
Application Hosting Configuration Guide for Cisco 8000 Series Routers,
Cisco IOS XR Releases
First Published: 2020-10-15

Last Modified: 2022-09-29

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHERWARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

© 2020–2024 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

Preface

The Application Hosting Configuration Guide for Cisco 8000 Series Routers preface contains these sections:

• Changes to This Document, on page iii
• Communications, Services, and Additional Information, on page iii

Changes to This Document
This table lists the changes made to this document since it was first published.

Change SummaryDate

Initial release of this documentOctober 2020

Republished for Release 7.3.15May 2021

Republished for Release 7.5.1November 2021

Republished for Release 7.5.2April 2022

Republished for Release 24.2.1June 2024

Communications, Services, and Additional Information
• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.

• To submit a service request, visit Cisco Support.

• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit
Cisco DevNet.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
iii

https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://developer.cisco.com/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system
that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides
you with detailed defect information about your products and software.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
iv

Preface
Preface

https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

C H A P T E R 1
New and Changed Application Hosting Features

• New and Changed Application Hosting Features, on page 1

New and Changed Application Hosting Features
Application Hosting Features Added or Modified

Where DocumentedIntroduced/Changed in
Release

DescriptionFeature

CPU-Based Packet
Generator

Release 24.2.1This feature was
introduced.

CPU-Based Packet
Generator

Customize Docker Run
Options using Application
Manager

Release 24.1.1This feature was
introduced.

Customize Docker Run
Options usingApplication
Manager

Prioritize Traffic for TPAs
in Sandbox Environments

Release 24.1.1This feature was
introduced.

Prioritize Traffic for TPAs
in Sandbox Environments

Cisco Secure DDoS Edge
Protection

Release 24.1.1This feature was
introduced.

Cisco Secure DDoS Edge
Protection

Docker Application
Management using IPv6
Address

Release 7.11.1This feature was
introduced.

Docker Application
Management using IPv6
Address

Automatic
Synchronization of
Secondary IPv4 addresses
from XR to Linux OS

Release 7.5.3This feature was
introduced.

Automatic
Synchronization of
Secondary IPv4 addresses
from XR to Linux OS

Verify Reachability of
IOS XR and Packet I/O
Infrastructure, on page 32

Release 7.5.2This feature was
introduced.

Virtual IP address in the
Linux networking stack

Configure an Interface to
be Linux-Managed, on
page 40

Release 7.2.12This feature was
introduced.

Support for bridge-group
virtual interfaces (BVIs)
to be mirrored into Linux

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
1

https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/m-appendix.html#cpu-based-packet-generator
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/m-appendix.html#cpu-based-packet-generator
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/m-overview-of-application-hosting.html#Cisco_Concept.dita_e8807290-6933-46ee-a7aa-350cfd08739c
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/m-overview-of-application-hosting.html#Cisco_Concept.dita_e8807290-6933-46ee-a7aa-350cfd08739c
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/m-overview-of-application-hosting.html#Cisco_Concept.dita_e8807290-6933-46ee-a7aa-350cfd08739c
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/m-overview-of-application-hosting.html#concept_ucg_dnj_41c
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/m-overview-of-application-hosting.html#concept_ucg_dnj_41c
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/install-and-configure-ddos-edge-protection.html
https://www.cisco.com/content/en/us/td/docs/iosxr/cisco8000/application-hosting/b-application-hosting-cg-cisco8000/install-and-configure-ddos-edge-protection.html

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
2

New and Changed Application Hosting Features
New and Changed Application Hosting Features

C H A P T E R 2
Application Hosting Overview

In today’s networking environment, there is a need for simplifying and automating network management
processes. Application hosting gives administrators a platform for leveraging their own tools and utilities for
network management. Cisco IOS XR supports third-party, off-the-shelf applications that are built using Linux
tool chains. With the software development kit that Cisco provides, users can cross-compile and run custom
applications.

When you manage network devices with applications, you are freed of the task of focusing only on the CLI
based configurations. Because of the abstraction provided by the applications, while the applications do their
job, you can now focus on design and implementation aspects of the network.

The purpose of this chapter is to develop an understanding of the application hosting infrastructure, and the
wide range of use cases that may be right for your need.

• Docker Container Application Hosting, on page 3
• Hosting Third Party Applications in Sandbox Container Using Sandbox Manager, on page 14
• Top Use Cases for Application Hosting, on page 17
• Automated Deployment of Third Party Python Scripts, on page 17

Docker Container Application Hosting
You can create your own container on IOS XR, and host applications within the container. The applications
can be developed using any Linux distribution. Docker container application hosting is suited for applications
that use system libraries that are different from those libraries provided by the IOS XR root file system.

In docker container application hosting, you canmanage the amount of resources (memory and CPU) consumed
by the hosted applications.

Docker Container Application Hosting Architecture
This section describes the docker container application hosting architecture.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
3

Figure 1: Docker on IOS XR

The docker client, run from the bash shell, interacts with dockers (docker 1 and docker 2) by using the docker
commands. The docker client sends the docker commands to docker daemon, which, then, executes the
commands. The docker daemon uses the docker.sock Unix socket to communicate with the dockers.

When the docker run command is executed, a docker container is created and started from the docker image.
Docker containers can be either in global-vrf namespace or any other defined namespace (for example,
VRF-blue).

The docker utilizes overlayfs under the /var/lib/docker folder for managing the directories.

To host an application in docker containers, see Hosting an Application in Docker Containers, on page 46.

App Hosting Components on IOS XR

The following are the components of App Hosting:

• Docker on IOS XR: The Docker daemon is included with the IOS XR software on the base Linux OS.
This inclusion provides native support for running applications inside Docker containers on IOS XR.
Docker is the preferred method for running TPAs on IOS XR.

• Appmgr: While the Docker daemon comes packaged with IOS XR, Docker applications can only be
managed using appmgr. Appmgr allows users to install applications packaged as RPMs and then manage
their lifecycle using the IOS XR CLI and programmable models.

• PacketIO: This is the router infrastructure that implements the packet path between TPAs and IOS XR
running on the same router. It enables TPAs to leverage XR forwarding for sending and receiving traffic.

TPA Security

IOS XR is equipped with inherent safeguards to prevent third party applications from interfering with its role
as a Network OS.

• Although IOSXR doesn't impose a limit on the number of TPAs that can run concurrently, it does impose
constraints on the resources allocated to the Docker daemon, based on the following parameters:

• CPU: ¼ of the CPU per core available in the platform.

• RAM: Maximum of 1GB.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
4

Application Hosting Overview
Docker Container Application Hosting Architecture

• Disk space is restricted by the partition size, which varies by platform and can be checked by
executing "run df -h" and examining the size of the /misc/app_host or /var/lib/docker mounts.

• All traffic to and from the application is monitored by the XR control protection, LPTS.

• Signed Applications are supported on IOS XR. Users have the option to sign their own applications by
onboarding an Owner Certificate (OC) through Ownership Voucher-based workflows as described in
RFC 8366. Once an Owner Certificate is onboarded, users can sign applications with GPG keys based
on the Owner Certificate, which can then be authenticated during the application installation process on
the router.

The table below shows the various functions performed by appmgr.

Monitoring and DebuggingLifecyle ManagerPackage Manager

• Logging, stats, application
health check.

• Forwards docker deamon logs
to XR syslog.

• Allows to execute into docker
shell of running application.

• Handles application
start/stop/kill operations.

• Handles automatic application
reload on:

• Router reboot

• Container crash

• Switchover

• Handles installation of docker
images packaged as RPMs.

• Syncs the required state to
standby to restart apps in cases
of switchover, etc

Customize Docker Run Options Using Application Manager
Table 1: Feature History Table

DescriptionRelease InformationFeature Name

You can now leverage Application
Manager to efficiently overwrite
default docker runtime
configurations, tailoring them to
specific parameters like CPU usage,
security settings, and health checks.
You can thus optimize application
performance, maintain fair resource
allocation amongmultiple dockers,
and establish non-default network
security settings to meet specific
security requirements. Additionally,
you can accurately monitor and
reflect the health of individual
applications.

This feature modifies the
docker-run-opts option command.

Release 24.1.1Customize Docker Run Options
Using Application Manager

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
5

Application Hosting Overview
Customize Docker Run Options Using Application Manager

With this feature, runtime options for docker containerized applications on IOS-XR can be configured during
launch using the appmgr activate" command. AppMgr, which oversees docker containerized applications,
ensures that these runtime options can effectively override default configurations, covering aspects like CPU,
security, and health checks during the container launch.

This feature introduces multiple runtime options that allow users to customize different parameters of docker
containers. The configuration of these runtime options is flexible, as users can use either command or Netconf
for the configuration process. Regardless of the chosen method, runtime options must be added to
docker-run-opts as needed.

The following are the docker run option commands introduced in IOS-XR software release 24.1.1.

Table 2: Docker Run Options

DescriptionDocker Run Option

Number of CPUs--cpus

CPUs in which to allow execution (0-3, 0,1)--cpuset-cpus

Drop Linux capabilities--cap-drop

Sets the username or UID--user, -u

Add additional groups to run--group-add

Run to check health--health-cmd

Time between running the check--health-interval

Consecutive failures needed to report unhealthy--health-retries

Start period for the container to initialize before
starting health-retries countdown

--health-start-period

Maximum time to allow one check to run--health-timeout

Disable any container-specified HEALTHCHECK--no-healthcheck

Add a custom host-to-IP mapping (host:ip)--add-host

Set custom DNS servers--dns

Set DNS options--dns-opt

Set custom DNS search domains--dns-search

Container NIS domain name--domainname

Tune host's OOM preferences (-1000 to 1000)--oom-score-adj

Option to set the size of /dev/shm--shm-size

Run an init inside the container that forwards signals
and reaps processes

--init

Set meta data on a container--label, -l

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
6

Application Hosting Overview
Customize Docker Run Options Using Application Manager

DescriptionDocker Run Option

Read in a line delimited file of labels--label-file

Tune container pids limit (set -1 for unlimited)--pids-limit

Working directory inside the container--work-dir

Ulimit options--ulimit

Mount the container's root filesystem as read only--read-only

Mount volumes from the specified container(s)--volumes-from

Signal to stop the container--stop-signal

Timeout (in seconds) to stop a container--stop-timeout

Prior to IOS-XR software release 24.1.1, only the below mentioned docker run option commands were
supported.

Table 3: Docker Run Options

DescriptionDocker Run Option

Publish a container's port(s) to the host--publish

Overwrite the default ENTRYPOINT of the image--entrypoint

Expose a port or a range of ports--expose

Add link to another container--link

Set environment variables--env

Read in a file of environment variables--env-file

Connect a container to a network--network

Container host name--hostname

Keep STDIN open even if not attached--interactive

Allocate a pseudo-TTY--tty

Publish all exposed ports to random ports--publish-all

Bind mount a volume--volume

Attach a filesystem mount to the container--mount

Restart policy to apply when a container exits--restart

Add Linux capabilities--cap-add

Logging driver for the container--log-driver

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
7

Application Hosting Overview
Customize Docker Run Options Using Application Manager

DescriptionDocker Run Option

Log driver options--log-opt

Run container in background and print container ID--detach

Memory limit--memory

Memory soft limit--memory-reservation

CPU shares (relative weight)--cpu-shares

Sysctl options--sysctl

Restrictions and Limitations

• For the options --mount and --volume, only the following values can be configured:

• "/var/run/netns"

• "/var/lib/docker"

• "/misc/disk1"

• "/disk0"

• The maximum allowed size for shm-size option is 64 Mb.

Configuration

This section provides the information on how to configure the docker run time options.

In this example we configure the docker run time option --pids-limit to limit the number of process IDs using
appmgr.
Router#appmgr application alpine_app activate type docker source alpine docker-run-opts
"-it –pids-limit 90" docker-run-cmd "sh"
Router#

In this example we configure the docker run time option --pids-limit to limit the number of process IDs using
Netconf.
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<candidate/>

</target>
<config>
<appmgr xmlns=http://cisco.com/ns/yang/Cisco-IOS-XR-um-appmgr-cfg>

<applications>
<application>
<application-name>alpine_app</application-name>
<activate>
<type>docker</type>

<source-name>alpine</source-name>
<docker-run-cmd>/bin/sh</docker-run-cmd>
<docker-run-opts>-it

--pids-limit=90</docker-run-opts>

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
8

Application Hosting Overview
Customize Docker Run Options Using Application Manager

</activate>
</application>

</applications>
</appmgr>

</config>
</edit-config>

Verification

This example shows how to verify the docker run time option configuration.
Router# show running-config appmgr
Thu Mar 23 08:22:47.014 UTC
appmgr
application alpine_app
activate type docker source alpine docker-run-opts "-it –pids-limit 90" docker-run-cmd

"sh"
!
!

You can also use docker inspect container id to verify the docker run time option configuration.
Router# docker inspect 25f3c30eb424
[

{
"PidsLimit": 90,

}
]

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
9

Application Hosting Overview
Customize Docker Run Options Using Application Manager

Prioritize Traffic for TPAs in Sandbox Environments
Table 4: Feature History Table

DescriptionRelease InformationFeature Name

You can now optimize network
performance, implement traffic
segregation, and prevent packet
drops due to congestion for Third
Party Application (TPA) within the
Sandbox environment, improving
reliability and efficiency. This is
achieved through enhanced
LPTS-based traffic prioritization
for TPAs hosted within a sandbox
container.

This feature introduces these
changes:

CLI:

• sandbox flow
TPA-APPMGR-HIGH ports

• sandbox flow
TPA-APPMGR-MEDIUM
ports

• sandbox flow
TPA-APPMGR-LOW ports

Release 24.1.1Prioritize Traffic for TPAs in
Sandbox Environments

With this enhancement, you have the flexibility to categorize traffic flows from TPAs hosted in a sandbox
based on priority levels, offering better granular control over traffic handling. Prior to this release, traffic from
TPAs hosted in a sandbox flowed through a single queue, leading to policer overload and subsequent packet
drop.

Configuring Traffic Prioritization for TPA in a Sandbox

During the configuration of a TPA port, you can now set the priority for the port as High, Medium, or Low.

