49:38 2023 GMT
Not After : Mar 22 08:49:38 2025 GMT

Subject: CN=ems,O=OpenConfig,C=US
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public-Key: (4096 bit)
Modulus:

00:ea:6a:6c:25:be:9f:15:71:ce:74:89:03:ec:ef:
0b:3b:de:58:a8:7e:28:b8:cf:b3:82:91:b4:5c:42:

Use gRPC Protocol to Define Network Operations with Data Models
58

Use gRPC Protocol to Define Network Operations with Data Models
Configure gNSI Certz

e7:d8:28:98:35:bd:35:60:a7:4e:f8:77:02:46:5f:
27:a4:16:cf:3c:e3:24:28:69:9c:22:1e:e3:52:96:
71:87:7c:40:0c:1f:dd:30:ea:dc:40:ca:93:00:54:
5e:de:20:54:5b:f4:2f:9f:19:6f:71:61:28:69:3d:
97:26:ab:e1:5f:53:3c:f1:a2:c3:14:f4:01:90:1a:
e3:08:7b:51:c9:5d:aa:6d:eb:99:a4:08:97:d3:72:
8c:86:a3:f3:b3:77:10:72:e7:a9:3b:fc:38:65:3d:
41:1a:f5:cf:3e:a0:d8:17:d6:d5:53:86:49:a3:dc:
cc:3a:d9:6d:46:25:b0:f9:3b:98:fa:2f:98:09:08:
51:ac:2c:b1:43:c4:b7:96:3e:4e:4e:a6:a5:36:1f:
1f:0f:6a:6a:1a:ea:72:6e:74:90:21:05:fb:26:df:
81:0d:96:e7:13:94:62:2b:ce:3c:7c:de:32:f4:d9:
fa:24:ce:f5:b2:0f:d3:f7:4b:6b:ee:bd:cf:ac:a6:
ed:69:37:fc:d3:4f:3b:46:8b:1b:62:4d:3b:60:30:
74:68:50:4e:48:35:5f:15:66:9a:01:7c:37:1f:e1:
5a:8a:d9:c0:2c:3e:12:fd:71:30:13:b8:b7:16:98:
03:27:6d:45:c4:0f:34:fd:f1:aa:29:8e:c1:63:ac:
57:04:f6:a7:83:83:06:45:dc:0f:f9:de:f9:1e:b6:
d8:5a:bc:3a:98:f8:ac:b0:be:3f:87:df:8c:5e:47:
12:ca:77:70:26:14:02:14:79:fa:6f:1f:ab:ee:06:
2c:83:93:e4:22:db:37:83:90:c1:72:5b:36:78:1b:
6d:0a:06:72:76:dc:89:df:86:89:43:54:03:55:bd:
fc:a0:9a:d6:8e:5d:22:87:a2:32:19:35:c8:17:4e:
1c:1b:5e:81:9d:a5:67:9e:a7:ed:06:e8:e2:91:f1:
ae:f9:19:b1:ae:a8:e6:66:14:2c:6d:a6:c3:0f:8b:
7f:ef:c0:60:cb:c2:52:a5:46:1e:a4:20:52:f8:93:
93:2b:02:23:98:90:81:b3:e6:c4:4e:8f:85:a6:ff:
4e:8e:dd:6c:12:ea:db:58:7f:3c:66:c4:38:96:44:
d1:5b:da:c2:66:6a:4e:97:4d:99:59:9f:24:a0:4a:
57:b6:9d:69:22:f7:5a:10:cb:96:bc:58:ca:96:0e:
ab:b0:4d:14:da:03:e1:d3:24:c1:f2:bd:40:32:20:
82:66:4d:78:4b:13:c6:bd:66:a9:83:2f:15:29:7e:
11:95:37

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Key Usage: critical
Digital Signature

X509v3 Extended Key Usage:
TLS Web Client Authentication, TLS Web Server Authentication

X509v3 Authority Key Identifier:
keyid:0A:A8:9A:6A:23:34:AE:CA:96:00:2C:F3:04:38:14:E3:D4:8D:77:BD

