
Guest Shell

This chapter contains the following topics:

• About the Guest Shell, on page 1
• Guidelines and Limitations, on page 2
• Accessing the Guest Shell, on page 6
• Resources Used for the Guest Shell, on page 6
• Capabilities in the Guest Shell, on page 7
• Security Posture for Guest Shell, on page 15
• Managing the Guest Shell, on page 18

About the Guest Shell
In addition to the Cisco NX-OS CLI and Bash access on the underlying Linux environment, the Cisco Nexus
3400-S platform switches support access to a decoupled execution space running within a Linux Container
(LXC) called the Guest Shell.

From within the Guest Shell the network-admin has the following capabilities:

• Access to the network over Linux network interfaces.

• Access to Cisco Nexus 3400-S bootflash.

• Access to Cisco Nexus 3400-S volatile tmpfs.

• Access to Cisco Nexus 3400-S CLI.

• Access to Cisco NX-API REST.

• The ability to install and run Python scripts.

• The ability to install and run 32-bit and 64-bit Linux applications.

Decoupling the execution space from the native host system allows customization of the Linux environment
to suit the needs of the applications without impacting the host system or applications running in other Linux
Containers.

On Cisco NX-OS switches, Linux Containers are installed and managed with the virtual-service commands.
The Guest Shell appears in the show virtual-service command output.

Guest Shell
1

By default, the Guest Shell occupies approximately 35 MB of RAM and 200 MB of bootflash when enabled.
Use the guestshell destroy command to reclaim resources if the Guest Shell is not used.

Note

Guidelines and Limitations
Common Guidelines Across All Releases

If you have performed customwork inside your installation of the Guest Shell, save your changes to bootflash,
off-box storage, or elsewhere outside the Guest Shell root file system before performing a guestshell
upgrade.

The guestshell upgrade command essentially performs a guestshell destroy and guestshell enable

in succession.

Important

• Use the run guestshell CLI command to access the Guest Shell on the Cisco Nexus device: The run
guestshell command parallels the run bash command that is used to access the host shell. This
command allows you to access the Guest Shell and get a Bash prompt or run a command within the
context of the Guest Shell. The command uses password-less SSH to an available port on the localhost
in the default network namespace.

• The sshd utility can secure the pre-configured SSH access into the Guest Shell by listening on
localhost to avoid connection attempts from outside the network. The sshd utility has the following
features:

• It is configured for key-based authentication without fallback to passwords.

• Only root can read keys use to access the Guest Shell after Guest Shell restarts.

• Only root can read the file that contains the key on the host to prevent a non-privileged user with
host Bash access from being able to use the key to connect to the Guest Shell. Network-admin users
may start another instance of sshd in the Guest Shell to allow remote access directly into the Guest
Shell, but any user that logs into the Guest Shell is also given network-admin privilege.

Introduced in Guest Shell 2.2 (0.2), the key file is readable for
whom the user account was created.

In addition, the Guest Shell accounts are not automatically
removed, and must be removed by the network administrator
when no longer needed.

Guest Shell installations before 2.2 (0.2) will not dynamically
create individual user accounts.

Note

• Installing the Cisco NX-OS software release on a fresh out-of-the-box automatically enables the Guest
Shell. Subsequent upgrades to the Cisco NX-OS software will not automatically upgrade Guest Shell.

Guest Shell
2

Guest Shell
Guidelines and Limitations

• Guest Shell releases increment the major number when distributions or distribution versions change.

• Guest Shell releases increment the minor number when CVEs have been addressed. The Guest Shell
updates CVEs only when CentOS makes them publicly available.

• Cisco recommends using yum update to pick up third-party security vulnerability fixes directly from
the CentOS repository. This provides the flexibility of getting updates as, and when, available without
needing to wait for a Cisco NX-OS software update.

Alternatively, using the guestshell update command would replace the existing Guest Shell rootfs. Any
customizations and software package installations would then need to be performed again within the
context of this new Guest Shell rootfs.

Upgrading from Guest Shell 1.0 to Guest Shell 2.x

Guest Shell 2.x is based upon a CentOS 7 root file system. If you have an off-box repository of .conf files
or utilities that pulled the content down into Guest Shell 1.0, you will need to repeat the same deployment
steps in Guest Shell 2.x. Your deployment script may need to be adjusted to account for the CentOS 7
differences.

Guest Shell 2.x

The Cisco NX-OS automatically installs and enables the Guest Shell by default on systems with sufficient
resources. However, if the device is reloaded with a Cisco NX-OS image that does not provide Guest Shell
support, the installer will automatically remove the existing Guest Shell and issue a
%VMAN-2-INVALID_PACKAGE.

Systems with 4GB of RAM will not enable Guest Shell by default. Use the guestshell enable command to
install and enable Guest Shell.

Note

The install all command validates the compatibility between the current Cisco NX-OS image against the
target Cisco NX-OS image.

The following is an example output from installing an incompatible image:
switch#
Installer will perform compatibility check first. Please wait.
uri is: /
2014 Aug 29 20:08:51 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE:
Successfully activated virtual service 'guestshell+'
Verifying image bootflash:/n9kpregs.bin for boot variable "nxos".
[####################] 100% -- SUCCESS
Verifying image type.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "bios" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "nxos" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS

Guest Shell
3

Guest Shell
Guidelines and Limitations

Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out which feature
needs to be disabled.".
Performing module support checks.
[####################] 100% -- SUCCESS
Notifying services about system upgrade.
[#] 0% -- FAIL.
Return code 0x42DD0006 ((null)).
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out
which feature needs to be disabled."
Service "vman" in vdc 1: Guest shell not supported, do 'guestshell destroy' to remove
it and then retry ISSU
Pre-upgrade check failed. Return code 0x42DD0006 ((null)).
switch#

As a best practice, remove the Guest Shell with the guestshell destroy command before reloading an older
Cisco NX-OS image that does not support the Guest Shell.