Configuring high priority traffic port

This example shows how to configure TPA traffic in port 2018 to high LPTS flow priority.
Router(config)# sandbox flow TPA-APPMGR-HIGH ports 2018

Configuring medium priority traffic port

This example shows how to configure TPA traffic in port 6666 to medium LPTS flow priority.
Router(config)# sandbox flow TPA-APPMGR-MEDIUM ports 6666

Configuring low priority traffic port

This example shows how to configure TPA traffic in port 60100 to low LPTS flow priority.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
10

Application Hosting Overview
Prioritize Traffic for TPAs in Sandbox Environments

Router(config)# sandbox flow TPA-APPMGR-LOW ports 60100

Verification

This example shows how to verify TPA traffic prioritization.
Router(config)# show lpts pifib hardware police location

TPA-APPMGR-HIGH 103 np NPU 1940 1000 0 0
0

TPA-APPMGR-HIGH 103 np NPU 1940 1000 1456 0
1

TPA-APPMGR-MED 104 np NPU 1940 1000 0 0
0

TPA-APPMGR-MED 104 np NPU 1940 1000 1455 0
1

TPA-APPMGR-LOW 105 np NPU 1940 1000 0 0
0

TPA-APPMGR-LOW 105 np NPU 1940 1000 1456 0
1

Docker Application Management using IPv6 Address
Table 5: Feature History Table

DescriptionRelease InformationFeature Name

In this release, you gain the ability
to manage Docker applications
within containers using IPv6
addresses via the router's
management interface. Leveraging
IPv6 addresses provides expanded
addressing options, enhances
network scalability, and enables
better segmentation and isolation
of applications within the network.

Prior to this update, only IPv4
addresses could be used to manage
docker applications.

Release 7.11.1Docker Application Management
using IPv6 Address

The ApplicationManager in IOS-XR software release 7.3.15 introduces support for an application networking
feature that facilitates traffic forwarding across Virtual Routing and Forwarding (VRF) instances. This feature
is implemented through the deployment of a relay agent contained within an independent docker container.

The relay agent acts as a bridge, connecting two network namespaces within the host system and actively
transferring traffic between them. Configurations can be made to establish forwarding between either a single
pair of ports or multiple pairs, based on your network requirements.

One of the main uses of this feature is to allow the management of Linux-based Docker applications that are
running in the default VRF through a management interface. This management interface can be located in a
separate VRF. This feature ensures that Docker applications can be managed seamlessly across different
VRFs.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
11

Application Hosting Overview
Docker Application Management using IPv6 Address

In the IOS-XR software release 7.11.1, enhancedmanagement capabilities are offered for docker applications.
Now, you can leverage IPv6 addresses to manage applications within docker containers via the management
interface of the Cisco 8000 router. This update provides improved accessibility and control over your Docker
applications using IPv6 addressing. Prior to the IOS-XR software release 7.11.1, application management for
docker containers could only be conducted using IPv4 addresses.

Restrictions and Limitations

In configuring your setup, please consider the following restrictions and limitations:

• VRF Forwarding Limitation: The Virtual Routing and Forwarding (VRF) is only supported for Docker
apps with host networking.

• Relay Agent Availability and Management: The relay agent container is designed to be highly available.
It will be managed by the Application Manager (App Mgr).

• Relay Agent Creation: For each pair of forwarded ports, one relay agent container will be created.

• Port Limitation per Application: The total effective number of ports for each application is limited to
a maximum of 10.

Configure VRF Forwarding
To manage a Docker application using the Application Manager through the Management Interface, follow
these steps:

Step 1 Configure the app manager: The application manager is configured to access the docker application. Use the appmgr
applicationapplication-name keyword to enable and specify configuration parameters for the VRF forwarding. A typical
example would look like this:

Example:
Router#appmgr
Router#application Testapp

The VRF forwarding related run options like --vrf-forward and --vrf-forward-ip-range will not be passed to
the Docker engine when the app container is run.

Note

Step 2 Enable Basic Forwarding Between Two Ports: To enable traffic forwarding between two ports in different VRFs, use
the following configuration:

Example:

Router#activate type docker source swanagent docker-run-opts "--vrf-forward vrf-mgmt:5001
vrf-default:8001 --net=host -it"

This command enables traffic on port 5000 at all addresses in vrf-mgmt to be forwarded to the destination veth device
in vrf-default on port 8000.

To enable VRF forwarding between multiple ports, follow the steps below:

• Enable Forwarding Between a Range of Ports: To enable traffic forwarding between port ranges in different
VRFs, use the following configuration:
Router#--vrf-forward vrf-mgmt:5000-5002 vrf-default:8000-8002

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
12

Application Hosting Overview
Configure VRF Forwarding

This command enables traffic on ports 5000, 5001, and 5002 at all addresses in vrf-mgmt to be forwarded to the
destination veth device in vrf-default on ports 8000, 8001, and 8002 respectively.

• Enable Forwarding Between Multiple VRF Pairs or Port Ranges: To enable traffic forwarding between multiple
VRF pairs, use multiple --vrf-forward command.
Router#--vrf-forward vrf-mgmt:5000 vrf-default:8000 --vrf-forward vrf-mgmt:5003-5004
vrf-default:8003-8004
Router#--vrf-forward vrf-mgmt1:5000 vrf-default:8000 --vrf-forward vrf-mgmt2:5000 vrf-default:8001

You can provide any number of --vrf-forward options, but the total number of port pairs involved should not exceed
10.

Verifying VRF Forwarding for Application Manager
Use the show appmgr application name keyword to verify the VRF forwarding. A typical example would
look like this:
RP/0/RP0/CPU0:ios#show appmgr application name swan info detail
Thu Oct 26 11:59:32.798 UTC
Application: swan
Type: Docker
Source: swanagent
Config State: Activated
Docker Information:
Container ID: f230a2396b85f6b3eeb01a8a4450a47e5bd8499fe5cfdb141c2d0fba905b63ec
Container name: swan
Labels:

com.azure.dev.image.build.buildnumber=2.3.2-dev-ricabrah-partho-xr-dev.1+28,com.azure.dev.image.build.definitionname=swanagentXR,com.azure.dev.image.build.repository.uri=https://1Wan@dev.azure.com/1Wan/SWAN/_git/swanagentXR,com.azure.dev.image.system.teamfoundationcollectionuri=https://dev.azure.com/1Wan/,com.azure.dev.image.build.builduri=vstfs:///Build/Build/8518,com.azure.dev.image.build.repository.name=swanagentXR,com.azure.dev.image.build.sourcebranchname=partho-xr-dev,com.azure.dev.image.build.sourceversion=0ebd43521870844688660c131b0921ea7e2dcb27,com.azure.dev.image.system.teamproject=SWAN,image.base.ref.name=mcr.microsoft.com/mirror/docker/library/alpine:3.15

Image: swancr.azurecr.io/swanagentxr-iosxr:2.4.0-0ebd435
Command: "./agentxr"
Created at: 2023-10-26 11:58:45 +0000 UTC
Running for: 48 seconds ago
Status: Up 47 seconds
Size: 0B (virtual 29.3MB)
Ports:
Mounts:

/var/lib/docker/appmgr/config/swanagent/hostname,/var/lib/docker/appmgr/config/swanagent,/var/lib/docker/ems/grpc.sock,/var/run/netns

Networks: host
LocalVolumes: 0
Vrf Relays:
Vrf Relay: vrf_relay.swan.6a98f0ed060bffa
Source VRF: vrf-management
Source Port: 11111
Destination VRF: vrf-default
Destination Port: 10000
IP Address Range: 172.16.0.0/12
Status: Up 45 seconds

Use the show running-config appmgr keyword to check the running configuration.
Router#show running-config appmgr
Thu Oct 26 12:04:06.063 UTC
appmgr
application swan
activate type docker source swanagent docker-run-opts "--vrf-forward vrf-management:11111
vrf-default:10000 -it --restart always --cap-add=SYS_ADMIN --net=host --log-opt max-size=20m

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
13

Application Hosting Overview
Verifying VRF Forwarding for Application Manager

--log-opt max-file=3 -e HOSTNAME=$HOSTNAME -v /var/run/netns:/var/run/netns -v
{app_install_root}/config/swanagent:/root/config -v
{app_install_root}/config/swanagent/hostname:/etc/hostname -v
/var/lib/docker/ems/grpc.sock:/root/grpc.sock"
!
!

Hosting Third Party Applications in Sandbox Container Using
Sandbox Manager

Table 6: Feature History Table

Feature DescriptionRelease InformationFeature Name

This release introduces Sandbox Manager for
hosting and functioning third-party client
application in the CentOS 8 based Sandbox
Container. The Sandbox container supports
configuration, deployment, and management of
third-party client applications from the third-party
server. The Sandbox manger uses IOS XR
commands for managing the Sandbox container.

7.5.3Hosting Third Party
Applications in Sandbox
Container Using Sandbox
Manager

The Sandbox container enables you to configure, deploy, and manage third-party client applications through
the respective third-party server over a network. The Sandbox manager activates the Sandbox container using
the APPMGR client library APIs. During the router bootup, the third-party client applications are placed in
the Sandbox container using ZTP and get activated when the sandbox manger is enabled. The third-party
client applications can then connect to the respective server for installing or upgrading applications in the
Sandbox container. Sandbox container operates on CentOS 8, this enables you to control the applications in
the container using the docker commands. All the activated third-party client applications can restart
automatically after a router reload or an RP switchover.

Supported Commands on Sandbox Manager

This section describes the operations and the IOS XR commands that are supported on the sandbox manager:

• Enable and disable sandbox manager: This command is used to enable or disable sandbox manager:

• Enable—

The following command enables the Sandbox Manager:
RP/0/RP0/CPU0:ios#conf
RP/0/RP0/CPU0:ios(config)#sandbox enable
RP/0/RP0/CPU0:ios(config)#commit

• Disable—

The following command disables the Sandbox Manager:
RP/0/RP0/CPU0:ios#conf
RP/0/RP0/CPU0:ios(config)# no sandbox enable
RP/0/RP0/CPU0:ios(config)#commit

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
14

Application Hosting Overview
Hosting Third Party Applications in Sandbox Container Using Sandbox Manager

• TPA traffic flow prioritization: These commands are used to configure traffic priority for third party
applications within a Sandbox container:

• High priority traffic—

The following command configures TPA traffic in port 2018 to high LPTS flow priority
Router(config)# sandbox flow TPA-APPMGR-HIGH ports 2018

• Medium priority traffic—

The following command configures TPA traffic in port 6666 to medium LPTS flow priority
Router(config)# sandbox flow TPA-APPMGR-MEDIUM ports 6666

• Low priority traffic—

The following command configures TPA traffic in port 60100 to low LPTS flow priority
Router(config)# sandbox flow TPA-APPMGR-LOW ports 60100

• Show commands

• Info—

The following command shows the Sandbox Manager and application info:
RP/0/RP0/CPU0:ios#show sandbox info
Thu Jun 30 06:56:45.593 UTC

Sandbox Config State: Enabled

APP INFO:
Image: /pkg/opt/cisco/XR/appmgr/images/sandbox-centos.tar.gz
Config state: Activated
Container state: Running

• Detail—

The following command shows the Sandbox Manager and application details:
RP/0/RP0/CPU0:ios#show sandbox detail
Thu Jun 30 06:57:46.724 UTC

Sandbox Config State: Enabled

APP INFO:
Image: /pkg/opt/cisco/XR/appmgr/images/sandbox-centos.tar.gz
Run Options:
--restart always
--cap-add SYS_ADMIN --cap-add NET_ADMIN
--log-opt max-size=10m --log-opt max-file=3
--net host
--mount type=bind,source=/sys/fs/cgroup,target=/sys/fs/cgroup,readonly
--mount type=bind,source=/var/run/netns,target=/netns,bind-propagation=shared
--mount type=bind,source=/opt/sandbox,target=/opt/sandbox,bind-propagation=shared

--mount type=bind,source=/misc/disk1/sandbox,target=/host,bind-propagation=shared

Config state: Activated
Container state: Running

STATS INFO:
Cpu Percentage: 0.01%
Memory Usage: 13.57MiB / 19.42GiB

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
15

Application Hosting Overview
Hosting Third Party Applications in Sandbox Container Using Sandbox Manager

Net IO: 0B / 0B
Block IO: 0B / 1.2MB
Memory Percentage: 0.07%
pids: 2

• Services—

The following command shows the Sandbox Manager and application services:
RP/0/RP0/CPU0:ios#show sandbox services
Wed Jul 6 05:59:16.446 UTC
UNIT LOAD ACTIVE SUB DESCRIPTION
-.mount loaded active mounted /
dev-mqueue.mount loaded active mounted POSIX Message Queue File Sys
etc-hostname.mount loaded active mounted /etc/hostname
etc-hosts.mount loaded active mounted /etc/hosts
etc-resolv.conf.mount loaded active mounted /etc/resolv.conf
host.mount loaded active mounted /host
netns-default.mount loaded active mounted /netns/default
netns-global\x2dvrf.mount loaded active mounted /netns/global-vrf
netns-vrf\x2dblue.mount loaded active mounted /netns/vrf-blue
netns-vrf\x2ddefault.mount loaded active mounted /netns/vrf-default
netns-vrf\x2dmanagement.mount loaded active mounted /netns/vrf-management
netns-vrf\x2dred.mount loaded active mounted /netns/vrf-red
netns-xrnns.mount loaded active mounted /netns/xrnns
netns.mount loaded active mounted /netns
proc-acpi.mount loaded active mounted /proc/acpi
proc-bus.mount loaded active mounted /proc/bus
proc-fs.mount loaded active mounted /proc/fs
proc-irq.mount loaded active mounted /proc/irq
proc-kcore.mount loaded active mounted /proc/kcore
proc-keys.mount loaded active mounted /proc/keys
proc-latency_stats.mount loaded active mounted /proc/latency_stats
proc-sched_debug.mount loaded active mounted /proc/sched_debug
proc-scsi.mount loaded active mounted /proc/scsi
proc-sysrq\x2dtrigger.mount loaded active mounted /proc/sysrq-trigger
proc-timer_list.mount loaded active mounted /proc/timer_list
sys-firmware.mount loaded active mounted /sys/firmware
systemd-journald.service loaded active running Journal Service
systemd-tmpfiles-setup.service loaded active exited Create Volatile Files and
Di
-.slice loaded active active Root Slice
system.slice loaded active active System Slice
dbus.socket loaded active listening D-Bus System Message Bus Soc
systemd-journald.socket loaded active running Journal Socket
systemd-shutdownd.socket loaded active listening Delayed Shutdown Socket
basic.target loaded active active Basic System
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
paths.target loaded active active Paths
slices.target loaded active active Slices
sockets.target loaded active active Sockets
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
timers.target loaded active active Timers
systemd-tmpfiles-clean.timer loaded active waiting Daily Cleanup of Temporary
D

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.