X509v3 Subject Alternative Name:
DNS, IP Address:64.103.223.56

Signature Algorithm: sha256WithRSAEncryption
b9:89:ec:60:3d:8d:7d:9c:dc:08:56:89:99:44:92:98:45:b6:
97:ba:e3:e5:f2:48:b2:44:8d:db:23:bb:a1:c0:62:79:78:18:
d7:55:f6:4a:67:5b:75:e0:c0:0b:52:51:07:36:d5:6c:c7:67:
48:86:8d:dd:70:1c:9f:7c:a1:7b:aa:a5:4e:e1:ad:cf:4c:e5:
81:db:92:cf:88:70:5a:1c:8d:de:0d:e8:b3:05:de:b9:04:4d:
23:e1:de:66:e5:08:bd:2e:31:0a:07:a6:c0:00:3a:38:2f:00:
cd:cf:be:e2:1f:12:9f:8a:44:8d:2d:24:d5:d3:bb:9e:db:70:
bf:89:ea:0c:31:b4:b2:fc:3d:73:f5:17:09:07:54:ab:2f:23:
cb:66:0e:0e:7a:9e:21:bf:1e:bf:07:f1:fc:09:88:23:4e:2d:
5d:08:35:16:cd:07:df:25:34:7f:42:0a:dc:6f:d0:ec:9d:99:
72:d8:5f:d6:7e:6f:cc:67:4d:d7:b9:b8:c8:56:75:db:56:1e:
03:1b:6d:37:21:4d:e0:f1:e2:80:99:40:24:24:f2:e4:9b:7e:
6c:bc:f7:f9:3a:b6:fc:8e:dd:9a:cd:dd:88:15:d7:46:71:d2:
11:20:86:8f:ea:c5:a8:e8:4e:b6:ef:9b:06:5b:b1:c4:11:36:
38:7a:63:8e:1a:a6:a8:f8:bb:7d:0b:a6:f2:89:49:94:ac:0c:
8b:c4:fc:02:e8:b2:b8:27:bc:70:95:32:83:09:f5:de:68:34:
3f:a4:5a:73:dc:92:15:2c:0e:ab:46:dd:13:06:98:aa:08:2d:
b8:37:a0:52:4b:ba:f7:be:ed:68:cd:fb:67:3b:66:ea:16:85:
61:75:cf:06:85:a0:06:e8:4a:3e:63:72:c1:79:c7:fd:d4:85:

Use gRPC Protocol to Define Network Operations with Data Models
59

Use gRPC Protocol to Define Network Operations with Data Models
Configure gNSI Certz

74:d8:ea:66:d3:42:74:e2:fb:7c:9e:93:4b:24:2f:ad:c5:13:
bc:eb:83:f7:6d:3e:53:9a:ec:16:85:b7:b5:6c:77:48:53:7e:
19:2e:48:2d:83:35:7b:b9:66:5e:12:b4:f3:ee:e8:b2:3b:ba:
18:46:91:b0:f9:6f:b0:d5:17:a8:de:5c:a0:0e:35:85:7b:c0:
e3:79:06:fa:ad:8e:f2:28:ab:09:19:b7:f0:f3:9e:cb:94:93:
b7:04:63:74:82:c3:71:3b:16:8b:58:c7:fa:ff:ff:2a:97:91:
e7:1d:06:ab:0a:6c:cc:a0:41:31:54:f2:e7:db:a3:b5:22:c4:
ab:ec:e2:5d:86:e6:ac:a5:c6:e2:0e:15:44:a2:32:42:3d:07:
65:0a:0d:58:2e:22:3c:7b:e3:e8:8e:2e:60:47:f0:60:04:89:
64:65:fc:fc:74:dd:4d:7f

P4Runtime
Table 19: Feature History Table

DescriptionRelease InformationFeature Name

With this release, the router supports
Programming Protocol-Independent Packet
Processors Runtime (P4), a gRPC-based
service, to program the data plane elements
for network operations such as sending and
receiving packets between the router and the
P4Runtime controller using packet I/O
messages.