Note

Pre-Configured SSHD Service

The Guest Shell starts an OpenSSH server upon boot up. The server listens on a randomly generated port on
the localhost IP address interface 127.0.0.1 only. This provides the password-less connectivity into the Guest
Shell from the NX-OS virtual-shell when the guestshell keyword is entered. If this server is killed or its
configuration (residing in /etc/ssh/sshd_config-cisco) is altered, access to the Guest Shell from
the NX-OS CLI might not work.

The following steps instantiate an OpenSSh server within the Guest Shell as root:

1. Determine which network namespace or VRF you want to establish your SSH connections through.

2. Determine the port that youwant OpenSSH to listen on. Use the NX-OS command show socket connection
to view ports already in use.

The Guest Shell sshd service for password-less access uses a randomized port from 17680 through 49150.
To avoid port conflict, choose a port outside this range.

Note

The following steps start the OpenSSH server. The examples start the OpenSSH server for management netns
on IP address 10.122.84.34:2222:

1. Create the following files: /usr/lib/systemd/systm/sshd-mgmt.service and
/etc/ssh/sshd-mgmt_config. The files should have the following configurations:
-rw-r--r-- 1 root root 394 Apr 7 14:21 /usr/lib/systemd/system/sshd-mgmt.service
-rw------- 1 root root 4478 Apr 7 14:22 /etc/ssh/sshd-mgmt_config

2. Copy the Unit and Service contents from the /usr/lib/systemd/syste/ssh.service file to
sshd-mgmt.service.
[Unit]
Description=OpenSSH server daemon

Guest Shell
4

Guest Shell
Guidelines and Limitations

After=network.target sshd-keygen.service
Wants=sshd-keygen.service

[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/sbin/ip netns exec management /usr/sbin/sshd -f /etc/ssh/sshd-mgmt_config
-D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s
[Install]
WantedBy=multi-user.target

3. Copy the contents of /etc/ssh/sshd-config to /etc/ssh/sshd-mgmt_config. Modify
the ListenAddress IP and port as necessary.
Port 2222
ListenAddress 10.122.84.34

4. Start the systemctl daemon using the following commands:
sudo systemctl daemon-reload
sudo systemctl start sshd-mgmt.service
sudo systemctl status sshd-mgmt.service -l

5. (optional) Check the configuration.
ss -tnldp | grep 2222

6. SSH into Guest Shell:
ssh -p 2222 guestshell@10.122.84.34

7. Save the configuration across multiple Guest Shell or switch reboots.
sudo systemctl enable sshd-mgmt.service

8. For passwordless SSH or SCP and remote execution, generate the public and private keys for the user
ID you want to user for SSH/SCP using the ssh-keygen -t dsa command.

The key is then stored in the id_rsa and id_rsa.pub files in the /.ssh directory:
[root@node01 ~]# cd ~/.ssh
[root@node02 .ssh]# ls -l
total 8
-rw-------. 1 root root 1675 May 5 15:01 id_rsa
-rw-r--r--. 1 root root 406 May 5 15:01 id_rsa.pub

9. Copy the public key into the machine you want to SSH into and fix permissions:
cat id_rsa.pub >> /root/.ssh/authorized_keys
chmod 700 /root/.ssh
chmod 600 /root/.ssh/*

10. SSH or SCP into the remote switch without a password:
ssh -p <port#> userid@hostname [<remote command>]
scp -P <port#> userid@hostname/filepath /destination

localtime

The Guest Shell shares /etc/localtime with the host system.

Guest Shell
5

Guest Shell
Guidelines and Limitations

If you do not want to share the same localtime with the host, this symlink can be broken and a Guest Shell
specific /etc/localtime can be created.

Note

switch(config)# clock timezone PDT -7 0
switch(config)# clock set 10:00:00 27 Jan 2017
Fri Jan 27 10:00:00 PDT 2017
switch(config)# show clock
10:00:07.554 PDT Fri Jan 27 2017
switch(config)# run guestshell
guestshell:~$ date
Fri Jan 27 10:00:12 PDT 2017

Accessing the Guest Shell
In Cisco NX-OS, the Guest Shell is accessible to the network-admin. It is automatically enabled in the system
and can be accessed using the run guestshell command. Consistent with the run bash command, these
commands can be issued within the Guest Shell with the run guestshell command form of the NX-OS CLI
command.

The Guest Shell is automatically enabled on systems with more than 4 GB of RAM.Note

switch# run guestshell ls -al /bootflash/*.ova
-rw-rw-rw- 1 2002 503 83814400 Aug 21 18:04 /bootflash/pup.ova
-rw-rw-rw- 1 2002 503 40724480 Apr 15 2012 /bootflash/red.ova

When running in the Guest Shell, you have network-admin level privileges.Note

In version 2.2(0.2) and later, the Guest Shell dynamically creates user accounts with the same information as
the user logged into switch. However, all other information is not shared between the switch and the Guest
Shell user accounts.

In addition, the Guest Shell accounts are not automatically removed, and must be removed by the network
administrator when no longer needed.

Note

Resources Used for the Guest Shell
By default, the resources for the Guest Shell have a small impact on resources available for normal switch
operations. If the network-admin requires more resources for the Guest Shell, the guestshell resize {cpu |
memory | rootfs} command changes these limits.