43 loaded units listed. Pass --all to see loaded but inactive units, to
o.
To show all installed unit files use 'systemctl list-unit-files'.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
16

Application Hosting Overview
Hosting Third Party Applications in Sandbox Container Using Sandbox Manager

• Access Sandbox—

The following command is used to access sandbox container:
RP/0/RP0/CPU0:ios#bash sandbox
root@ios:/data# exit
exit
RP/0/RP0/CPU0:ios#

• Linux commands—

The following command is used to run linux commands inside sandbox container:
RP/0/RP0/CPU0:ios#bash sandbox -c linux-command
RP/0/RP0/CPU0:ios#

Top Use Cases for Application Hosting
Some of the top use cases for application hosting are:

• Measure Network Performance: An application can be hosted to measure the bandwidth, throughput
and latency of the network and monitor the performance. An example of such an application is the iPerf
tool.

• Automate Server Management: An application can be hosted to automate the server functions like
upgrading software, allocation of resources, creating user accounts, and so on. Examples of such an
application are the Chef and Puppet configuration management tools.

Automated Deployment of Third Party Python Scripts
DescriptionRelease InformationFeature Name

When you deploy custom or
third-party Python scripts on routers
running IOS XR software using
third-party RPMs, these scripts are
automatically executed. This
streamlines the deployment process
and enhances the speed of script
execution. Traditionally, script
deployment required an external
controller, which used interfaces
like NETCONF, SNMP, and SSH
to communicate with the router.
This feature eliminates the need for
such external controllers,
simplifying the workflow and
improving efficiency.

Release 24.2.1Automated Deployment of Third
Party Python Scripts

Efficient network automation is pivotal in handling extensive cloud-computing networks. The Cisco IOS XR
infrastructure plays a crucial role by enabling automation through the initiation of API calls and execution of

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
17

Application Hosting Overview
Top Use Cases for Application Hosting

scripts. Traditionally, an external controller is used for this purpose, utilizing interfaces like NETCONF,
SNMP, and SSH to communicate with the router.

This feature streamlines the operational structure by executing automation scripts directly on the router, thus
eliminating the need for an external controller. It allows scripts to leverage Python libraries and access
underlying router information. This approach not only accelerates the execution of various types of scripts
but also enhances reliability by removing dependencies on the speed and network reachability of an external
controller.

The third party script is automatically executed by the xr_script_scheduler.py script upon the installation of
third-party RPMs. No specific configuration is required to run these scripts after installation.

The below steps provide the information on how to deploy and activate third party script:

Step 1 Adding and Activating Scheduler Script - Add and activate scheduler script in in-built script repository - Copy the
"xr_script_scheduler.py" scheduler script to the In-Built Script Repository, and simultaneously activate it using the
following commands:

Example:
cp /path/to/xr_script_scheduler.py /opt/cisco/install-iosxr/base/opt/cisco/ops-script-repo/process/
appmgr activate script name xr_script_scheduler.py
Router#

Replace "/path/to/xr_script_scheduler.py" with the actual path of the script. This command copies the script to the specified
directory and activates it in the XR configuration mode.

This step ensures the script is added to the repository and activated for continuous execution.

Step 2 Verify the Status of Scheduler Script - To confirm the availability of the scheduler script, run the following command
on the router.

Example:
Router# show script status
Tue Oct 24 18:03:09.220 UTC
==

Name | Type | Status | Last Action | Action Time

--

show_interfaces_counters_ecn.py | exec | Ready | NEW | Tue Oct 24 07:10:36 2023

xr_data_collector.py | exec | Ready | NEW | Tue Oct 24 07:10:36 2023

xr_script_scheduler.py | process| Ready | NEW | Tue Oct 24 07:10:36 2023

==
Router#

Ensure that the output displays "Ready" for the "xr_script_scheduler.py" script, indicating that the script checksum is
verified and it is ready to run. This single step provides a quick verification of the scheduler script's status.

Step 3 Configure appmgr to Automatically Run the Scheduler Script - Activate the scheduler script automatically using the
"autorun" option with the following configuration:

Example:

Router(config)#appmgr
Router(config-appmgr)#process-script xr_script_scheduler

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
18

Application Hosting Overview
Automated Deployment of Third Party Python Scripts

Router(config-process-script)#executable xr_script_scheduler.py
Router(config-process-script)#autorun
Router(config-process-script)#commit

The 'autorun' configuration has been added to enable automatic activation of the process script. If you prefer manual
activation/deactivation using cli, the 'autorun' configuration line can be skipped.

Step 4 Verify scheduler script is running - To verify if the scheduler script is running, execute the show script execution
command. This command will display a list of OPS scripts currently running. If the scheduler script has been correctly
configured and activated, the scheduler script execution detail will appear in the output.

Example:
Router# show script execution
Tue Oct 24 18:01:56.590 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1698170509| xr_script_scheduler.py (process) | Tue Oct 24 18:01:49 2023 | 7.68s | None
| Started

--

Execution Details:

Script Name : xr_script_scheduler.py
Version : 7.3.6.14Iv1.0.0
Log location : /harddisk:/mirror/script-mgmt/logs/xr_script_scheduler.py_process_xr_script_scheduler

Arguments :
Run Options : Logging level - INFO, Max. Runtime - 0s, Mode - Background
Events:

1. Event : New

Time : Tue Oct 24 18:01:49 2023
Time Elapsed : 0.00s Seconds
Description : Started by Appmgr

2. Event : Started
Time : Tue Oct 24 18:01:49 2023
Time Elapsed : 0.11s Seconds
Description : Script execution started. PID (15985)

==
Router#

Step 5 Transfer of Third-Party RPMwith Debug/Monitoring Scripts - Transfer the third-party RPM containing debug/monitoring
scripts onto the router. This RPM includes Python scripts for debugging/monitoring and a run parameters JSON file.

Example:
Router# scp user@171.68.251.248:/users/savinaya/rpm-factory/RPMS/x86_64/nms-1.1-24.1.1.x86_64.rpm
/harddisk:

Tue Oct 24 18:02:42.400 UTC
<snip>
Password:
nms-1.1-24.1.1.x86_64.rpm 100% 9664 881.5KB/s 00:00

Router#
Router# dir harddisk:/nms-1.1-24.1.1.x86_64.rpm

Step 6 Install the third-party RPM - Use the appmgr package install CLI command for the installation of the RPM.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
19

Application Hosting Overview
Automated Deployment of Third Party Python Scripts

Example:
Router# appmgr package install rpm /harddisk:/nms-1.1-24.1.1.x86_64.rpm
Tue Oct 24 18:03:26.685 UTC
Router# show appmgr packages installed
Tue Oct 24 19:42:07.967 UTC
Sno Package
--- --
1 nms-1.1-24.1.1.x86_64
Router#

Step 7 Verify the operation of the debug/monitoring scripts - You can verify that these scripts are functioning by executing the
show script execution command.

Example:
Router# show script execution
Tue Oct 24 19:41:15.882 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1698176223| xr_script_scheduler.py (process) | Tue Oct 24 19:37:02 2023 | 253.32s | None
| Started

1698176224| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:43 2023 | 152.46s | None
| Started

1698176225| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:44 2023 | 152.03s | None
| Started

1698176226| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 19:38:44 2023 | 151.63s | None
| Started

==
Router#

Step 8 Stopping the scheduler script - Stop the scheduler using the appmgr process-script stop command.

Example:
Router# show script execution
Tue Oct 24 20:04:22.021 UTC
==

Req. ID | Name (type) | Start | Duration |
Return | Status
--

1698176224| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:43 2023 | 234.21s | -9
| Stopped

1698176225| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:38:44 2023 | 234.43s | -9
| Stopped

1698176226| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 19:38:44 2023 | 234.67s | -9
| Stopped

1698176227| ops/monitor_int_rx_cntr3.py (exec) | Tue Oct 24 19:41:35 2023 | 97.56s | -9
| Stopped

1698176228| ops/monitor_int_rx_cntr4.py (exec) | Tue Oct 24 19:41:36 2023 | 97.19s | -9
| Stopped

1698176229| ops/monitor_int_rx_cntr5.py (exec) | Tue Oct 24 19:41:36 2023 | 96.48s | -9
| Stopped

1698176231| ops/monitor_int_rx_cntr3.py (exec) | Tue Oct 24 19:43:44 2023 | 760.88s | -9
| Stopped

1698176232| ops/monitor_int_rx_cntr4.py (exec) | Tue Oct 24 19:43:44 2023 | 760.53s | -9
| Stopped

1698176233| ops/monitor_int_rx_cntr5.py (exec) | Tue Oct 24 19:43:44 2023 | 760.20s | -9
| Stopped

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
20

Application Hosting Overview
Automated Deployment of Third Party Python Scripts

1698176234| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:44:15 2023 | 202.88s | -9
| Stopped

1698176235| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:44:15 2023 | 203.01s | -9
| Stopped

1698176236| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 19:44:16 2023 | 203.17s | -9
| Stopped

1698176237| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:53:41 2023 | 163.99s | -9
| Stopped

1698176238| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 19:53:41 2023 | 163.52s | -9
| Stopped

1698176239| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 19:53:42 2023 | 163.11s | -9
| Stopped

1698176252| xr_script_scheduler.py (process) | Tue Oct 24 20:00:20 2023 | 220.61s | -15
| Stopped

1698176253| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 20:00:21 2023 | 222.11s | -9
| Stopped

1698176254| nms/monitor_int_rx_cntr.py (exec) | Tue Oct 24 20:00:21 2023 | 221.76s | -9
| Stopped

1698176255| nms/monitor_int_rx_cntr2.py (exec) | Tue Oct 24 20:00:22 2023 | 221.39s | -9
| Stopped

1698176256| ops/monitor_int_rx_cntr3.py (exec) | Tue Oct 24 20:00:22 2023 | 221.08s | -9
| Stopped

1698176257| ops/monitor_int_rx_cntr4.py (exec) | Tue Oct 24 20:00:23 2023 | 131.46s | -9
| Stopped

1698176258| ops/monitor_int_rx_cntr5.py (exec) | Tue Oct 24 20:00:23 2023 | 220.30s | -9
| Stopped

==
Router#

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
21

Application Hosting Overview
Automated Deployment of Third Party Python Scripts

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
22

Application Hosting Overview
Automated Deployment of Third Party Python Scripts

C H A P T E R 3
Cisco Secure DDoS Edge Protection

Table 7: Feature History Table

DescriptionRelease InformationFeature Name

You can now efficiently block malicious
traffic, safeguarding your network's
performance and availability. This is
achieved as we have implemented
protection against distributed
denial-of-service (DDoS) attacks at the
network edge, strategically deployed at
the ingress point where external network
traffic enters.

A centralized controller manages DDoS
mitigation capabilities using information
from a collection of detectors deployed
on the routers. These detectors analyze
IPv4 and IPv6 traffic in real-time to
identify DDoS attacks. Upon detection,
the controller enforces deny ACLs to
block malicious traffic while allowing
legitimate traffic.

This local inspection enhances visibility,
speeds up response times, and optimizes
the network without the need for
additional hardware or attack traffic
redirection.

Release 24.1.1Cisco Secure DDoS Edge
Protection

The Cisco Secure DDoS Edge Protection software actively halts DDoS attacks at the network entry point,
enabling immediate response to threats. Positioned at the network edge, it identifies and counteracts DDoS
threats directly on the router. This strategy minimizes network and application impact without affecting core
bandwidth by avoiding backhaul of malicious traffic.

Components of Cisco Secure DDoS Edge Protection

The Cisco Secure DDoS Edge Protection consists of these components:

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
23

• A highly available centralized controller that manages a collection of detectors deployed on routers. The
controller can be cloud-based or on-premises. Key functions of the controller include

• managing the container lifecycle for detectors

• configuring and editing detector profiles and security settings

• checking detector health, displaying real-time attack forensics and threat intelligence analyses

• controlling DDoS attack mitigation at the network ingress point

• providing real-time and historical event reporting, and

• operational control and incident response.

• A collection of detectors that are deployed on edge or peering routers. The detector is a resource-efficient
application container for real-time DDoS detection deployed on routers and managed by the centralized
controller. It analyzes IPv4 and IPv6 traffic on each ingress interface to identify DDoS attacks as they
occur.

Upon detecting a DDoS attack, the centralized controller promptly begins mitigation. The mitigation includes
enforcing a deny ACL to block the attack traffic while still allowing legitimate traffic to pass through.

Supported Platforms

Cisco Secure DDoS Edge Protection is supported on the following routers, router processors, and line cards:

Table 8: Supported Platforms

Line cardsRoute processorsRouters

• 8800-LC-48H

• 8800-36-FH

• 88-LC0-36FH-M

• 88-LC0-36FH

• 88-LC0-34H14FH

• 8800-LC-36-FH

• Cisco 8804-RP

• Cisco 8808-RP

• Cisco 8812-RP

• Cisco 8818-RP

• Cisco 8111-32EH

• Cisco 8101-32FH

• Cisco 8102-64H

• Cisco 8101-32H

• Cisco 8201-32FH

• Cisco 8201-24H8FH

• Cisco 8202-32FH-M

• Cisco 8201-SYS

• Cisco 8202-SYS

Benefits of Cisco Secure DDoS Edge Protection

• Stops DDoS attacks at the network ingress

• Requires no additional hardware or facilities such as power, rack space, and cooling

• Requires no changes to the architecture

• Avoids the need to overprovision network facilities such as links and routers to account for attack traffic

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
24

Cisco Secure DDoS Edge Protection

• Prevents backhauling of malicious traffic

• Minimizes network outages and optimizes the end-user experience, and

• Meets low-latency application requirements.