This feature introduces the following
commands:

CLI:

• grpc p4rt

• grpc p4rt interface

• grpc p4rt location

• show p4rt devices

• show p4rt interfaces

• show p4rt state

• show p4rt stats

• show p4rt trace

YANG Data Model:

openconfig-p4rt.yang OpenConfig data
model (see GitHub, YANG Data Models
Navigator)

Release 7.10.1P4Runtime to Manage Traffic
Operations

Use gRPC Protocol to Define Network Operations with Data Models
60

Use gRPC Protocol to Define Network Operations with Data Models
P4Runtime

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2834182384
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1661347182
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3885356267
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1706537545
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1661347182
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1454069690
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp2726290155
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3294843104
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

P4Runtime is a control plane specification to manage the data plane elements of a device. It defines the
navigation and management of packets through data plane blocks using P4Runtime APIs. These blocks can
be managed to perform the following set of traffic operations between the P4Runtime controller and the router:

• Send or receive packets using PacketOut and PacketIn I/O messages—StreamMessageRequest,
StreamMessageResponse and StreamError messages.

• Elect the primary controller using the MasterArbitrationUpdate message.

• Read and write forwarding table entries, protocol headers, counters, and other P4 entities.

For more information about how controllers can connect to the router and program P4-defined functionalities,
see P4RT specification.

Configure P4RT to Manage Packets
Configure P4RT to send or receive packets between one or more controllers and the router.

Procedure

Step 1 Enable P4Runtime.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#p4rt
Router(config-grpc-p4rt)#commit

Step 2 Assign a unique P4 numeric identifier to the required physical port on the router. The controller uses this port ID as an
alias to identify the interface through which the packets are sent or received with ingress or egress metadata.

Example:
Router(config-grpc-p4rt)#interface HundredGigE0/0/0/24 port-id 3
Router(config-grpc-p4rt)#interface HundredGigE0/0/0/25 port-id 6
Router(config-grpc-p4rt)#interface HundredGigE0/0/0/26 port-id 7

The port-id is a unique 32-bit identifier. The range is 1 to 4294967039.

Step 3 Assign a unique P4 device identifier to each Network Processing Unit (NPU) in the system.

Example:
Router(config-grpc-p4rt)#location 0/0/CPU0 npu-id 0 device-id 1000000
Router(config-grpc-p4rt)#location 0/0/CPU0 npu-id 1 device-id 1000001
Router(config-grpc-p4rt)#location 0/1/CPU0 npu-id 0 device-id 1000002
Router(config-grpc-p4rt)#location 0/1/CPU0 npu-id 1 device-id 1000011
Router(config-grpc-p4rt)#commit
Router(config-grpc-p4rt)#end

The device-id is a unique 64-bit identifier. The range is 1 to 18446744073709551615. The npu-id represents a NPU
identifier within a line card and the value ranges from 0 to 7.

The controller or the P4Runtime agent, which can be external or internal to the router, can use the port-id and device-id
to inject packets and request to send certain packet types. For example, P4Runtime supports the ability to configure
Access Control Lists (ACLs) in order to redirect packets with TTL value 1 to the controller. When the router receives a

Use gRPC Protocol to Define Network Operations with Data Models
61

Use gRPC Protocol to Define Network Operations with Data Models
Configure P4RT to Manage Packets

https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html

packet with that TTL value, the packet is sent to the controller with the details such as packet received from device-id

x, port-id y and the packet is being sent to port-id z.

For more information about programming the router using P4Runtime, see P4RT specification.

IANA Port Numbers For gRPC Services
Table 20: Feature History Table

DescriptionRelease InformationFeature Name

You can now efficientlymanage and customize
port assignments for gNMI, gRIBI, and P4RT
services without port conflicts. This is possible
because Cisco IOS XR now supports the
Internet Assigned Numbers Authority
(IANA)-assigned specific ports for P4RT (Port
9559), gRIBI (Port 9340), and gNMI (Port
9339). You can now use both IANA-assigned
and user-specified ports for these gRPC
services across any specified IPv4 or IPv6
addresses. As part of this support, a new
submode for gNMI in gRPC is introduced.