Guest Shell
6

Guest Shell
Accessing the Guest Shell

Minimum/MaximumDefaultResource

1/20%1%CPU

256/3840MB256MBMemory

200/2000MB200MBStorage

The CPU limit is the percentage of the system compute capacity that tasks running within the Guest Shell are
given when there is contention with other compute loads in the system. When there is no contention for CPU
resources, the tasks within the Guest Shell are not limited.

A Guest Shell reboot is required after changing the resource allocations. This can be accomplished with the
guestshell reboot command.

Note

Capabilities in the Guest Shell
The Guest Shell has several utilities and capabilities available by default.

The Guest Shell runs CentOS 7 Linux which supports Yum install software packages that are built for this
distribution. The Guest Shell is pre-populated with many of the common tools that you would expect on a
networking device including net-tools, iproute, tcpdumpand OpenSSH. Python 2.7.5 and later is included
by default as is the PIP for installing extra Python packages.

By default the Guest Shell is a 64-bit execution space. If the switch needs 32-bit support, you can install the
glibc.i686 package.

The Guest Shell has access to the Linux network interfaces used to represent the management and data ports
of the switch. Typical Linux methods and utilities like ifconfig and ethtool can be used to collect counters.
When an interface is placed into a VRF in the NX-OS CLI, the Linux network interface is placed into a
network namespace for that VRF. The name spaces can be seen at /var/run/netns and the ip netns
utility can be used to run in the context of different namespaces. A couple of utilities, chvrf and vrfinfo, are
provided for running in a different namespace and getting information about which namespace or VRF a
process is running in.

The switch's systemd manages services in CentOS 7 environments, including the Guest Shell.

NX-OS CLI in the Guest Shell
The Guest Shell provides an application to allow the user to issue NX-OS commands from the Guest Shell
environment to the host network element. The dohost application accepts any valid NX-OS configuration or
exec commands and issues them to the host network element.

When invoking the dohost command each NX-OS command may be in single or double quotes:

dohost "<NXOS CLI>"

The NX-OS CLI can be chained together:

[guestshell@guestshell ~]$ dohost "sh lldp time | in Hold" "show cdp global"

Guest Shell
7

Guest Shell
Capabilities in the Guest Shell

Holdtime in seconds: 120
Global CDP information:
CDP enabled globally
Refresh time is 21 seconds
Hold time is 180 seconds
CDPv2 advertisements is enabled
DeviceID TLV in System-Name(Default) Format
[guestshell@guestshell ~]$

The NX-OS CLI can also be chained together using the NX-OS style command chaining technique by adding
a semicolon between each command. (A space on either side of the semicolon is required.)

[guestshell@guestshell ~]$ dohost "conf t ; cdp timer 13 ; show run | inc cdp"
Enter configuration commands, one per line. End with CNTL/Z.
cdp timer 13
[guestshell@guestshell ~]$

With Guest Shell version 2.2 (0.2) and later, commands that are issued on the host through the dohost command
are run with privileges that are based on the effective role of the Guest Shell user.

Prior versions of Guest Shell run commands with network-admin level privileges.

The dohost command fails when the number of UDS connections to NX-API are at the maximum allowed.

Note

Network Access in Guest Shell
The NX-OS switch ports are represented in the Guest Shell as Linux network interfaces. Typical Linuxmethods
like view stats in /proc/net/dev through ifconfig, or ethtool are all supported:

The Guest Shell has several typical network utilities included by default. They can be used on different VRFs
using the chvrf vrf command command.
[guestshell@guestshell bootflash]$ ifconfig Eth1-47
Eth1-47: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 13.0.0.47 netmask 255.255.255.0 broadcast 13.0.0.255
ether 54:7f:ee:8e:27:bc txqueuelen 100 (Ethernet)
RX packets 311442 bytes 21703008 (20.6 MiB)
RX errors 0 dropped 185 overruns 0 frame 0
TX packets 12967 bytes 3023575 (2.8 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Within the Guest Shell, the networking state can be monitored, but not changed. To change networking state,
use the NX-OS CLI or the appropriate Linux utilities in the host Bash shell.

The tcpdump command is packaged with the Guest Shell to allow packet tracing of punted traffic on the
management or switch ports.

The sudo ip netns exec management ping utility is a common method for running a command in the context
of a specified network namespace. This can be done within the Guest Shell:
[guestshell@guestshell bootflash]$ sudo ip netns exec management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms

Guest Shell
8

Guest Shell
Network Access in Guest Shell

The chvrf utility is provided as a convenience:
guestshell@guestshell bootflash]$ chvrf management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms

Commands that are run without the chvrf command are run in the current VRF or network namespace.Note

For example, to ping IP address 10.0.0.1 over the management VRF, the command is “chvrf management
ping 10.0.0.1”. Other utilities such as scp or ssh would be similar.

Example:

switch# guestshell
[guestshell@guestshell ~]$ cd /bootflash
[guestshell@guestshell bootflash]$ chvrf management scp foo@10.28.38.48:/foo/index.html
index.html
foo@10.28.38.48's password:
index.html 100% 1804 1.8KB/s 00:00
[guestshell@guestshell bootflash]$ ls -al index.html
-rw-r--r-- 1 guestshe users 1804 Sep 13 20:28 index.html
[guestshell@guestshell bootflash]$
[guestshell@guestshell bootflash]$ chvrf management curl cisco.com
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here.</p>
</body></html>
[guestshell@guestshell bootflash]$

To obtain a list of VRFs on the system, use the show vrf command natively from NX-OS or through the
dohost command:

Example:

[guestshell@guestshell bootflash]$ dohost 'sh vrf'
VRF-Name VRF-ID State Reason
default 1 Up --
management 2 Up --
red 6 Up --

Within the Guest Shell, the network namespaces associated with the VRFs are what are actually used. It can
be more convenient to just see which network namespaces are present:
[guestshell@guestshell bootflash]$ ls /var/run/netns
default management red
[guestshell@guestshell bootflash]$

To resolve domain names from within the Guest Shell, the resolver needs to be configured. Edit the
/etc/resolv.conf file in the Guest Shell to include a DNS name server and domain as appropriate for the network.