• Prerequisites for Installing DDoS Edge Protection, on page 25
• Restrictions of DDoS Edge Protection Solution, on page 25
• Install and Configure DDoS Edge Protection, on page 25
• Verify DDoS Edge Protection Application Configuration, on page 27

Prerequisites for Installing DDoS Edge Protection
• Configure the management interface to reach the DDoS controller IP address.

• Manually configure the base ACL, NetFlow, and SSH configurations.

Restrictions of DDoS Edge Protection Solution
• The DDoS Edge Protection supports only IPv4 and IPv6 traffic.

• The DDoS Edge Protection does not support tunnel traffic.

• The system supports only the default VRF configuration, and it applies solely to the management port.
For effective communication between the Docker and the controller, you must configure the management
port to operate within the default VRF exclusively. This setup guarantees that the Docker can reliably
interact with the controller without any network interruptions.

Install and Configure DDoS Edge Protection
You can install the DDoS Edge Protection application through the DDoS edge protection controller. Perform
the following:

1. Install and download the DDoS Edge Protection Controller Software package from the Software Download
page. You can access the user interface, when the controller installation is complete.

Log in to the controller services instance to monitor, manage, and control the device.

2. Configure a Loopback on the router.
Router(config)#interface Loopback100
Router(config-if)# ipv4 address 15.1.1.2 255.255.255.255
Router(config-if)# exit
Router(config)#interface Loopback101
Router(config-if)# ipv4 address 17.1.1.2 255.255.255.255
Router(config-if)#commit

3. Configure an ACL on the router.
Router(config)#ipv4 access-list myACL
Router(config-ipv4-acl)# 1301 permit ipv4 any any
Router(config-ipv4-acl)# exit

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
25

Cisco Secure DDoS Edge Protection
Prerequisites for Installing DDoS Edge Protection

https://software.cisco.com/download/home/286324719/type/286332050/release/EP%20Controller%201.0.0

Router(config)#ipv6 access-list myACL
Router(config-ipv6-acl)# 1301 permit ipv6 any any
Router(config-ipv6-acl)#exit
Router(config)#commit

For more information on implementing access lists and prefix lists, see Understanding Access-List.

If there is any DDoS attack, the controller performs the mitigation action using the ACL rule automatically.

The following is a sample configuration to deny DDoS attacker traffic using user defined ACE rule:
1 deny udp any eq 19 host 45.0.0.1 eq 0 packet-length eq 128 ttl eq 64
2 deny tcp any host 45.0.0.1 eq www match-all -established -fin -psh +syn -urg
packet-length eq 60 ttl eq 64
1301 permit ipv4 any any

Result: Configuration updates are sent by the controller to the router.

4. Configure SSH on the router.
Router(config)#ssh server v2
Router(config)#ssh server netconf
Router(config)#netconf agent tty
Router(config-netconf-tty)#netconf-yang agent ssh
Router(config)#ssh timeout 120
Router(config)#ssh server rate-limit 600
Router(config)#ssh server session-limit 110
Router(config)#ssh server v2
Router(config)#ssh server vrf default
Router(config)#ssh server netconf vrf default
Router(config)#commit

5. Execute the ping command on the router and check the router connection to the DDoS controller.

Router#ping 10.105.237.54
Thu Jun 1 07:16:43.654 UTC
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.105.237.54 timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/2/4 ms
RP/0/RP0/CPU0:Router#bash
Thu Jun 1 07:16:53.024 UTC
[Router:~]$ping 10.105.237.54
PING 10.105.237.54 (10.105.237.54) 56(84) bytes of data.
64 bytes from 10.105.237.54: icmp_seq=1 ttl=63 time=1.73 ms
64 bytes from 10.105.237.54: icmp_seq=2 ttl=63 time=1.29 ms
64 bytes from 10.105.237.54: icmp_seq=3 ttl=63 time=1.27 ms
64 bytes from 10.105.237.54: icmp_seq=4 ttl=63 time=1.75 ms
^C
--- 10.105.237.54 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 1.270/1.510/1.751/0.230 ms
[Router:~]$

6. Enter the details of the device into the DDoS edge protection controller panel and verify that the
Deployment, Container, and Configuration indicators all display green.

For more information on installing the DDoS controller, see the Cisco Secure DDoS Edge Protection
Installation guide.

The controller automatically performs the following netflow configuration on the router:
//Configuring Monitor Map
Router(config)#flow monitor-map DetectPro_Monitor_IPV6

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
26

Cisco Secure DDoS Edge Protection
Install and Configure DDoS Edge Protection

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/78x/b-ip-addresses-cg-8k-78x/implementing-access-lists.html#concept_qjt_jcr_d3b
https://www.cisco.com/c/en/us/products/collateral/security/secure-ddos-protection/edge-protection-quick-start-guide.html
https://www.cisco.com/c/en/us/products/collateral/security/secure-ddos-protection/edge-protection-quick-start-guide.html

Router(config-fmm)# record ipv6 extended
Router(config-fmm))#exporter DetectPro_GPB
Router(config-fmm)# cache entries 1000000
Router(config-fmm)#cache entries active 1
Router(config-fmm)#cache entries inactive 1
Router(config-fmm)#cache timeout inactive 1
Router(config-fmm)#cache timeout rate-limit 1000000
Router(config-fmm)#exit
Router(config)#flow monitor-map DetectPro_Monitor_IPV4
Router(config-fmm)# record ipv4 extended
Router(config-fmm)#exporter DetectPro_GPB
Router(config-fmm)# cache entries 1000000
Router(config-fmm)#cache entries active 1
Router(config-fmm)#cache entries inactive 1
Router(config-fmm)#cache timeout inactive 1
Router(config-fmm)#cache timeout rate-limit 1000000
Router(config-fmm)#exit
//Configuring Exporter Map
Router(config)#flow exporter-map DetectPro_GPB
Router(config-fem)#version protobuf
Router(config-fem)#transport udp 5005
Router(config-fem)#source TenGigE0/0/0/16
Router(config-fem)#destination 15.1.1.2
Router(config-fem)#exit
//Configuring Sampler Map
Router(config)#sampler-map DetectPro_NFv9
Router(config-sm)#random 1 out-of 100
!

For more information on the DDoS Edge Protection, see Cisco Secure DDoS Edge Protection Data Sheet.

Verify DDoS Edge Protection Application Configuration
To ensure the DDoS controller has applied the configuration to the device, check the active configuration on
the router.

1. Execute the show running-config appmgr command on the router to verify the appmgr configuration.
RP/0/RP0/CPU0:Router#show running-config appmgr
Thu Jun 1 07:33:36.741 UTC
appmgr
application esentryd
activate type docker source esentryd-cisco-20230431633 docker-run-opts "--env-file

/harddisk:/ENV_6478443711ac6830700d1aeb --net=host"
!
!

2. Execute the show flow monitor command on the router to check the monitor map that is automatically
created.
RP/0/RP0/CPU0:Router#show flow monitor DetectPro_Monitor_IPV4 cache location 0/0/CPU0
Thu Nov 16 06:13:38.066 UTC
Cache summary for Flow Monitor DetectPro_Monitor_IPV4:
Cache size: 1000000
Current entries: 0
Flows added: 2243884200
Flows not added: 0
Ager Polls: 2243884200
- Active timeout 0
- Inactive timeout 0
- Immediate 0
- TCP FIN flag 0

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
27

Cisco Secure DDoS Edge Protection
Verify DDoS Edge Protection Application Configuration

https://www.cisco.com/c/en/us/products/collateral/security/secure-ddos-protection/secure-edge-protection-ds.html

- Emergency aged 0
- Counter wrap aged 0
- Total 2243884200

Periodic export:
- Counter wrap 0
- TCP FIN flag 0

Flows exported 2243884200

Matching entries: 0
!

RP/0/RP0/CPU0:Router#show flow monitor DetectPro_Monitor_IPV6 cache location 0/0/CPU0
Thu Nov 16 06:13:43.734 UTC
Cache summary for Flow Monitor DetectPro_Monitor_IPV6:
Cache size: 1000000
Current entries: 0
Flows added: 59971
Flows not added: 0
Ager Polls: 94437
- Active timeout 59971
- Inactive timeout 0
- Immediate 0
- TCP FIN flag 0
- Emergency aged 0
- Counter wrap aged 0
- Total 59971

Periodic export:
- Counter wrap 0
- TCP FIN flag 0

Flows exported 59971

Matching entries: 0

3. Execute the show flow exporter command on the router to check the exporter map that is automatically
created.
RP/0/RP0/CPU0:Router#show flow exporter
exporter exporter-map
RP/0/RP0/CPU0:tortin#show flow exporter DetectPro_GPB location 0/0/CPU0
Thu Nov 16 06:13:58.059 UTC
Flow Exporter: DetectPro_GPB
Export Protocol: protobuf
Flow Exporter memory usage: 5265344
Used by flow monitors: DetectPro_Monitor_IPV4

DetectPro_Monitor_IPV6

Status: Disabled
Transport: UDP
Destination: 15.1.1.2 (5005) VRF default
Source: 0.0.0.0 (54482)
Flows exported: 0 (0 bytes)
Flows dropped: 0 (0 bytes)

Templates exported: 0 (0 bytes)
Templates dropped: 0 (0 bytes)

Option data exported: 0 (0 bytes)
Option data dropped: 0 (0 bytes)

Option templates exported: 0 (0 bytes)
Option templates dropped: 0 (0 bytes)

Packets exported: 20355756 (27716506821 bytes)

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
28

Cisco Secure DDoS Edge Protection
Verify DDoS Edge Protection Application Configuration

Packets dropped: 0 (0 bytes)

Total export over last interval of:
1 hour: 12 pkts

1879 bytes
12 flows

1 minute: 0 pkts
0 bytes
0 flows

1 second: 0 pkts
0 bytes
0 flows

4. Execute the show appmgr application-table command on the router to check the status of docker
application.
RP/0/RP0/CPU0:Router#show appmgr application-table
Thu Nov 16 06:13:58.059 UTC
Name Type Config State Status
-------- ------ ------------ --
esentryd Docker Activated Up 8 minutes
RP/0/RP0/CPU0:Router#

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
29

Cisco Secure DDoS Edge Protection
Verify DDoS Edge Protection Application Configuration

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
30

Cisco Secure DDoS Edge Protection
Verify DDoS Edge Protection Application Configuration

A P P E N D I X A
Packet I/O Functionality and Hosting
Applications

• Setting up Application Hosting Environment, on page 31
• Hosting an Application in Docker Containers, on page 46
• Boot Devices Using PXE Server Running in a Docker Container, on page 51
• Hosting and Activating the PXE Server Docker on Cisco 8201 Router using Application Manager, on
page 54

• CPU-Based Packet Generator, on page 56

Setting up Application Hosting Environment
This section illustrates how, with the Packet I/O functionality, you can use Linux applications to manage
communication with the IOS XR interfaces. It describes how the OS environment must be set up to establish
packet I/O communication with hosted applications.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
31

Verify Reachability of IOS XR and Packet I/O Infrastructure
DescriptionRelease InformationFeature Name

Virtual IP addresses allow a single
IP address to connect to the current
active RP after an RP switchover
event. In addition, this functionality
enables your network stack to
support virtual IP addresses for
third-party applications and IOS
XR applications that use the Linux
networking stack.

The following commands are
modified:

• ipv4 virtual address

• ipv6 virtual address

• show linux networking
interfaces address-only

Release 7.5.2Virtual IP address in the Linux
networking stack

Now the configured interface
secondary IPv4 addresses on the
Cisco IOS XR software are
automatically synchronized to
Linux operating system.

The third-party applications on
Cisco IOS XR can use the
secondary IPv4 addresses without
any manual intervention.

Earlier, you had to configure the
secondary IPv4 addresses on the
Linux operating system manually.

Release 7.5.3Automatic Synchronization of
Secondary IPv4 addresses fromXR
to Linux OS

Now the configured interface
secondary IPv6 addresses on the
Cisco IOS XR software are
automatically synchronized to
Linux operating system.

The third-party applications on
Cisco IOS XR can use the
secondary IPv6 addresses without
any manual intervention.

Earlier, you had to configure the
secondary IPv6 addresses on the
Linux operating system manually.

Release 7.11.1Automatic Synchronization of
Secondary IPv6 addresses fromXR
to Linux OS

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
32

Packet I/O Functionality and Hosting Applications
Verify Reachability of IOS XR and Packet I/O Infrastructure

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp2718532061
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7955588300
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200

Interfaces configured on IOS XR are programmed into the Linux kernel. These interfaces allow Linux
applications to run as if they were running on a regular Linux system. This packet I/O capability ensures that
off-the-shelf Linux applications can be run alongside IOS XR, allowing operators to use their existing tools
and automate deployments with IOS XR.

The IP address on the Linux interfaces, MTU settings, MAC address are inherited from the corresponding
settings of the IOS XR interface. Accessing the global VRF network namespace ensures that when you issue
the bash command, the default or the global VRF in IOS XR is reflected in the kernel. This ensures default
reachability based on the routing capabilities of IOS XR and the packet I/O infrastructure.

Virtual addresses can be configured to access a router from the management network such as gRPC using a
single virtual IP address. On a device with two or more RPs, the virtual address refers to the management
interface that is currently active. This functionality can be used across RP failover without the information of
which RP is currently active. This is applicable to the Linux packet path.

Automatic Synchronization of Secondary IPv4 and IPv6 addresses from XR to Linux OS

The secondary IPv4 and IPv6 addresses that are configured for an XR interface are now synchronized into
the Linux operating system automatically. With this secondary IPv4 and IPv6 address synchronization, the
third party applications that are deployed on Cisco IOS XR can now use the secondary addresses. Prior to
this release, only primary IPv4 and IPv6 addresses were supported and the secondary IPv4 and IPv6 addresses
had to be configured manually in the Linux operating system.