This feature introduces the following changes:

CLI:

• port (gRPC)

• gnmi

Release 24.1.1IANA Port Numbers For gRPC
Services

IANA (Internet Assigned Numbers Authority) manages the allocation of port numbers for various protocols.
These port numbers help in distinguishing different services on a network. Service names and port numbers
are used to distinguish between different services that run over transport protocols such as TCP, UDP, DCCP,
and SCTP. Port numbers are assigned in various ways, based on three ranges: System Ports (0-1023), User
Ports (1024-49151), and the Dynamic and/or Private Ports (49152-65535).

Earlier, the gRPC server configuration on IOS-XR allowed a usable port range of 10000-57999, with a default
listening port of 57400 and all services registered to the gRPC server utilized this port for connectivity.
Service-based filtering of requests on any of the ports was unavailable. Hence, the request for a specific service
sent on a port designated to another service (for example, gRIBI request on gNMI port) was accepted.

From Cisco IOS XR Release 24.1.1, a new submode for gNMI is introduced in the configuration model to
allow for service-level port customization. The existing gRPC configuration model includes submodes for
P4RT and gRIBI. This submode will enable you to configure specific ports for gNMI, gRIBI, and P4RT
services independently. You can configure gNMI, gRIBI, and P4RT services using the gRPC submode
command to set the default port for each service. The port command under service submode, allows you to
modify the port as needed, while adhering to the defined port range.

Disabling the port command will cause the service to use the default or IANA port.

Use gRPC Protocol to Define Network Operations with Data Models
62

Use gRPC Protocol to Define Network Operations with Data Models
IANA Port Numbers For gRPC Services

https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp3687650536
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp4022790341

You can set custom ports for gNMI, gRIBI, and P4RT services within the defined range, including default
IANA ports like 9339, 9340, and 9559 (respectively). The gRPC service will continue to maintain its default
port within the specified range (57344-57999). Any changes made to the gRPC default port will not impact
the service port configurations for gNMI, gRIBI, and P4RT. Requests which are sent on a port designated for
a specific service (example, gRIBI request on gNMI port) will be accepted. This flexibility allows for seamless
communication across different service ports and the general gRPC port.

Starting from Release 24.2.1, the allowed port range is 1024-65535.

Configure gRPC Service-Level Port
To configure a default listening port for the gRPC services such as gNMI, gRIBI, and P4RT, use the respective
service command (gnmi, gribi, or p4rt) under the gRPC configuration mode.

To specify a port number for gRPC, gNMI, gRIBI, and P4RT services within the defined range, use the port
command under respective submodes.

The IANA port ranges are:

• System ports (Reserved): 0—1023

• Registered ports: 1024—49151

• Dynamic or Private or Ephemeral ports: 49152—65535

XR Ephemeral port range: 15232–57343

If the configured port is in the range of IANA registered ports (1024-49151) or XR ephemeral ports
(15232-57343), a syslog is generated with a NOTICE to warn the user for a possible application conflict.

Resetting the port reverts to the default service port, and disabling the service stops listening on that port.

Note

Procedure

Configure the port number for a service.

The following examples display the service-level port configurations.

• For gRPCservice:

This configuration creates a gRPC listener with the default or IANA ratified port of 57400.

The allowed range is 1024-65535.
Router#config
Router(config)#grpc
Router(config-grpc)# commit

Verify the listening port created for gRPC service.
Router#show running-config grpc
grpc
!

The port command under gRPC submode allows the port to be modified in the port range or IANA ratified port.

Use gRPC Protocol to Define Network Operations with Data Models
63

Use gRPC Protocol to Define Network Operations with Data Models
Configure gRPC Service-Level Port

Router# config
Router(config)# grpc port 2000
Router(config)# commit

Verify the port number.
Router#show running-config grpc
grpc
port 2000

!

• For gNMI service:

This configuration creates a gRPC listener with the default or IANA ratified gNMI port of 9339.

The allowed range is 1024-65535.
Router(config-grpc)#gnmi
Router(config-grpc-gnmi)#commit

Verify the listening port created for gNMI service.
Router#show running-config grpc
grpc
gnmi

!

The port command under gNMI submode allows the port to be modified in the port range or IANA ratified port.
Router(config-grpc)#gnmi
Router(config-grpc-gnmi)#port 9339
Router(config-grpc-gnmi)#commit

Verify the port number.
Router#show running-config grpc
grpc
gnmi
port 9339

!