Example:

Guest Shell
9

Guest Shell
Network Access in Guest Shell

nameserver 10.1.1.1
domain cisco.com

The name server and domain information should match what is configured through the NX-OS configuration.

Example:

switch(config)# ip domain-name cisco.com
switch(config)# ip name-server 10.1.1.1
switch(config)# vrf context management
switch(config-vrf)# ip domain-name cisco.com
switch(config-vrf)# ip name-server 10.1.1.1

If the switch is in a network that uses an HTTP proxy server, the http_proxy and https_proxy environment
variables must be set up within the Guest Shell also.

Example:

export http_proxy=http://proxy.esl.cisco.com:8080
export https_proxy=http://proxy.esl.cisco.com:8080

These environment variables should be set in the .bashrc file or in an appropriate script to ensure that they
are persistent.

Access to Bootflash in Guest Shell
Network administrators can manage files with Linux commands and utilities in addition to using NX-OS CLI
commands. Bymounting the system bootflash at /bootflash in the Guest Shell environment, the network-admin
can operate on these files with Linux commands.

Example:

find . –name “foo.txt”
rm “/bootflash/junk/foo.txt”

While the name of the user within the Guest Shell is the same as when on the host, the Guest Shell is in a
separate user namespace, and the UID does not match that of the user on the host. The file permissions for
group and others control the type of access the Guest Shell user has on the file.

Note

Python in Guest Shell
Python can be used interactively or Python scripts can be run in the Guest Shell.

Example:

guestshell:~$ python
python
Python 2.7.5 (default, Jun 17 2014, 18:11:42)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2

Guest Shell
10

Guest Shell
Access to Bootflash in Guest Shell

Type "help", "copyright", "credits" or "license" for more information.
>>>

guestshell:~$

The pip Python package manager is included in the Guest Shell to allow the network-admin to install new
Python packages.

Example:
[guestshell@guestshell ~]$ sudo su
[root@guestshell guestshell]# pip install Markdown
Collecting Markdown
Downloading Markdown-2.6.2-py2.py3-none-any.whl (157kB)
100% |################################| 159kB 1.8MB/s
Installing collected packages: Markdown
Successfully installed Markdown-2.6.2
[root@guestshell guestshell]# pip list | grep Markdown
Markdown (2.6.2)
[root@guestshell guestshell]#

You must enter the sudo su command before entering the pip install command.Note

Python 3 in Guest Shell versions up to 2.10 (CentOS 7)
Guest Shell 2.X provides a CentOS 7.1 environment, which does not have Python 3 installed by default. There
are multiple methods of installing Python 3 on CentOS 7.1, such as using third-party repositories or building
from source. Another option is using the Red Hat Software Collections, which supports installing multiple
versions of Python within the same system.

To install the Red Hat Software Collections (SCL) tool:

1. Install the scl-utils package.

2. Enable the CentOS SCL repository and install one of its provided Python 3 RPMs.

[admin@guestshell ~]$ sudo su
[root@guestshell admin]# yum install -y scl-utils | tail
Running transaction test
Transaction test succeeded
Running transaction
Installing : scl-utils-20130529-19.el7.x86_64 1/1
Verifying : scl-utils-20130529-19.el7.x86_64 1/1

Installed:
scl-utils.x86_64 0:20130529-19.el7

Complete!

[root@guestshell admin]# yum install -y centos-release-scl | tail
Verifying : centos-release-scl-2-3.el7.centos.noarch 1/2
Verifying : centos-release-scl-rh-2-3.el7.centos.noarch 2/2

Installed:
centos-release-scl.noarch 0:2-3.el7.centos

Dependency Installed:

Guest Shell
11

Guest Shell
Python 3 in Guest Shell versions up to 2.10 (CentOS 7)

centos-release-scl-rh.noarch 0:2-3.el7.centos

Complete!

[root@guestshell admin]# yum install -y rh-python36 | tail
warning: /var/cache/yum/x86_64/7/centos-sclo-rh/packages/rh-python36-2.0-1.el7.x86_64.rpm:
Header V4 RSA/SHA1 Signature, key ID f2ee9d55: NOKEY
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm:
[Errno 12] Timeout on
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm: (28,
'Operation too slow. Less than 1000 bytes/sec transferred the last 30 seconds')
Trying other mirror.
Importing GPG key 0xF2EE9D55:
Userid : "CentOS SoftwareCollections SIG
(https://wiki.centos.org/SpecialInterestGroup/SCLo) <security@centos.org>"
Fingerprint: c4db d535 b1fb ba14 f8ba 64a8 4eb8 4e71 f2ee 9d55
Package : centos-release-scl-rh-2-3.el7.centos.noarch (@extras)
From : /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-SIG-SCLo
rh-python36-python-libs.x86_64 0:3.6.9-2.el7
rh-python36-python-pip.noarch 0:9.0.1-2.el7
rh-python36-python-setuptools.noarch 0:36.5.0-1.el7
rh-python36-python-virtualenv.noarch 0:15.1.0-2.el7
rh-python36-runtime.x86_64 0:2.0-1.el7
scl-utils-build.x86_64 0:20130529-19.el7
xml-common.noarch 0:0.6.3-39.el7
zip.x86_64 0:3.0-11.el7

Complete!