Exposed XR interfaces (EXIs) and address-only interfaces support secondary IPv4 and IPv6 address
synchronization:

• EXIs have secondary IP addresses added to their corresponding Linux interface

• Address-only interfaces have secondary IP addresses added to the Linux loopback device. For additional
information on address-only interfaces, see show linux networking interfaces address-only.

The restrictions of secondary IPv4 addresses synchronization are:

• Secondary IPv4 addresses are not synchronized from Linux to XR for Linux-managed interfaces.

• The ifconfig Linux command only displays the first configured IPv4 address. To view the complete list
of IPv4 addresses, use the ip addr show Linux command.

For additional information on secondary IPv4 addresses, see ipv4 address (network) and ipv6 address.

You can run bash commands at the IOS XR router prompt to view the interfaces and IP addresses stored in
global VRF. When you access the Cisco IOS XR Linux shell, you directly enter the global VRF.

Step 1 From your Linux box, access the IOS XR console through SSH, and log in.

Example:
cisco@host:~$ ssh root@192.168.122.188
root@192.168.122.188's password:
Router#

Step 2 View the ethernet interfaces on IOS XR.

Example:
Router#show ip interface brief
Interface IP-Address Status Protocol Vrf-Name
FourHundredGigE0/0/0/0 unassigned Shutdown Down default
FourHundredGigE0/0/0/1 unassigned Shutdown Down default

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
33

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp7546444200
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp1732038984
https://www.cisco.com/c/en/us/td/docs/iosxr/cisco8000/ip-addresses/b-ip-addresses-cr-8k/network-stack-commands.html#wp4043708751

FourHundredGigE0/0/0/2 unassigned Shutdown Down default
FourHundredGigE0/0/0/3 unassigned Shutdown Down default
FourHundredGigE0/0/0/4 unassigned Shutdown Down default
FourHundredGigE0/0/0/5 unassigned Shutdown Down default
FourHundredGigE0/0/0/6 unassigned Shutdown Down default
FourHundredGigE0/0/0/7 unassigned Shutdown Down default
FourHundredGigE0/0/0/8 unassigned Shutdown Down default
FourHundredGigE0/0/0/9 unassigned Shutdown Down default
FourHundredGigE0/0/0/10 unassigned Shutdown Down default
FourHundredGigE0/0/0/11 unassigned Shutdown Down default
FourHundredGigE0/0/0/12 unassigned Shutdown Down default
FourHundredGigE0/0/0/13 unassigned Shutdown Down default
FourHundredGigE0/0/0/14 unassigned Shutdown Down default
FourHundredGigE0/0/0/15 unassigned Shutdown Down default
FourHundredGigE0/0/0/16 unassigned Shutdown Down default
FourHundredGigE0/0/0/17 unassigned Shutdown Down default
FourHundredGigE0/0/0/18 unassigned Shutdown Down default
FourHundredGigE0/0/0/19 unassigned Shutdown Down default
FourHundredGigE0/0/0/20 unassigned Shutdown Down default
FourHundredGigE0/0/0/21 unassigned Shutdown Down default
FourHundredGigE0/0/0/22 unassigned Shutdown Down default
FourHundredGigE0/0/0/23 unassigned Shutdown Down default
HundredGigE0/0/0/24 10.1.1.10 Up Up default
HundredGigE0/0/0/25 unassigned Shutdown Down default
HundredGigE0/0/0/26 unassigned Shutdown Down default
HundredGigE0/0/0/27 unassigned Shutdown Down default
HundredGigE0/0/0/28 unassigned Shutdown Down default
HundredGigE0/0/0/29 unassigned Shutdown Down default
HundredGigE0/0/0/30 unassigned Shutdown Down default
HundredGigE0/0/0/31 unassigned Shutdown Down default
HundredGigE0/0/0/32 unassigned Shutdown Down default
HundredGigE0/0/0/33 unassigned Shutdown Down default
HundredGigE0/0/0/34 unassigned Shutdown Down default
HundredGigE0/0/0/35 unassigned Shutdown Down default
MgmtEth0/RP0/CPU0/0 192.168.122.22 Up Up default

Use the ip addr show or ip link show commands to view all corresponding interfaces in Linux. The IOS XR
interfaces that are admin-down state also reflects a Down state in the Linux kernel.

Note

Step 3 Check the IP and MAC addresses of the interface that is in Up state. Here, interfaces HundredGigE0/0/0/24 and
MgmtEth0/RP0/CPU0/0 are in the Up state.

Example:
Router#show interfaces HundredGigE0/0/0/24
...
HundredGigE0/0/0/24 is up, line protocol is up
Interface state transitions: 4
Hardware is HundredGigE0/0/0/24, address is 5246.e8a3.3754 (bia
5246.e8a3.3754)
Internet address is 10.1.1.1/24
MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Duplex unknown, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last link flapped 01:03:50
ARP type ARPA, ARP timeout 04:00:00
Last input 00:38:45, output 00:38:45
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
12 packets input, 1260 bytes, 0 total input drops

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
34

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

0 drops for unrecognized upper-level protocol
Received 2 broadcast packets, 0 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
12 packets output, 1224 bytes, 0 total output drops
Output 1 broadcast packets, 0 multicast packets

Step 4 Verify that the bash command runs in global VRF to view the network interfaces.

Example:
Router#bash -c ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:360 (360.0 B) TX bytes:0 (0.0 B)
Mg0_RP0_CPU0_0 Link encap:Ethernet HWaddr 54:00:00:00:bd:49
inet addr:192.168.122.22 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3859 errors:0 dropped:0 overruns:0 frame:0
TX packets:1973 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2377782 (2.2 MiB) TX bytes:593602 (579.6 KiB)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:242 errors:0 dropped:0 overruns:0 frame:0
TX packets:242 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:12100 (11.8 KiB) TX bytes:12100 (11.8 KiB)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:60 (60.0 B)

The to_xr interface indicates access to the global VRF.

Step 5 Access the Linux shell.

Example:
Router#bash
[ios:~]$

Step 6 (Optional) View the IP routes used by the to_xr interfaces.

Example:
[ios:~]$ip route
default dev to_xr scope link metric 2048
6.1.0.0/16dev Mg0_RP0_CPU0_0 proto kernel scope link src 6.1.22.41
20.1.0.0/16dev Hu0_0_0_0 proto kernel scope link src 20.1.1.1
20.2.0.0/16dev Hu0_0_0_20 proto kernel scope link src 20.2.1.1
30.1.0.0/24dev BE500 proto kernel scope link src 30.1.0.1
172.17.0.0/16dev docker0 proto kernel scope link src 172.17.0.1linkdown

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
35

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

You can also enter the global VRF directly after logging into IOS XR using the run ip netns exec vrf-default
bash command.

Note

Programme Routes in the Kernel
The basic routes required to allow applications to send or receive traffic can be programmed into the kernel.
The Linux network stack that is part of the kernel is used by normal Linux applications to send/receive packets.
In an IOS XR stack, IOS XR acts as the network stack for the system. Therefore to allow the Linux network
stack to connect into and use the IOS XR network stack, basic routes must be programmed into the Linux
Kernel.

Step 1 View the routes from the bash shell.

Example:
[ios:~]$ip route
default dev to_xr scope link src 10.1.1.10 metric 2048
10.1.1.0/24 dev Hu0_0_0_24 proto kernel scope link src 10.1.1.10
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.22

Step 2 Programme the routes in the kernel.

Two types of routes can be programmed in the kernel:

• Default Route: The default route sends traffic destined to unknown subnets out of the kernel using a special to_xr
interface. This interface sends packets to IOS XR for routing using the routing state in XR Routing Information
Base (RIB) or Forwarding Information Base (FIB). The to_xr interface does not have an associated IP address. In
Linux, most applications expect the outgoing packets to use the IP address of the outgoing interface as the source
IP address.

With the to_xr interface, because there is no IP address, a source hint is required. The source hint can be changed
to use the IP address another physical interface IP or loopback IP address. In the following example, the source hint
is set to 10.1.1.10, which is the IP address of the Hu0_0_0_24 interface. To use the Management port IP address,
change the source hint:
Router#bash

[ios:~]$ip route replace default dev to_xr scope link src 192.168.122.22 metric 2048

[ios:~]$ip route
default dev to_xr scope link src 192.168.122.22 metric 2048
10.1.1.0/24 dev Hu0_0_0_24 proto kernel scope link src 10.1.1.10
192.168.122.0/24 dev Mg0_RP0_CPU0_0 proto kernel scope link src 192.168.122.22

With this updated source hint, any default traffic exiting the system uses the Management port IP address as the
source IP address.

• Local or Connected Routes: The routes are associated with the subnet configured on interfaces. For example, the
10.1.1.0/24 network is associated with the Hu0_0_0_24 interface, and the 192.168.122.0/24 subnet is associated with
the Mg0_RP0_CPU0 interface .

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
36

Packet I/O Functionality and Hosting Applications
Programme Routes in the Kernel

Configure VRFs in the Kernel
VRFs configured in IOS XR are automatically synchronized to the kernel. In the kernel, the VRFs appear as
network namespaces (netns). For every globally-configured VRF, a Linux network namespace is created.
With this capability it is possible to isolate Linux applications or processes into specific VRFs like an
out-of-band management VRF and open-up sockets or send or receive traffic only on interfaces in that VRF.

Every VRF, when synchronized with the Linux kernel, is programmed as a network namespace with the same
name as a VRF but with the string vrf prefixed to it. The default VRF in IOS XR has the name default. This
name gets programmed as vrf-default in the Linux kernel.

The following example shows how to configure a custom VRF blue:

Step 1 Identify the current network namespace or VRF.

Example:
[ios:~]$ip netns identify $$
vrf-default
global-vrf

Step 2 Configure a custom VRF blue.

Example:
Router#conf t

Router(config)#vrf blue
Router(config-vrf)#commit

Step 3 Verify that the VRF blue is configured in IOS XR.

Example:
Router#show run vrf
vrf blue
!

Step 4 Verify that the VRF blue is created in the kernel.

Example:
Router#bash

[ios:~]$ls -l /var/run/netns
total 0
-r--r--r--. 1 root root 0 Jul 30 04:17 default
-r--r--r--. 1 root root 0 Jul 30 04:17 global-vrf
-r--r--r--. 1 root root 0 Jul 30 04:17 tpnns
-r--r--r--. 1 root root 0 Aug 1 17:01 vrf-blue
-r--r--r--. 1 root root 0 Jul 30 04:17 vrf-default
-r--r--r--. 1 root root 0 Jul 30 04:17 xrnns

Step 5 Access VRF blue to launch and execute processes from the new network namespace.

Example:
[ios:~]$ip netns exec vrf-blue bash
[ios:~]$
[ios:~]$ip netns identify $$
vrf-blue
[ios:~]$

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
37

Packet I/O Functionality and Hosting Applications
Configure VRFs in the Kernel

Running an ifconfig command shows only the default to-xr interface because there is no IOS XR interface in this VRF.
[ios:~]$ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
[ios:~]$

Step 6 Configure an interface in the VRF blue in IOS XR. This interface will be configured automatically in the network
namespace vrf-blue in the kernel.

Example:

The following example shows how to configure HundredGigE 0/0/0/24 interface in vrf-blue from IOS XR:
Router#conf t
Router(config)#int HundredGigE 0/0/0/24
Router(config-if)#no ipv4 address
Router(config-if)#vrf blue
Router(config-if)#ipv4 address 10.1.1.10/24
Router(config-if)#commit

Step 7 Verify that the HundredGigE 0/0/0/24 interface is configured in the VRF blue in IOS XR.

Example:
Router#show run int HundredGigE 0/0/0/24
interface HundredGigE0/0/0/24
vrf blue
ipv4 address 10.1.1.10 255.255.255.0
!

Step 8 Verify that the interface is configured in the VRF blue in the kernel.

Example:
Router#bash
Thu Aug 1 17:09:39.314 UTC
[ios:~]$
[ios:~]$ip netns exec vrf-blue bash
[ios:~]$
[ios:~]$ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
38

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
[ios:~]$

Open Linux Sockets
The socket entries are programmed into the Local Packet Transport Services (LPTS) infrastructure that
distributes the information through the line cards. Any packet received on a line card interface triggers an
LPTS lookup to send the packet to the application opening the socket. Because the required interfaces and
routes already appear in the kernel, the applications can open the sockets — TCP or UDP.

Step 1 Verify that applications open up sockets.

Example:
Router#bash
[ios:~]$nc -l 0.0.0.0 -p 5000 &
[1] 1160
[ios:~]$
[ios:~]$netstat -nlp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:5000 0.0.0.0:* LISTEN 1160/nc
tcp 0 0 0.0.0.0:57777 0.0.0.0:* LISTEN 14723/emsd
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 8875/ssh_server
tcp6 0 0 :::22 :::* LISTEN 8875/ssh_server
udp 0 0 0.0.0.0:68 0.0.0.0:* 13235/xr_dhcpcd
Active UNIX domain sockets (only servers)
Proto RefCnt Flags Type State I-Node PID/Program name Path
[ios:~]$exit
Logout
Router#
Router#show lpts pifib brief | i 5000
Thu Aug 1 17:16:00.938 UTC
IPv4 default TCP any 0/RP0/CPU0 any,5000 any
Router#

Step 2 Verify that the socket is open.

Example:
Router#show lpts pifib brief | i 5000
IPv4 default TCP any 0/RP0/CPU0 any,5000 any

Netcat starts listening on port 5000, which appears as an IPv4 TCP socket in the netstat output like a typical Linux kernel.
This socket gets programmed to LPTS, creating a corresponding entry in the hardware to the lookup tcp port 5000. The
incoming traffic is redirected to the kernel of the active RP where the netcat runs.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
39

Packet I/O Functionality and Hosting Applications
Open Linux Sockets

Send and Receive Traffic
Connect to the nc socket from an external server. For example, the nc socket was started in the vrf-default
network namespace. So, connect over an interface that is in the same VRF.
[root@localhost ~]#nc -vz 192.168.122.22 5000
Ncat: Version 7.50 (https://nmap.org/ncat)
Ncat: Connected to 192.168.122.22:5000.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.