• For P4RT service:

This configuration creates a gRPC listener with the default or IANA ratified P4RT port of 9559.

The allowed range is 1024-65535.
Router(config-grpc)#p4rt
Router(config-grpc-p4rt)#commit

Verify the listening port created for P4RT service.
Router#show running-config grpc
grpc
p4rt

!

The port command under P4RT submode allows the port to be modified in the port range or IANA ratified port.
Router(config-grpc)#p4rt
Router(config-grpc-p4rt)#port 9559
Router(config-grpc-p4rt)#commit

Verify the port number.
Router#show running-config grpc
grpc
p4rt

Use gRPC Protocol to Define Network Operations with Data Models
64

Use gRPC Protocol to Define Network Operations with Data Models
Configure gRPC Service-Level Port

port 9559
!

• For gRIBI service:

This configuration creates a gRPC listener with the default or IANA ratified gRIBI port of 9340.

The allowed range is 1024-65535.
Router(config-grpc)#gribi
Router(config-grpc-gribi)#commit

Verify the listening port created for gRIBI service.
Router#show running-config grpc
grpc
gribi

!

The port command under gRIBI submode allows the port to be modified in the port range or IANA ratified port.
Router(config-grpc)#gribi
Router(config-grpc-gribi)#port 9340
Router(config-grpc-gribi)#commit

Verify the port number.
Router#show running-config grpc
grpc
gribi
port 9340

!

Unconfiguring the port command in a service

and

Unconfiguring a service under gRPC

• Unconfiguring the port command results in using the default port for the respective service.

Example:

Unconfiguring the port command will result in a gNMI service using the default gNMI port.
Router(config-grpc)#gnmi
Router(config-grpc-gnmi)#no port
Router(config-grpc-gnmi)#commit

Verify the service port configuration.
Router#show running-config grpc
grpc
gnmi

!

• Unconfiguring a service removes the listener for the respective port and no requests will be accepted on that port.

Example:

Unconfiguring gNMI disables the requests on port 9339.
Router(config-grpc)#no gnmi
Router(config-grpc-gnmi)#commit

Verify the port configuration.

Use gRPC Protocol to Define Network Operations with Data Models
65

Use gRPC Protocol to Define Network Operations with Data Models
Configure gRPC Service-Level Port

Router#show running-config grpc
grpc
!

Configure Interfaces Using Data Models in a gRPC Session
Table 21: Feature History Table

DescriptionRelease InformationFeature Name

You can prevent potential security attacks by
disallowing any single gRPC server client on
Cisco IOS XR from consuming excessive
resources and monopolizing connection
resources, both of which can be potential attack
vectors. Such prevention is possible because
you now have the option to configure the
gRPC server to limit the number of concurrent
streams per gRPC connection.

The feature introduces the grpc
max-concurrent-streams command.

YANG Data Models:

• Cisco-IOS-XR-man-ems-oper.yang

• Cisco-IOS-XR-man-ems-cfg.yang

(see GitHub, YANG Data Models Navigator)

Release 24.1.1Set Limit on Concurrent Streams
for gRPC Server

Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6
address families. The client applications use this protocol to request information from the router, and make
configuration changes to the router.

The process for using data models involves:

• Obtain the data models.

• Establish a connection between the router and the client using gRPC communication protocol.

• Manage the configuration of the router from the client using data models.

Use gRPC Protocol to Define Network Operations with Data Models
66

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1516434744
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/programmability/b-programmability-cr-cisco8000/grpc-commands.html#wp1516434744
https://github.com/YangModels/yang/tree/main/vendor/cisco/xr
https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

Note

In this section, you use native data models to configure loopback and ethernet interfaces on a router using a
gRPC session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Figure 1: Network Topology for gRPC session

You use Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang to programmatically configure router
LER1.

Before you begin

• Retrieve the list of YANGmodules on the router using NETCONFmonitoring RPC. For more information

• Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport
with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is

Use gRPC Protocol to Define Network Operations with Data Models
67

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

not configured, the authentication credentials are transferred over the network unencrypted. Enabling
TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure
internal network.