Using SCL, it is possible to create an interactive bash session with Python 3’s environment variables
automatically setup.

The root user is not needed to use the SCL Python installation.Note

[admin@guestshell ~]$ scl enable rh-python36 bash
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

The Python SCL installation also provides the pip utility.
[admin@guestshell ~]$ pip3 install requests --user
Collecting requests
Downloading

https://files.pythonhosted.org/packages/51/bd/23c926cd341ea6b7dd0b2a00aba99ae0f828be89d72b2190f27c11d4b7fb/requests-2.22.0-py2.py3-none-any.whl
(57kB)

100% |################################| 61kB 211kB/s
Collecting idna<2.9,>=2.5 (from requests)
Downloading

https://files.pythonhosted.org/packages/14/2c/cd551d81dbe15200be1cf41cd03869a46fe7226e7450af7a6545bfc474c9/idna-2.8-py2.py3-none-any.whl
(58kB)

100% |################################| 61kB 279kB/s
Collecting chardet<3.1.0,>=3.0.2 (from requests)
Downloading

https://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487b4bb1ddec7ca55ec7510b22e4c51f14098443b8/chardet-3.0.4-py2.py3-none-any.whl
(133kB)

100% |################################| 143kB 441kB/s
Collecting certifi>=2017.4.17 (from requests)
Downloading

https://files.pythonhosted.org/packages/b9/63/df50cac98ea0d5b006c55a399c3bf1db9da7b5a24de7890bc9cfd5dd9e99/certifi-2019.11.28-py2.py3-none-any.whl

Guest Shell
12

Guest Shell
Python 3 in Guest Shell versions up to 2.10 (CentOS 7)

(156kB)
100% |################################| 163kB 447kB/s

Collecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 (from requests)
Downloading

https://files.pythonhosted.org/packages/e8/74/6e4f91745020f967d09332bb2b8b9b10090957334692eb88ea4afe91b77f/urllib3-1.25.8-py2.py3-none-any.whl
(125kB)

100% |################################| 133kB 656kB/s
Installing collected packages: idna, chardet, certifi, urllib3, requests
Successfully installed certifi-2019.11.28 chardet-3.0.4 idna-2.8 requests-2.22.0
urllib3-1.25.8
You are using pip version 9.0.1, however version 20.0.2 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import requests
>>> requests.get("https://cisco.com")
<Response [200]>

The default Python 2 installation can be used alongside the SCL Python installation.
[admin@guestshell ~]$ which python3
/opt/rh/rh-python36/root/usr/bin/python3
[admin@guestshell ~]$ which python2
/bin/python2
[admin@guestshell ~]$ python2
Python 2.7.5 (default, Aug 7 2019, 00:51:29)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Hello world!'
Hello world!

Software Collections makes it possible to install multiple versions of the same RPM on a system. In this case,
it is possible to install Python 3.5 in addition to Python 3.6.
[admin@guestshell ~]$ sudo yum install -y rh-python35 | tail
Dependency Installed:
rh-python35-python.x86_64 0:3.5.1-13.el7
rh-python35-python-devel.x86_64 0:3.5.1-13.el7
rh-python35-python-libs.x86_64 0:3.5.1-13.el7
rh-python35-python-pip.noarch 0:7.1.0-2.el7
rh-python35-python-setuptools.noarch 0:18.0.1-2.el7
rh-python35-python-virtualenv.noarch 0:13.1.2-2.el7
rh-python35-runtime.x86_64 0:2.0-2.el7

Complete!

[admin@guestshell ~]$ scl enable rh-python35 python3
Python 3.5.1 (default, May 29 2019, 15:41:33)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Creating new interactive bash sessions when multiple Python versions are installed in SCL can cause an issue
where the libpython shared object file cannot be loaded. There is a workaround where you can use the source
scl_source enable python-installation command to properly set up the environment in the current bash session.

The default Guest Shell storage capacity is not sufficient to install Python 3. Use the guestshell resize rootfs
size-in-MB command to increase the size of the file system. Typically, setting the rootfs size to 550 MB is
sufficient.

Note

Guest Shell
13

Guest Shell
Python 3 in Guest Shell versions up to 2.10 (CentOS 7)

Installing RPMs in the Guest Shell
The /etc/yum.repos.d/CentOS-Base.repo file is set up to use the CentOS mirror list by default. Follow
instructions in that file if changes are needed.

You can point Yum to one or more repositories at any time by modifying the yumrepo_x86_64.repo
file or by adding a new .repo file in the repos.d directory.

For applications that need to be installed inside Guest Shell, go to the CentOS 7 repo at http://mirror.centos.org/
centos/7/os/x86_64/Packages/.