Manage IOS XR Interfaces through Linux
The Linux system contains a number of individual network namespaces. Each namespace contains a set of
interfaces that map to a single interface in the XR control plane. These interfaces represent the exposed XR
interfaces (eXI). By default, all interfaces in IOS XR are managed through the IOS XR configuration (CLI
or YANG models), and the attributes of the interface (IP address, MTU, and state) are inherited from the
corresponding configuration and the state of the interface in XR.

With the new Packet I/O functionality, it is possible to have an IOS XR interface completely managed by
Linux. This also means that one or more of the interfaces can be configured to be managed by Linux, and
standard automation tools can be used on Linux servers can be used to manage interfaces in IOS XR.

Secondary IPv4 addresses cannot be managed by Linux.Note

Configure an Interface to be Linux-Managed
This section shows how to configure an interface to be Linux-managed.

Step 1 Check the available exposed-interfaces in the system.

Example:
Router(config)#linux networking exposed-interfaces interface ?
BVI Bridge-Group Virtual Interface
Bundle-Ether Aggregated Ethernet interface(s) | short name is BE
FiftyGigE FiftyGigabitEthernet/IEEE 802.3 interface(s) | short name is Fi
FortyGigE FortyGigabitEthernet/IEEE 802.3 interface(s) | short name is Fo
FourHundredGigE FourHundredGigabitEthernet/IEEE 802.3 interface(s) | short name is FH
GigabitEthernet GigabitEthernet/IEEE 802.3 interface(s) | short name is Gi
HundredGigE HundredGigabitEthernet/IEEE 802.3 interface(s) | short name is Hu
Loopback Loopback interface(s) | short name is Lo
MgmtEth Ethernet/IEEE 802.3 interface(s) | short name is Mg
TenGigE TenGigabitEthernet/IEEE 802.3 interface(s) | short name is Te
TwentyFiveGigE TwentyFiveGigabitEthernet/IEEE 802.3 interface(s) | short name is TF
TwoHundredGigE TwoHundredGigabitEthernet/IEEE 802.3 interface(s) | short name is TH

Step 2 Configure the interface to be managed by Linux.

Example:

The following example shows how to configure a HundredGigE interface to be managed by Linux:

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
40

Packet I/O Functionality and Hosting Applications
Send and Receive Traffic

Router#configure
Router(config)#linux networking exposed-interfaces interface HundredGigE 0/0/0/24 linux-managed
Router(config-exi-if)#commit

Example:

The following example shows how to configure a BVI5 interface to be managed by Linux:
Router#configure
Router(config)#linux networking exposed-interfaces interface BVI5 linux-managed
Router(config-exi-if)#commit

Step 3 View the interface details and the VRF.

Example:

The following example shows the information for HundredGigE interface:
Router#show run interface HundredGigE0/0/0/24
interface HundredGigE0/0/0/24
mtu 4110
vrf blue
ipv4 mtu 4096
ipv4 address 10.1.1.10 255.255.255.0
ipv6 mtu 4096
ipv6 address fe80::7ae7:e8ff:fed3:20c0 link-local
!

Example:

The following example shows the information for BVI5 interface:
Router#show run interface bvi5
interface bvi5
mtu 1514
ipv4 mtu 1500
ipv4 address 90.9.9.9 255.255.255.0
ipv6 mtu 1500
ipv6 address fe80::4ee1:75ff:fe74:a80c link-local
!

Step 4 Verify the configuration in XR.

Example:

The following example shows the configuration for HundredGigE interface:
Router#show running-config linux networking

linux networking
exposed-interfaces
interface HundredGigE0/0/0/24 linux-managed
!
!
!

Example:

The following example shows the configuration for BVI5 interface:
Router#show running-config linux networking

linux networking
exposed-interfaces
interface BVI5 linux-managed
!

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
41

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

!
!

Step 5 Verify the configuration from Linux.

Example:

The following example shows the configuration for HundredGigE interface:
Router#bash
Router:Aug 1 17:40:02.873 UTC: bash_cmd[67805]: %INFRA-INFRA_MSG-5-RUN_LOGIN : User vagrant logged
into shell from vty0

[ios:~]$ip netns exec vrf-blue bash

[ios:~]$ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

[ios:~]$ifconfig -a
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Example:

The following example shows the configuration for BVI5 interface:
Router#bash
Router:Aug 1 17:40:02.873 UTC: bash_cmd[67805]: %INFRA-INFRA_MSG-5-RUN_LOGIN : User vagrant logged
into shell from vty0

[ios:~]$ifconfig BVI5
lo Link encap:Local LoopbackBVI5 Link encap:Ethernet HWaddr 4c:e1:75:74:a8:0c
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
42

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Configure New IP address on the Interface in Linux
This section shows how to configure a new IP address on the Linux-managed interface.

Step 1 Configure the IP address on the interface.

Example:
[ios:~]$ip addr add 10.1.1.10/24 dev Hu0_0_0_24
[ios:~]$Router:Aug 1 17:41:11.546 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user 'system'. Use 'show configuration commit changes 1000000021' to view the changes.

Step 2 Verify that the new IP address is configured.

Example:
[ios:~]$ifconfig Hu0_0_0_24
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Configure Custom MTU Setting
This section shows how to bring up the interface and configure a customMTU in a Linux-managed interface.

Step 1 Configure the MTU setting.

Example:
[ios:~]$ifconfig Hu0_0_0_24 up

[ios:~]$Router:Aug 1 17:41:54.824 UTC: ifmgr[266]: %PKT_INFRA-LINK-3-UPDOWN : Interface
HundredGigE0/0/0/24, changed state to Down
Router:Aug 1 17:41:54.824 UTC: ifmgr[266]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol on
Interface HundredGigE0/0/0/24, changed state to Down
Router:Aug 1 17:41:56.448 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by
user 'system'. Use 'show configuration commit changes 1000000022' to view the changes.
Router:Aug 1 17:41:56.471 UTC: ifmgr[266]: %PKT_INFRA-LINK-3-UPDOWN : Interface
HundredGigE0/0/0/24, changed state to Up
Router:Aug 1 17:41:56.484 UTC: ifmgr[266]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol on
Interface HundredGigE0/0/0/24, changed state to Up
Router:Aug 1 17:41:58.493 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by
user 'system'. Use 'show configuration commit changes 1000000023' to view the changes.

[ios:~]$
[ios:~]$ ip link set dev Hu0_0_0_24 mtu 4096
[ios:~]$

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
43

Packet I/O Functionality and Hosting Applications
Configure New IP address on the Interface in Linux

[ios:~]$Router:Aug 1 17:42:46.830 UTC: xlncd[253]: %MGBL-CONFIG-6-DB_COMMIT : Configuration
committed by user 'system'. Use 'show configuration commit changes 1000000024' to view the changes.

Step 2 Verify that the MTU setting has been updated in Linux.

Example:
[ios:~]$ifconfig
Hu0_0_0_24 Link encap:Ethernet HWaddr 78:e7:e8:d3:20:c0
inet addr:10.1.1.10 Bcast:0.0.0.0 Mask:255.255.255.0
inet6 addr: fe80::7ae7:e8ff:fed3:20c0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:4096 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
to_xr Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Step 3 Check the effect on the IOS XR configuration with the change in MTU setting on this interface.

Example:
Router#show running-config int HundredGigE0/0/0/24
interface HundredGigE0/0/0/24
mtu 4110
vrf blue
ipv4 mtu 4096
ipv4 address 10.1.1.10 255.255.255.0
ipv6 mtu 4096
ipv6 address fe80::7ae7:e8ff:fed3:20c0 link-local
!
!
!
Router#
Router#show ip int br | i HundredGigE0/0/0/24
HundredGigE0/0/0/24 10.1.1.10 Up Up blue

The output indicates that the interface acts as a regular Linux interface, and IOS XR configuration receives inputs from
Linux.

Configure Traffic Protection for Linux Networking
Traffic protection provides a mechanism to configure Linux firewalls using IOS XR configuration. These
rules can be used to restrict traffic to Linux applications. You can restrict traffic to Linux applications using
native Linux firewalls or configuring IOS XR Linux traffic protection. It is not recommended to use both
mechanisms at the same time. Any combination of remote address, local address and ingress interface can be

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
44

Packet I/O Functionality and Hosting Applications
Configure Traffic Protection for Linux Networking

specified as rules to either allow or deny traffic. However, at least one parameter must be specified for the
traffic protection rule to be valid.

If traffic is received on a protocol or port combination that has no traffic protection rules configured, then all
traffic is allowed by default.

Note

This example explains how to configure a traffic protection rule on IOS XR to deny all traffic on port 999
except for traffic arriving on interface HundredGigE0/0/0/25.

Step 1 Configure traffic protection rules.

Example:
Router(config)#linux networking vrf default address-family ipv4 protection protocol
tcp local-port 999 default-action deny permit hundredgigE0/0/0/25
Router(config)#commit

where —

• address-family: Configuration for a particular IPv4 or IPv6 address family.

• protection: Configure traffic protection for Linux networking.

• protocol: Select the supported protocol - TCP or UDP.

• local-port: L4 port number to specify traffic protection rules for Linux networking.

• port number: Port number ranges from 1 to 65535 or all ports.

• default-action: Default action to take for packets matching this traffic protection service.

• deny: Drop packets for this service.

• permit: Permit packets to reach Linux application for this service.

Step 2 Verify that the traffic protection rule is applied successfully.

Example:
Router(config)#show run linux networking
linux networking
vrf default
address-family ipv4
protection
protocol tcp local-port 999 default-action deny
permit interface HundredGigE0/0/0/25
!
!
!

!

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
45

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

Synchronize Statistics Between IOS XR and Linux
This example shows how the bundle-ether interface packet statistics are synchronized between IOS XR and
Linux. The packet and byte counters maintained by Linux for IOS XR interfaces display only the traffic
sourced in Linux. You can configure to periodically synchronize these counters with the IOS XR statistics
for the interfaces.

Step 1 Configure the statistics synchronization including the direction and synchronization interval.

Example:

The following example shows statistics synchronization in global configuration:
Router(config)#linux networking statistics-synchronization from-xr
every 30s

Example:

The following example shows statistics synchronization in exposed-interface configuration:
Router(config)#linux networking exposed-interfaces interface
bundle-ether 1 statistics-synchronization from-xr every 10s

where —

• from-xr: The direction indicating that the interface packet statistics will be pushed from IOS XR to the Linux kernel.

• every: Shows the frequency at which to synchronize statistics. The intervals supported for global configuration are
30s and 60s. The intervals supported for exposed interfaces are 5s, 10s, 30s or 60s. The interval s is in seconds.

Step 2 Verify that the statistics synchronization is applied successfully on IOS XR.

Example:
Router#show run linux networking
linux networking
vrf default
address-family ipv4
protection
protocol tcp local-port all default-action deny
permit interface bundle-ether 1
!
!
!
!
exposed-interfaces
interface bundle-ether 1 linux-managed
statistics-synchronization from-xr every 10s
!
!
!

For troubleshooting purposes, use the show tech-support linux networking command to display debugging information.

Hosting an Application in Docker Containers
This section provides the procedure for hosting an application in docker containers.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
46

Packet I/O Functionality and Hosting Applications
Synchronize Statistics Between IOS XR and Linux

The iPerf application is used as an example to demonstrate the hosting at a server and a client router.

Verify Reachability of IOS XR and Packet I/O Infrastructure, on page 32 on the router that hosts the iPerf
application. You can enable the following Packet I/O functionalities on the server and client routers prior to
hosting the iPerf application in docker containers, for additional features on the routers:

• Program Routes in the Kernel—to send or receive traffic to a remote network using a specific interface.

• Configure VRFs in the Kernel—to run the iperf application in a non-default VRF.

• Configure Traffic Protection for Linux Networking—to secure the router by restricting access to the
router on which the iperf application is hosted.

You build the docker image of the application following the standard docker build procedures. The docker
image of any application (for example, iPerf) is built only once, after which, that docker image can be copied
to other devices where the application can be hosted in docker containers.

Docker Operations
This section describes basic docker operations and the commands required for hosting and maintaining the
applications:

Commands for Hosting Applications

• Pull or Load the image: This function copies a docker image to a device.

• Pull—

The following command pulls the Docker image from a local docker registry. Ensure that the registry
is accessible from the router.
[ios:~]$docker pull ufi-lnx:5001/alpine
�! Here ufi-lnx is the docker registry reachable through 10.105.39.169!-->
Using default tag: latest
latest: Pulling from library/alpine
c9b1b535fdd9: Pull complete
Digest: sha256:ab00606a42621fb68f2ed6ad3c88be54397f981a7b70a79db3d1172b11c4367d
Status: Downloaded newer image for alpine:latest
[ios:~]$

Instead of being pulled from the registry, docker images can be loaded from images saved as tar
files.

• Load—

You save the docker image as a tar file on the build host using the docker save -o <path for generated
tar file> <image name> command. You copy the tar file into the target router, using the following
command:

You copy the tar file into the target router, using the following command:
Router#scp root@10.105.227.122:/var/www/html/alpine.tar
Tue Mar 10 02:42:38.598 UTC
Connecting to 10.105.227.122...
Password:
Transferred 639972864 Bytes
639972864 bytes copied in 55 sec (11606958)bytes/sec

Router#bash
Tue Mar 10 02:45:25.330 UTC
[ios:~]$docker load -i /tmp/alpine.tar

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
47

Packet I/O Functionality and Hosting Applications
Docker Operations

https://docs.docker.com/engine/reference/commandline/build/

Loaded image: alpine:latest
ios:~]$docker images
REPOSITORY TAG IMAGE ID CREATED
SIZE
alpine latest dc721c65d296 11 days ago
622MB
[ios:~]$

• View or List Docker Images

[ios:~]$docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest dc721c65d296 11 days ago 622MB
enipla latest fd31184c8c1b 6 weeks ago 581MB
[ios:~]$

• Run Container

[ios:~]$docker run -it alpine bash
root@a1b719df1091:/#
root@a1b719df1091:/#
root@a1b719df1091:/#uname -a
Linux a1b719df1091 4.8.28-WR9.0.0.20_cgl#1 SMP Wed Jan 8 11:16:16 UTC 2020 x86_64 x86_64
x86_64 GNU/Linux
root@a1b719df1091:/#hostname
a1b719df1091
root@a1b719df1091:/#
[ios:~]$docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES
a1b719df1091 alpine "bash" About a minute ago Up
About a minute nifty_leavitt
[ios:~]$

• Attach to a Running Container

The docker attach command attaches the terminal to the running container and the docker exec command
runs commands inside a working container.
[ios:~]$docker attach docker1
#bash
root@e1e1924956df:/#

The docker exec -it my_container_id sh command executes a shell inside the container:
f3b-r1-pod9:/var/lib/docker/volumes]$docker exec -it 57029028609a sh
#

• Stop Containers

Identify the container using the docker ps command and then stop the container using the docker stop
command.
[ios:~]$docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES
8782d4902312 alpine "bash" 7 minutes ago Up 6
minutes hungry_keller
9bd23408d640 alpine "bash" 17 minutes ago Up 17
minutes youthful_franklin
[ios:~]$ docker stop 8782d4902312

• Stopping All Containers

[ios:~]$docker stop $(docker ps -a -q)

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
48

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

Commands for Maintaining Containers

• Restart Policies

Docker restart policies start the containers automatically after the router reboots.