Procedure

Step 1 Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example,
you enable gRPC protocol on LER1, the server.

Note
Cisco IOS XR 64-bit platforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.

a) Enable gRPC over an HTTP/2 connection.

Example:

Router#configure
Router(config)#grpc
Router(config-grpc)#port <port-number>

The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.

Starting Release 24.1.1, you can now configure IANA port numbers for specified gRPC services. To see the port
numbers for the various gRPC services, see Support IANA Port Numbers.

b) Set the session parameters.

Example:
Router(config)#grpc {address-family | certificate-authentication | dscp | max-concurrent-streams
| max-request-per-user | max-request-total | max-streams |
max-streams-per-user | no-tls | tlsv1-disable | tls-cipher | tls-mutual | tls-trustpoint |
service-layer | vrf}

where:

• address-family: set the address family identifier type.

• certificate-authentication: enables certificate based authentication

• dscp: set QoS marking DSCP on transmitted gRPC.

• max-concurrent-streams: set the limit on the maximum concurrent streams per gRPC connection to be applied
on the server.

• max-request-per-user: set the maximum concurrent requests per user.

• max-request-total: set the maximum concurrent requests in total.

• max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128
requests. The default is 32 requests.

• max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription
limit is 128 requests. The default is 32 requests.

• no-tls: disable transport layer security (TLS). The TLS is enabled by default

Use gRPC Protocol to Define Network Operations with Data Models
68

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

• tlsv1-disable: disable TLS version 1.0

• service-layer: enable the grpc service layer configuration.

This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, , and Cisco
NCS540 Series Routers.

• tls-cipher: enable the gRPC TLS cipher suites.

• tls-mutual: set the mutual authentication.

• tls-trustpoint: configure trustpoint.

• server-vrf: enable server vrf.

After gRPC is enabled, use the YANG data models to manage network configurations.

Step 2 Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model Cisco-IOS-XR-ifmgr-cfg.yang. You gain
an understanding about the various gRPC operations while you configure the interface. For the complete list of operations,
see gRPCOperations, on page 4. In this example, youmerge configurations with merge-configRPC, retreive operational
statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of
the data model using YANG validator tools such as pyang.

LER1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not
support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

Note
The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not configure a
sub interface with tag 0.

a) Explore the XR configuration model for interfaces and its IPv4 augmentation.

Example:

controller:grpc$ pyang --format tree --tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang
Cisco-IOS-XR-ipv4-io-cfg.yang
module: Cisco-IOS-XR-ifmgr-cfg

+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations

+--rw interface-configuration* [active interface-name]
+--rw dampening
| ...
+--rw mtus
| ...
+--rw encapsulation
| ...
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string
+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ipv4-io-cfg:ipv4-network
| ...
+--rw ipv4-io-cfg:ipv4-network-forwarding ...

Use gRPC Protocol to Define Network Operations with Data Models
69

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

https://github.com/mbj4668/pyang

b) Configure a loopback0 interface on LER1.

Example:
controller:grpc$ more xr-interfaces-lo0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations":
{ "interface-configuration": [
{
"active": "act",
"interface-name": "Loopback0",
"description": "LOCAL TERMINATION ADDRESS",
"interface-virtual": [
null
],
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {
"addresses": {

"primary": {
"address": "172.16.255.1",
"netmask": "255.255.255.255"

}
}
}
}
]

}
}

c) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json
emsMergeConfig: Sending ReqId 1
emsMergeConfig: Received ReqId 1, Response '
'

d) Configure the ethernet interface on LER1.

Example:

controller:grpc$ more xr-interfaces-gi0-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"description": "CONNECTS TO LSR1 (g0/0/0/0)",
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {

"addresses": {
"primary": {

"address": "172.16.1.0",
"netmask": "255.255.255.254"

}
}
}
}
]
}
}

e) Merge the configuration.

Use gRPC Protocol to Define Network Operations with Data Models
70

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server_addr 198.18.1.11:57400 -json_in_file xr-interfaces-gi0-cfg.json
emsMergeConfig: Sending ReqId 1
emsMergeConfig: Received ReqId 1, Response '
'

f) Enable the ethernet interface GigabitEthernet 0/0/0/0 on LER1 to bring up the interface. To do this, delete shutdown
configuration for the interface.