Yum resolves the dependencies and installs all the required packages.
[guestshell@guestshell ~]$ sudo chvrf management yum -y install glibc.i686
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: bay.uchicago.edu
* extras: pubmirrors.dal.corespace.com
* updates: mirrors.cmich.edu
Resolving Dependencies
"-->" Running transaction check
"--->" Package glibc.i686 0:2.17-78.el7 will be installed
"-->" Processing Dependency: libfreebl3.so(NSSRAWHASH_3.12.3) for package:
glibc-2.17-78.el7.i686
"-->" Processing Dependency: libfreebl3.so for package: glibc-2.17-78.el7.i686
"-->" Running transaction check
"--->" Package nss-softokn-freebl.i686 0:3.16.2.3-9.el7 will be installed
"-->" Finished Dependency Resolution

Dependencies Resolved

==
Package Arch Version Repository Size
==
Installing:
glibc i686 2.17-78.el7 base 4.2 M
Installing for dependencies:
nss-softokn-freebl i686 3.16.2.3-9.el7 base 187 k

Transaction Summary
==
Install 1 Package (+1 Dependent package)

Total download size: 4.4 M
Installed size: 15 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
(1/2): nss-softokn-freebl-3.16.2.3-9.el7.i686.rpm | 187 kB 00:00:25
(2/2): glibc-2.17-78.el7.i686.rpm | 4.2 MB 00:00:30
--
Total 145 kB/s | 4.4 MB 00:00:30
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : nss-softokn-freebl-3.16.2.3-9.el7.i686 1/2
Installing : glibc-2.17-78.el7.i686 2/2
error: lua script failed: [string "%triggerin(glibc-common-2.17-78.el7.x86_64)"]:1: attempt
to compare number with nil
Non-fatal "<"unknown">" scriptlet failure in rpm package glibc-2.17-78.el7.i686
Verifying : glibc-2.17-78.el7.i686 1/2
Verifying : nss-softokn-freebl-3.16.2.3-9.el7.i686 2/2

Guest Shell
14

Guest Shell
Installing RPMs in the Guest Shell

http://mirror.centos.org/centos/7/os/x86_64/Packages/
http://mirror.centos.org/centos/7/os/x86_64/Packages/

Installed:
glibc.i686 0:2.17-78.el7

Dependency Installed:
nss-softokn-freebl.i686 0:3.16.2.3-9.el7

Complete!

When more space is needed in the Guest Shell root file system for installing or running packages, use the
guestshell resize roofs size-in-MB command to increase the file system size.

Note

Some open source software packages from the repository might not install or run as expected in the Guest
Shell due to restrictions that have been put into place to protect the integrity of the host system.

Note

Security Posture for Guest Shell
Use of the Guest Shell in Cisco Nexus 3400-S platform switches is just one of the many ways the network
Admin can manage or extend the functionality of the system. The Guest Shell is intended to provide an
execution environment that is decoupled from the native host context. This separation allows the introduction
of software into the system that may not be compatible with the native execution environment. It also allows
the software to run in an environment that does not interfere with the behavior, performance, or scale of the
system.

Kernel Vulnerability Patches
Cisco responds to pertinent CommonVulnerabilities and Exposures (CVEs) with platform updates that address
known vulnerabilities.

ASLR and X-Space Support
Cisco NX-OS supports the use of Address Space Layout Randomization (ASLR) and Executable Space
Protection (X-Space) for runtime defense. The software in Cisco-signed packages uses this capability. If other
software is installed on the system, it is recommended that it be built using a host OS and development
toolchain that supports these technologies. Doing so reduces the potential attack surface that the software
presents to potential intruders.

Namespace Isolation
The Guest Shell environment runs within a Linux container that uses various namespaces to decouple the
Guest Shell execution space from that of the host. The Guest Shell is run in a separate user namespace, which
helps protect the integrity of the host system, as processes running as root within the Guest Shell are not root
of the host. These processes appear to be running as UID 0 within the Guest Shell due to UID mapping, but
the kernel knows the real UID of these processes and evaluates the POSIX capabilities within the appropriate
user namespace.

Guest Shell
15

Guest Shell
Security Posture for Guest Shell

When a user enters the Guest Shell from the host, a user of the same name is created within the Guest Shell.
While the names match, the UID of the user within the Guest Shell is not the same as the UID on the host.
To still allow users within the Guest Shell to access files on shared media (for example, /bootflash or
/volatile), the common NX-OS GID that are used on the host (for example, network-admin or
network-operator) are mapped into the Guest Shell such that the values are the same and the Guest Shell
instance of the user is associated with the appropriate groups based on group membership on the host.

As an example, consider user bob. On the host, bob has the following UID and GID membership:
bash-4.3$ id
uid=2004(bob) gid=503(network-admin) groups=503(network-admin),504(network-operator)

When user bob is in the Guest Shell, the group membership from the host is set up in the Guest Shell:
[bob@guestshell ~]$ id
uid=1002(bob) gid=503(network-admin)
groups=503(network-admin),504(network-operator),10(wheel)

Files that are created by user bob in the host Bash shell and the Guest Shell have different owner IDs. The
example output below shows that the file created from within the Guest Shell has owner ID 12002, instead
of 1002 as shown in the example output above. This is due to the command being issued from the host Bash
shell and the ID space for the Guest Shell starting at ID 11000. The group ID of the file is network-admin,
which is 503 in both environments.
bash-4.3$ ls -ln /bootflash/bob_*
-rw-rw-r-- 1 12002 503 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 2004 503 4 Jun 22 15:47 /bootflash/bob_host

bash-4.3$ ls -l /bootflash/bob_*
-rw-rw-r-- 1 12002 network-admin 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 bob network-admin 4 Jun 22 15:47 /bootflash/bob_host

The user is allowed to access the file due to the file permission settings for the network-admin group, and the
fact that bob is a member of network-admin in both the host and Guest Shell.