[ios:~]$docker run -d --restart

• Clean up Containers and Images

You can clean images, containers, volumes, and networks that are dangling (and not associated with a
container) by using the docker system prune command.
[ios:~]$docker container prune

and
[ios:~]$docker image prune

• Monitor Docker (View Docker Statistics)

You can view performance metrics, such as utilization of memory and CPU, and container-specific
metrics, such as CPU limit and memory limit.
[ios:~]$docker stats --no-stream
CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM
% NET I/O BLOCK I/O PIDS
a1b719df1091 nifty_leavitt 0.00% 2.035MiB / 30.78GiB 0.01%

648B / 0B 0B / 0B 2

For generic docker commands, see the Docker Release 18.05 documentation. (https://docs.docker.com)Note

Procedure for Hosting Applications in Docker Containers
1. Build the docker image following the standard docker build procedures. See here.

The docker image is transferred to the IOS XR router (target router) using one of the following ways:

• The docker image is pulled from the docker image registry into the target router (or)

• The docker image is saved as the tar file in the build host and then the tar file is copied into the target
router from the build host.

2. Start the docker container and run the application on the router.

3. Verify the hosted application in the docker container.

Run iPerf in Docker Container
As an example of application hosting in docker container, you can install iPerf client on Router A and check
its connectivity with an iPerf server installed on Router B.

This figure illustrates the topology used in this example.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
49

Packet I/O Functionality and Hosting Applications
Procedure for Hosting Applications in Docker Containers

https://docs.docker.com
https://docs.docker.com/engine/reference/commandline/build/

Figure 2: iPerf Hosted in a Docker Container

The following steps describe how to run the iPerf server and iPerf client applications on Router A and Router
B.

Before you begin

Ensure that you have configured the two routers as shown in the figure-iPerf application hosted in a Docker
Container.

Step 1 Copy the iPerf application tar file (for example, ubuntu-agnel-image.tar) on Router A.

Example:
Router#scp root@10.105.227.122:/var/www/html/ubuntu-agnel-27feb.tar $
Connecting to 10.105.227.122...
Password:
Transferred 639972864 Bytes
639972864 bytes copied in 55 sec (11606958)bytes/sec

Step 2 Load the docker instance on Router A by using the following command:

Example:
Router#bash
[ios:~]$docker load -i /tmp/ubuntu-agnel-27feb.tar

Step 3 View all docker images by using the following command:

Example:
[ios:~]$docker images ls
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu-agnel-27feb latest dc721c65d296 11 days ago 622MB
ubuntu-agnel-slapi latest fd31184c8c1b 6 weeks ago 581MB

Step 4 Repeat Steps 1 through 3 on Router B.
Step 5 Configure the application to run as iPerf server on Router A.

Example:
[ios:~]$docker run -d -it -p 601:601 ubuntu-agnel-27feb sh
[ios:~]$iperf3 -s -B 172.17.0.2

“-p 601:601 ubuntu-agnel-27feb sh” part of the command maps the Linux port with the docker instance port.
601 on the left hand side is the Docker instance mapping port and 601 on the right hand side is the Linux kernel
port.

172.17.0.2 is the IP address of the server.

Note

Step 6 Configure the application to run as iPerf client on Router B and establish connection to iPerf server on Router A.

Example:

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
50

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

[ios:~]$docker run -d -it -p 601:601 ubuntu-agnel-27feb sh
[ios:~]$iperf3 -c 172.17.0.2

“-p 601:601 ubuntu-agnel-27feb sh” part of the command maps the Linux port with the docker instance port.
601 on the left hand side is the docker instance mapping port and 601 on the right hand side is the Linux kernel
port.

172.17.0.2 is the IP address of the server.

Note

Verify the Application Hosted in the Docker Container
To verify the applications hosted in the docker containers between Router A and Router B, use the ping
command to check if the connection has been established between iPerf server and iPerf client.

From the iPerf client on Router B, ping the iPerf server on Router A by providing the physical interface IP address to
verify the connection between the iPerf server and client applications.

Example:
[ios:~]$ping 172.17.0.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.17.0.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 13/21/40 ms

172.17.0.2 is the IP address of the client.

Boot Devices Using PXE Server Running in a Docker Container
DescriptionRelease InformationFeature Name

Starting from Cisco IOS XR
Release 24.2.1, the PXE server
feature is deprecated and will not
be supported in future releases. We
recommend not to use this feature
starting from Cisco IOS XR
Release 24.2.1.

Release 24.2.1Boot Devices Using PXE Server
Running in a Docker Container

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
51

Packet I/O Functionality and Hosting Applications
Verify the Application Hosted in the Docker Container

DescriptionRelease InformationFeature Name

You can now boot your network
devices with a PXE pre-boot
execution environment (PXE or
iPXE) server running in a Docker
container. You use the application
manager (appmgr) to manage PXE
server docker hosting and
functioning through Cisco IOS XR
CLIs.

This functionality lets you 'freeze'
your booting environment in a
Docker container instead of having
to reinstall the environment for
every new machine you want to
boot, saving you the trouble of
remembering the exact commands
and sequences for a PXE boot.

Release 7.3.4Boot Devices Using PXE Server
Running in a Docker Container

Preboot Execution Environment (PXE) is a client-server interface that enables devices in a network to download
the files (like boot image, configurations and so on) from PXE server.

The Client uses DHCP protocol to receive the PXE server details and uses TFTP or HTTP protocol to download
the file.

Figure 3: Client-Server Connection

The PXE server docker feature enables the support of PXE/iPXE server functionality on the routers that run
Cisco IOS-XR software.

This feature helps compute clusters (clients) to be upgraded from the Cisco 8201 top-of-rack router (server)
that hosts the new image for software upgrade, thereby optimizing the operations and management bandwidth.
PXE server docker feature is supported on both IPv4 and IPv6 addresses.

In this feature, the PXE server is installed on the Cisco 8201 router (server) in the form of a docker container
that is managed by Cisco IOS-XR Application Manager (appmgr). The clients (routers or end-hosts such as
Linux devices, VMs and so on) that are connected to this server can request and download the boot image.

The following services are packaged in a single PXE server docker container:

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
52

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

• DHCP

• HTTP (iPXE)

• TFTP (PXE)

These services are used for initial exchange of information and transferring the image between the client and
the server.

The PXE server docker feature is available as part of the optional RPM—xr-pxeserver. This optional RPM
contains:

• Executables for pxe_svr_mgr Cisco IOS-XR process.

• PXE server docker image —pxe-server-docker.rpm.

When the optional xr-pxeserver RPM is installed, the unsigned docker image (pxe-server-docker.rpm)
is placed in the appmgr images directory /pkg/opt/cisco/XR/appmgr/images/pxe-server-docker.rpm,
by the system.

• Helper scripts — install_pxeserver.py and uninstall_pxeserver.py placed under “/pkg/bin/” is used
for installing and uninstalling pxe-server-docker.rpm from the application manager.

The helper scripts are used to manually install or uninstall pxe-server-docker.rpm
and perform the installation or cleanup instead of using the application manager
commands.

Note

Behavioral Specifications

• The Cisco IOS XR DHCP proxy, server, and relay features for both IPv4 and IPv6 are not supported
when the PXE server docker container is installed and running on the router.

• PXE server docker is supported only for BVI interfaces on its secondary IPv4 address. The PXE server
docker is not supported on the primary IPv4 address of a BVI interface.

• Only one instance of PXE server docker container is supported to run on the router at a given time.
Running multiple instances of PXE server docker container on multiple BVI interfaces in parallel is not
supported and results in undefined behavior.

• Third-party application RPMs with the application name as “pxe-server” must not be installed along
with this feature.

• Synchronizing between RPs for large files (iso images) take significant time (approximately 10 mins).
If the system performs RPFO immediately after copying a large file to the application folder
(/harddisk:/mirror/server/images), then these files should be copied again to the current active RP
manually.

• The application state is not maintained after an upgrade. If the application is moved to STOP state and
then updated using new version of Cisco IOS-XR RPM, then the new version of the application starts
again automatically.

• Uninstalling the optional RPM (xr-pxeserver) does not stop or remove the PXE server docker container.
User has to manually stop the PXE server docker container and uninstall the pxe-server-docker.rpm
using the application manager commands.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
53

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

Hosting and Activating the PXE Server Docker on Cisco 8201
Router using Application Manager

To host and activate the PXE server docker container application on Cisco 8201 router using application
manager, follow these steps:

Step 1 Install the optional RPM xr-pxeserver on the router:
Router#install package add xr-pxeserver
Router#install apply restart
Router#install commit

When the optional RPM- xr-pxeserver is installed and activated, the pxe_svr_mgr process is instantiated. The
pxe_svr_mgr process handles installation and updating the PXE server docker RPM (pxe-server-docker.rpm) with
application manager. Also, when the optional RPM xr-pxeserver is upgraded, the pxe_svr_mgr process checks for the
new version of the pxe-server-docker.rpm. If there is a change in the version number, then it updates the existing version
on the router to the new docker RPM version and re-launches the PXE server docker container for the changes to reflect.

After activating the xr-pxeserver RPM package, the pxe_svr_mgr process installs the pxe-server-docker.rpm
with application manager only when the ongoing install operation is committed and no more install operations
are pending.

Note

Step 2 Verify the PXE server docker container application package installed—Use the following command to verify the package
installed:
Router#show appmgr packages installed
Package
--
pxe-server-2.1.0-ThinXR.x86_64

Step 3 Create the following folder structure in the /misc/disk1/ path and copy the dhcp.conf and image.iso files to their respective
folders, as shown below:
/server
|---- config
| |---- dhcpd.conf
| |---- dhcpd6.conf
|---- images
| |---- Image-boot.iso
----logs

The PXE server docker container uses the “/server/” folder for its operations. This path is mounted to PXE server
docker using the application manager configuration.

In case of a dual RP system, it is recommended to create this directory structure under “/misc/disk1/mirror/”.
This automatically syncs the PXE server related files to the standby RP node. Therefore, all these files will be
available on the new active RP node after RPFO. Otherwise, the user must create the directory structure again
and copy all the necessary files for the PXE server docker container.

Note

Step 4 Configure and activate the PXE server docker container application— Use the following set of commands to configure
and activate the PXE server docker container application on the interface BVI301:
Router#config
Router(config)#appmgr

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
54

Packet I/O Functionality and Hosting Applications
Hosting and Activating the PXE Server Docker on Cisco 8201 Router using Application Manager

Router(config-appmgr)#application pxeserver
Router(config-application)# activate type docker source pxe-server docker-run-opts "-it --restart
always --cap-add=NET_ADMIN --net=host --log-opt max-size=20m --log-opt max-file=3 -v
/misc/disk1/mirror/server:/server " docker-run-cmd "-i BV301 -4 172.16.0.0/12 -6 2001:DB8::/48 -l
/server/images -t”
Router(config-application)#commit
!

!
where,
--cap-add=NET_ADMIN --net=host (mandatory)
-i <interface> (mandatory)
-4 <secondary ipv4 address of BVI>
-6 <ipv6 address of BVI>
-l <location of image stored> (default /server/images)
-t <1 - tftp enabled, 0 - tftp disabled>

Step 5 Verify the PXE server docker container status—Use the following command to verify the PXE server docker container
status:
Router(config)#appmgr application exec name pxeserver docker-exec-cmd status C
dhcpd RUNNING pid 94, uptime 0:00:05
dhcpd6 RUNNING pid 95, uptime 0:00:05
monitor RUNNING pid 96, uptime 0:00:05
nginx RUNNING pid 97, uptime 0:00:05
syslogd RUNNING pid 98, uptime 0:00:05
tftp-hpa4 RUNNING pid 101, uptime 0:00:05
tftp-hpa6 RUNNING pid 104, uptime 0:00:05

What to do next

The PXE server docker container is active and now the clients can download the boot image and the
configuration file from the PXE server (Cisco 8201 router).

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
55

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

CPU-Based Packet Generator
Table 9: Feature History Table

Feature DescriptionRelease InformationFeature Name

You can now use a CPU-based
packet generator for IOS-XR
routers to simplify the diagnostic
process for routers experiencing
problems. This tool allows you to
generate a wide range of traffic
streams directly within the
production environment without
physically isolating the routers and
moving them to a lab setup. This
tool is beneficial in environments
that use routers from different
vendors or different models from
the same vendor.

The feature introduces the CLI
Options command with different
options to generate different types
of packets.

Release 24.2.1CPU-Based Packet Generator

Need for CPU-Based Packet Generator

Diagnosing network problems in production environments, such as traffic drops and mis-forwarding issues,
is crucial for network management. Traditionally, routers are physically isolated for debugging, requiring
moving equipment into lab environments with traffic generators.The CPU-Based Packet Generator can be
used in the production environment, eliminating the need to isolate the routers to a lab environment for
troubleshooting purposes.

Benefits of CPU-Based Packet Generator
• Versatile Traffic Crafting: Create complex nested packets, such as IPinIPinIPinIP, to test and diagnose
a variety of scenarios.