Example:

controller:grpc$ grpcc -username admin -password admin -oper delete-config
-server_addr 198.18.1.11:57400 -yang_path "$(< xr-interfaces-gi0-shutdown-cfg.json)"
emsDeleteConfig: Sending ReqId 1, yangJson {
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [
null

]
}
]
}
}
emsDeleteConfig: Received ReqId 1, Response ''

Step 3 Verify that the loopback interface and the ethernet interface on router LER1 are operational.

Example:

controller:grpc$ grpcc -username admin -password admin -oper get-oper
-server_addr 198.18.1.11:57400 -oper_yang_path "$(< xr-interfaces-briefs-oper-filter.json)"
emsGetOper: Sending ReqId 1, yangPath {
"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": [
null
]

}
}
{ "Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": {
"interface-brief": [
{
"interface-name": "GigabitEthernet0/0/0/0",
"interface": "GigabitEthernet0/0/0/0",
"type": "IFT_GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
},
{

Use gRPC Protocol to Define Network Operations with Data Models
71

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

"interface-name": "GigabitEthernet0/0/0/1",
"interface": "GigabitEthernet0/0/0/1",
"type": "IFT_GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000
},
{
"interface-name": "Loopback0",
"interface": "Loopback0",
"type": "IFT_LOOPBACK",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "loopback",
"encapsulation-type-string": "Loopback",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

},
{

"interface-name": "MgmtEth0/RP0/CPU0/0",
"interface": "MgmtEth0/RP0/CPU0/0",
"type": "IFT_ETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000

},
{

"interface-name": "Null0",
"interface": "Null0",
"type": "IFT_NULL",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "null",
"encapsulation-type-string": "Null",
"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

}
]
}
}
}
emsGetOper: ReqId 1, byteRecv: 2325

Use gRPC Protocol to Define Network Operations with Data Models
72

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models
with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network
provisioning operations.

Use gRPC Protocol to Define Network Operations with Data Models
73

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

Use gRPC Protocol to Define Network Operations with Data Models
74

Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session

	Use gRPC Protocol to Define Network Operations with Data Models
	gRPC Operations
	gRPC Authentication Modes
	Authenticate gRPC Services
	SPIFFE ID-Based Authentication and Authorization Services for gRPC Services
	Authenticate and Authorize gRPC Service Requests Using the SPIFFE Standard

	Certificate Common-Name For Dial-in Using gRPC Protocol
	Configure Certificate Common Name For Dial-in

	gRPC over UNIX Domain Sockets
	gRPC Network Management Interface
	gNMI Operations
	gNMI Wildcard in Schema Path
	gNMI Bundling of Telemetry Updates
	Configure gNMI Bundling Size

	Replace Router Configuration at Sub-tree Level Using gNMI
	gNMI Union Replace Operation
	gNMI union-replace operation Guidelines and Limitations
	gNMI Union Replace Operation Examples
	OC and CLI Origin
	OC and NY Origin
	RPC Error Scenarios

	gNMI XPath-Based Authorization
	gNSI Pathz Authorization Policy Configuration
	Load gNSI Pathz Policies at Boot-time
	Rotate, Finalize, and Get the gNSI Pathz Policy

	Metrics of gNSI Authorization Rules
	gNSI Path Authorization Counters
	gNSI Pathz Policy and Statistics
	gNSI Pathz Trace Data
	gNSI State Details

	gRPC Network Operations Interface
	gNOI RPCs
	gNOI Packet Link Qualification

	gRPC Network Security Interface
	How to Update gRPC-Level Authorization Policy
	gNSI Credentialz Update
	gNSI Rotate Credentialz RPC
	Rotate Account Credentials
	Rotate Host Parameters
	CanGenerateKey
	GetPublicKey

	Manage certificates using Certz.proto
	Configure gNSI Certz

	P4Runtime
	Configure P4RT to Manage Packets

	IANA Port Numbers For gRPC Services
	Configure gRPC Service-Level Port

	Configure Interfaces Using Data Models in a gRPC Session