Inside the Guest Shell environment, the example output below shows that the owner ID for the file that is
created by bob from the host is 65534. This indicates that the actual ID is in a range that is outside the range
of IDs that are mapped into the user namespace. Any unmapped ID will be shown as this value.
[bob@guestshell ~]$ ls -ln /bootflash/bob_*
-rw-rw-r-- 1 1002 503 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 65534 503 4 Jun 22 15:47 /bootflash/bob_host

[bob@guestshell ~]$ ls -l /bootflash/bob_*
-rw-rw-r-- 1 bob network-admin 4 Jun 22 15:47 /bootflash/bob_guestshell
-rw-rw-r-- 1 65534 network-admin 4 Jun 22 15:47 /bootflash/bob_host

Root-User Restrictions
As a best practice for developing secure code, Cisco recommends running applications with the least privilege
needed to accomplish the assigned task. To help prevent unintended accesses, software added into the Guest
Shell should follow this best practice.

Guest Shell
16

Guest Shell
Root-User Restrictions

All processes within the Guest Shell are subject to restrictions imposed by reduced Linux capabilities. If your
application must perform operations that require root privileges, restrict the use of the root account to the
smallest set of operations that absolutely requires root access, and impose other controls such as a hard limit
on the amount of time that the application can run in that mode.

The set of Linux capabilities that are dropped for root within the Guest Shell follow:

• cap_audit_control

• cap_audit_write

• cap_mac_admin

• cap_mac_override

• cap_mknod

• cap_net_broadcast

• cap_sys_boot

• cap_syslog

• cap_sys_module

• cap_sys_nice

• cap_sys_pacct

• cap_sys_ptrace

• cap_sys_rawio

• cap_sys_resource

• cap_sys_time

• cap_wake_alarm

While the net_admin capability is not dropped, user namespace and the host ownership of the network
namespaces prevents the Guest Shell user from modifying the interface state. As root within the Guest Shell,
bind mounts may be used as well as tmpfs and ramfs mounts. Other mounts are prevented.

Resource Management
ADenial-of-Service (DoS) attack attempts to make a machine or network resource unavailable to its intended
users.Misbehaving ormalicious application code can causeDoS as the result of over-consumption of connection
bandwidth, disk space, memory, and other resources. The host provides resource-management features that
ensure fair allocation of resources between Guest Shell and services on the host.

Guest File System Access Restrictions
To preserve the integrity of the files within the Guest Shell, the file systems of the Guest Shell are not accessible
from the NX-OS CLI.

Guest Shell
17

Guest Shell
Resource Management

bootflash: and volatile: of the host are mounted as /bootflash and /volatile within the Guest
Shell. A network-admin can access files on this media using the NX-OS exec commands from the host or
using Linux commands from within the Guest Shell.

Managing the Guest Shell
The following are commands to manage the Guest Shell:

Table 1: Guest Shell CLI Commands

DescriptionCommands

• When guest shell OVA file is specified:

Installs and activates the Guest Shell using the
OVA that is embedded in the system image.

Installs and activates the Guest Shell using the
specified software package (OVA file) or the
embedded package from the system image (when
no package is specified). Initially, Guest Shell
packages are only available by being embedded
in the system image.

When the Guest Shell is already installed, this
command enables the installed Guest Shell.
Typically this is used after a guestshell disable
command.

• When rootfs-file-URI is specified:

Imports a Guest Shell rootfs when the Guest
Shell is in a destroyed state. This command
brings up the Guest Shell with the specified
package.

guestshell enable {package [guest shell OVA file |
rootfs-file-URI]}

Exports a Guest Shell rootfs file to a local URI
(bootflash, USB1, and so on).

guestshell export rootfs package destination-file-URI

Shuts down and disables the Guest Shell.guestshell disable

Guest Shell
18

Guest Shell
Managing the Guest Shell

DescriptionCommands

• When guest shell OVA file is specified:

Deactivates and upgrades the Guest Shell using
the specified software package (OVA file) or the
embedded package from the system image (if no
package is specified). Initially Guest Shell
packages are only available by being embedded
in the system image.

The current rootfs for the Guest Shell is replaced
with the rootfs in the software package. The
Guest Shell does not make use of secondary
filesystems that persist across an upgrade.
Without persistent secondary filesystems, a
guestshell destroy command followed by a
guestshell enable command could also be used
to replace the rootfs. When an upgrade is
successful, the Guest Shell is activated.

You are prompted for a confirmation before
carrying out the upgrade command.

• When rootfs-file-URI is specified:

Imports a Guest Shell rootfs file when the Guest
Shell is already installed. This command removes
the existing Guest Shell and installs the specified
package.

guestshell upgrade {package [guest shell OVA file
| rootfs-file-URI]}

Deactivates the Guest Shell and then reactivates it.

You are prompted for a confirmation before carrying
out the reboot command.

This is the equivalent of a guestshell
disable command followed by a guestshell
enable command in EXEC mode.

This is useful when processes inside the
Guest Shell have been stopped and need
to be restarted. The run guestshell
command relies on sshd running in the
Guest Shell.

If the command does not work, the sshd
process may have been inadvertently
stopped. Performing a reboot of the Guest
Shell from the NX-OS CLI allows it to
restart and restore the command.

Note

guestshell reboot

Guest Shell
19

Guest Shell
Managing the Guest Shell

DescriptionCommands

Deactivates and uninstalls the Guest Shell. All
resources that are associated with the Guest Shell are
returned to the system. The show virtual-service
global command indicates when these resources
become available.

Issuing this command results in a prompt for a
confirmation before carrying out the destroy
command.

guestshell destroy

Connects to the Guest Shell that is already running
with a shell prompt. No username or password is
required.

guestshell

run guestshell

Executes a Linux or UNIX command within the
context of the Guest Shell environment.