• In-Production Diagnosis: Directly diagnose routers in a problem state without disrupting the network
setup.

Restrictions of CPU-Based Packet Generator
• CPU-based packet generators are not optimized for high-speed packet processing; therefore, they may
not match the performance of NPU-based packet generators.

• CPU-based packet generators can potentially introduce higher CPU loads during operation, which may
affect the router performance.

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
56

Packet I/O Functionality and Hosting Applications
CPU-Based Packet Generator

• The probe packet rate is 40 kpps for Cisco 8000 Series Routers.

Topology of CPU-Based Packet Generator
The following diagram depicts the software architecture of CPU-based packet generator.

Figure 4: Architecture of CPU-Based Packet Generator

The Cisco IOS-XR PacketIO serves as a host for third-party applications on the XR platform, with PacketIO
infrastructure facilitating packet transport and interactions between Linux and XR environments. Leveraging
this existing infrastructure, the CPU-based packet generator is implemented as a Linux application and packaged
within the supported XR platform base image, ensuring seamless distribution.

The Linux infrastructure maintains a database of all XR interfaces including bundles. The CPU-based packet
generator is used to send a specific packet type over a chosen interface.

Capabilities of CPU-based Packet Generator
• Support different packet types: The CPU-based packet generator supports various packet types,
including:

• ARP

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
57

Packet I/O Functionality and Hosting Applications
Topology of CPU-Based Packet Generator

• TCP

• UDP

• GRE

• MPLS

• IPinIP

• ICMPv4

• ICMPv6

• Corrupt or error packet generation: There are times when routers receive packets that are either
corrupted or contain errors for various reasons. To identify and troubleshoot these issues, it becomes
necessary to generate similar packets that can be used for debugging purposes. The CPU-based packet
generator can create these packets and aid debugging.

Examples include:

• IPv4 packet with TTL 0

• IPv4 packet with wrong checksum

• IPv4 packet with mismatch between IP option length field and the IP header

How to Use CPU-based Packet Generator?
You can use CPU-based packet generator using:

• CLI: Use the packetgen command with different options to run the tool from XR bash environment.
As the XR interfaces show up as Linux interfaces in bash environment, you can directly use the XR
interface names.

• pcap file: Use an already captured pcap file in production routers and replay it.

packetgen -i interface_name -pcap pcap_file

CLI Options

The following table outlines the different options available for the packetgen command.

Table 10: Packetgen CLI Options

DescriptionOption

Turn on accounting for packets. Only works if packets come back to the packet
generator.

-accounting

ARP target hardware address (default: uses interface MAC address)-arp-destination-hw-address
string

ARP target IP address (default: 127.0.0.1 or ::1)-arp-destination-ip-address
string

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
58

Packet I/O Functionality and Hosting Applications
How to Use CPU-based Packet Generator?

DescriptionOption

ARP operation (1: request, 2: reply , 3: rarp)-arp-operation uint

ARP sender hardware address (default : uses interface MAC)-arp-source-hw-address
string

ARP sender IP address (default: uses interface IP)-arp-source-ip-address
string

Number of packets to be injected at a time. To be used in conjunction with -sleep.-burst int

Number of packets to be generated.-count int

constant, incrementing, random (default: no payload)-data-type string

Destination MAC address (default: ff:ff:ff:ff:ff:ff)-ethernet-dmac string

Source MAC address (default: use interface MAC address)-ethernet-smac string

Write packets to file-file string

Enable GRE-gre

Enable GRE checksum present bit-gre-checksum-present

Enable GRE key present bit-gre-key-present

Enable GRE over MPLS-gre-over-mpls

Set the protocol type of the GRE payload (default: 0x0800 (IP)-gre-protocol uint

Enable GRE sequence number present bit-gre-seq-present

Set the GRE version number (default 0)-gre-version uint

Custom header for all packets-header string

Print hex dump of packets-hex

Interface name for packet injection-i string

ICMP code (default: 0)-icmp-code uint

ICMP type (default: 0)-icmp-type uint

Increment destination MAC-inc-dmac

Increment source mac-inc-smac

Inner Ethernet destination MAC address (default: ff:ff:ff:ff:ff:ff)-inner-ethernet-dmac
string

Inner Ethernet source MAC address (default: ff:ff:ff:ff:ff:ff)-inner-ethernet-smac
string

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
59

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

DescriptionOption

Inner IP checksum (default: compute checksum automatically)-inner-ip-checksum uint

Set inner IP Don't Fragment flag as 1-inner-ip-dont-fragment
uint

Inner destination IP address (default: 127.0.0.1 or ::1)-inner-ip-dst string

Inner IPv6 Flow Label value (default: 0)-inner-ip-flow-label uint

Inner IP fragment offset in units of 64-bits (e.g. 1 = 64 bits)-inner-ip-frag-offset uint

Inner IP protocol . Supports protocol text (TCP, UDP) and code (63 for TCP)
(default: TCP)

-inner-ip-protocol string

Inner source IP address (default: 127.0.0.1 or ::1)-inner-ip-src string

Inner IP Type Of Service (TOS) value (default: 0)-inner-ip-tos uint

ip-traffic-class (traffic-class) value (default: 0)-inner-ip-traffic-class
uint

Inner IP time to live (ttl). (Default ttl = 64-inner-ip-ttl uint

Inner IP version (default: 4)-inner-ip-version int

Inner VLAN id (default: 0)-inner-vlan-id uint

Inner VLAN ethernet type (default: 33024 :Dot1Q)-inner-vlan-tpid uint

Inner VLANpriority (default: 0-inner-vlan-vpri uint

IP checksum (default: compute checksum automatically)-ip-checksum string

Set IP flag -ip-dont-fragment 0 -> 000

Nothing set -ip-dont-fragment 1 -> 001

More Fragments -ip-dont-fragment 2 -> 010

Dont Fragment -ip-dont-fragment 4 -> 100 set reserved bit

-ip-dont-fragment string

Destination IP address (default: 127.0.0.1 or ::1)-ip-dst string

IPv6 Flow Label value (default: 0)-ip-flow-label string

Fragment offset in units of 64-bits (1 = 64 bits)-ip-frag-offset string

IP protocol. Supports protocol text (TCP, UDP, GRE, VXLAN, ICMP, NDP) and
code (63 for TCP) (default: TCP)

-ip-protocol string

Source IP address (default: use interface ip)-ip-src string

IP Type Of Service value (default: 0)-ip-tos string

IP traffic class (traffic-class) value (default: 0)-ip-traffic-class string

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
60

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

DescriptionOption

IP time to live (ttl). (Default ttl = 64-ip-ttl string

IP version should always be set for accurate IP packet creation, ip version (default:
4).

-ip-version string

Comma separated MPLS EXP (Experimental) value (default: 0)-mpls-exp string

Comma separated list ofMultiprotocol Label Switching (MPLS) labels to be added
to the packet. Specified from top to bottom

-mpls-label string

Comma separated MPLS TTL (Time To Live) value (default: 64)-mpls-ttl string

Specify the neighbor discovery protocol: nbr-solicit, nbr-advt-ndp string

NDP target address (default: for advertisement source IP, for solicitation destination
IP

-ndp-target-address
string

File to replay pcap-pcap string

Display a progress bar-progress

Seed for pseudo random payload generator-seed int

Size of payload-size int

Time duration to sleep during each burst. To be used together with -burst.-sleep string

Print packets to stdout-stdout

TCP destination port (default: 40000)-tcp-dport int

Set TCP control flags:

• U (Urgent): Indicates that the data should be processed urgently.

• A (Acknowledgement): Acknowledges the receipt of data.

• P (Push): Instructs the sender to push the data to the receiving application
immediately.

• R (Reset): Resets the connection.

• S (Synchronize): Synchronizes sequence numbers to initiate a connection.

• F (Finish): Indicates the sender has finished sending data and wants to
terminate the connection.

-tcp-flags string

TCP source port (default: 40000)-tcp-sport int

UDP destination port (default: 40000)-udp-dport int

UDP source port (default: 40000)-udp-sport int

VLAN id (default: 0)-vlan-id uint

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
61

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

DescriptionOption

VLAN ethernet type (default: 33024 :Dot1Q)-vlan-tpid uint

VLAN priority (default: 0-vlan-vpri uint

UDP destination port for VXLAN (default: 4789)-vxlan-udp-dport int

UDP source port for VXLAN (default: 0)-vxlan-udp-sport int

VXLAN VNI (default: 0)-vxlan-vni uint

Sample Commands

This section lists sample commands for some common packet types.

Table 11: Sample Packetgen Commands

Sample CommandPacket Type

packetgen -i enp0s8 -ip-ttl 32 -arp-operation 1 -progress -count 10000 -inc-smac
-arp-destination-ip-address 192.168.56.1

ARP

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smacTCP

packetgen -i enp0s8 -ip-ttl 32 -udp-sport 40000 -progress -count 10000 -inc-smacUDP

packetgen -i enp0s8 -ip-ttl 32 -icmp-type 8 -progress -count 10000 -ip-dst 192.168.56.1ICMP - PING

packetgen -i enp0s8 -ip-ttl 32 -gre -count 100 -inner-ip-ttl 32 -tcp-sport 3222 -progressGRE

packetgen -i enp0s8 -count 100 -tcp-sport 3222 -progress -ip-src="1.1.1.1,2.2.2.2"IP in IP

packetgen -i enp0s8 -ip-ttl 32 -count 100 -inner-ip-version 6 -tcp-sport 3222 -progress
-inner-ethernet-smac ff:ff:ff:ff:ff:ff

ETHER-IP

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vlan-id
2

VLAN

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vlan-id
2 -inner-vlan-id 2

QinQ

packetgen -i enp0s8 -ip-ttl 32 -tcp-sport 40000 -progress -count 10000 -inc-smac -vxlan-vni
3 -vxlan-udp-sport 4444 -inner-ip-version 4 -inner-ethernet-smac ff:ff:ff:ff:ff:ff -data-type
constant

VXLAN

packetgen -i enp0s8 -ip-version 6 -ndp nbr-advt -count 100 -ip-checksum 1 -progressNDP

packetgen -i enp0s8 -ip-version 4 -mpls-label 1,2,3,4,5 -tcp-sport 4556 -count 1000
-progress

MPLS

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
62

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

Command Example

This section shows an example command to send an ICMP ping request from source address 10.0.0.1 to
destination address 10.0.0.2 via interface Hu0_0_0_25.
Router# bash
[ios:~]$ packetgen -i Hu0_0_0_25 -ip-ttl 32 -progress -count 50 -icmp-type 8 -ip-dst 10.0.0.2
-ip-src 10.0.0.1 --ethernet-smac 78:c5:51:84:48:c4 --ethernet-dmac 00:00:00:1e:ca:fc
INFO[0000] [ETH IP ICMP]
INFO[0000] Setting SRC IP to 10.0.0.1
INFO[0000] Setting DST IP to 10.0.0.2
INFO[0000] Opening Handle Hu0_0_0_25
INFO[0000] Opened Handle Hu0_0_0_25
INFO[0000] Starting Packet Injection
Sending Packets... 2% | | (1/50, 254 packet/s) [0s:0s] /* Truncated output. */

Address Age Hardware Addr State Type Interface
10.0.0.1 - 78c5.5184.48c4
Interface ARPA HundredGigE0/0/0/25
10.0.0.2 00:50:23 0000.001e.cafc Dynamic ARPA HundredGigE0/0/0/25

Source stats:
Stat Name Port Name Control Packet Tx. Control Packet Rx. Ping Reply Tx.
20.0.0.2/
Card01/Port01 Ethernet - VM - 001 51 51 50

Interface stats:
Input Punt XIPC InputQ XIPC PuntQ
ClientID Drop/Total Drop/Total Cur/High/Max Cur/High/Max
--
ipv6_icmp 0/0 0/0 0/0/1000 0/0/1000
icmp 0/50 0/0 0/15/1000 0/0/1000

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
63

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
64

Packet I/O Functionality and Hosting Applications
Packet I/O Functionality and Hosting Applications

	Application Hosting Configuration Guide for Cisco 8000 Series Routers, Cisco IOS XR Releases
	Preface
	Changes to This Document
	Communications, Services, and Additional Information

	New and Changed Application Hosting Features
	New and Changed Application Hosting Features

	Application Hosting Overview
	Docker Container Application Hosting
	Docker Container Application Hosting Architecture
	Customize Docker Run Options Using Application Manager
	Prioritize Traffic for TPAs in Sandbox Environments
	Docker Application Management using IPv6 Address
	Configure VRF Forwarding
	Verifying VRF Forwarding for Application Manager

	Hosting Third Party Applications in Sandbox Container Using Sandbox Manager
	Top Use Cases for Application Hosting
	Automated Deployment of Third Party Python Scripts

	Cisco Secure DDoS Edge Protection
	Prerequisites for Installing DDoS Edge Protection
	Restrictions of DDoS Edge Protection Solution
	Install and Configure DDoS Edge Protection
	Verify DDoS Edge Protection Application Configuration

	Packet I/O Functionality and Hosting Applications
	Setting up Application Hosting Environment
	Verify Reachability of IOS XR and Packet I/O Infrastructure
	Programme Routes in the Kernel
	Configure VRFs in the Kernel
	Open Linux Sockets
	Send and Receive Traffic
	Manage IOS XR Interfaces through Linux
	Configure an Interface to be Linux-Managed
	Configure New IP address on the Interface in Linux
	Configure Custom MTU Setting

	Configure Traffic Protection for Linux Networking
	Synchronize Statistics Between IOS XR and Linux

	Hosting an Application in Docker Containers
	Docker Operations
	Procedure for Hosting Applications in Docker Containers
	Run iPerf in Docker Container
	Verify the Application Hosted in the Docker Container

	Boot Devices Using PXE Server Running in a Docker Container
	Hosting and Activating the PXE Server Docker on Cisco 8201 Router using Application Manager
	CPU-Based Packet Generator
	Benefits of CPU-Based Packet Generator
	Restrictions of CPU-Based Packet Generator
	Topology of CPU-Based Packet Generator
	Capabilities of CPU-based Packet Generator
	How to Use CPU-based Packet Generator?