After execution of the command you are returned to
the switch prompt.

guestshell run command

run guestshell command

Changes the allotted resources available for the Guest
Shell. The changes take effect the next time the Guest
Shell is enabled or rebooted.

Resize values are cleared when the
guestshell destroy command is used.

Note

guestshell resize [cpu | memory | rootfs]

On systems that have Active and Standby supervisors,
this command synchronizes the Guest Shell contents
from the active supervisor to the standby supervisor.
The network-admin issues this command when the
Guest Shell rootfs has been set up to a point that the
Standby supervisor to use the same rootfs when it
becomes the Active supervisor. If this command is
not used, the Guest Shell is freshly installed when the
standby supervisor transitions to an active role using
the Guest Shell package available on that supervisor.

guestshell sync

If the guest shell or virtual-services cannot be
managed, even after a system reload, the reset
command is used to force the removal of the Guest
Shell and all virtual-services. The system needs to be
reloaded for the cleanup to happen. No Guest Shell
or extra virtual-services can be installed or enabled
after issuing this command until after the system has
been reloaded.

You are prompted for a confirmation before initiating
the reset.

virtual-service reset force

Guest Shell
20

Guest Shell
Managing the Guest Shell

Administrative privileges are necessary to enable/disable and to gain access to the Guest Shell environment.Note

The Guest Shell is implemented as a Linux container (LXC) on the host system. On NX-OS devices, LXCs
are installed and managed with the virtual-service commands. The Guest Shell appears in the virtual-service
commands as a virtual service named guestshell+.

Note

Disabling the Guest Shell
The guestshell disable command shuts down and disables the Guest Shell.

When the Guest Shell is disabled and the system is reloaded, the Guest Shell remains disabled.

Example:
switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Activated guestshe11.ova

switch# guestshell disable
You will not be able to access your guest shell if it is disabled. Are you sure you want
to disable the guest shell? (y/n) [n) y

2014 Jul 30 19:47:23 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Deactivating virtual
service 'guestshell+'
2014 Jul 30 18:47:29 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully deactivated
virtual service 'guestshell+'

switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Deactivated guestshell.ova

The Guest Shell is reactivated with the guestshell enable command.Note

Destroying the Guest Shell
The guestshell destroy command uninstalls the Guest Shell and its artifacts. The command does not remove
the Guest Shell OVA.

When you destroy the Guest Shell and reload the system, the Guest Shell remains destroyed.
switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Deactivated guestshell.ova

Guest Shell
21

Guest Shell
Disabling the Guest Shell

switch# guestshell destroy

You are about to destroy the guest shell and all of its contents. Be sure to save your work.
Are you sure you want to continue? (y/n) [n] y
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Destroying virtual service
'guestshell+'
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Successfully destroyed
virtual service 'guestshell +'

switch# show virtual-service list
Virtual Service List:

The Guest Shell can be re-enabled with the guestshell enable command.Note

If you do not want to use the Guest Shell, you can remove it with the guestshell destroy command. Once the
Guest Shell has been removed, it remains removed for subsequent reloads. This means that when the Guest
Shell container has been removed and the switch is reloaded, the Guest Shell container is not automatically
started.

Note

Enabling the Guest Shell
The guestshell enable command installs the Guest Shell from a Guest Shell software package. By default,
the package that is embedded in the system image is used for the installation. The command is also used to
reactivate the Guest Shell if it has been disabled.

When the Guest Shell is enabled and the system is reloaded, the Guest Shell remains enabled.

Example:

switch# show virtual-service list
Virtual Service List:
switch# guestshell enable
2014 Jul 30 18:50:27 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual service
'guestshell+'
2014 Jul 30 18;50;42 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating

2014 Jul 30 18:50:42 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2014 Jul 30 18:51:16 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Activated guestshell.ova

Guest Shell
22

Guest Shell
Enabling the Guest Shell

Enabling the Guest Shell in Base Boot Mode

You can choose to boot your system in base boot mode. When you boot your system in base boot mode, the
Guest Shell is not started by default. In order to use the Guest Shell in this mode, you must activate the RPMs
containing the virtualization infrastructure as well as the Guest Shell image. After, the Guest Shell and
virtual-service commands are available.

If the RPM activation commands are run in this order:

1. install activate guestshell

2. install activate virtualization

The Guest Shell container will be activated automatically as it would have been if the system had been booted
in full mode.

If the RPM activation commands are run in the reverse order:

1. install activate virtualization

2. install activate guestshell

Then the Guest Shell will not be enabled until you run the guestshell enable command.

Replicating the Guest Shell
The switch has a Guest Shell rootfswhich can be customized on one switch and can be deployed ontomultiple
switches.

The approach is to customize and then export the Guest Shell rootfs and store it on a file server. A POAP
script can download (import) the Guest Shell rootfs to other switches and install the specific Guest Shell
across many devices simultaneously.

Exporting Guest Shell rootfs

Use the guestshell export rootfs package destination-file-URI command to export a Guest Shell rootfs.

The destination-file-URI parameter is the name of the file that the Guest Shell rootfs is copied to. This file
allows for local URI options (bootflash, USB1, and so on).

The guestshell export rootfs package command:

• Disables the Guest Shell (if already enabled).

• Creates a guest shell import YAML file and inserts it into the /cisco directory of the rootfs ext4 file.

• Copies the rootfs ext4 file to the target URI location.

• Re-enables the Guest Shell if it had been previously enabled.

Importing Guest Shell rootfs

When importing a Guest Shell rootfs, there are two situations to consider:

• Use the guestshell enable package rootfs-file-URI command to import a Guest Shell rootfs when the
Guest Shell is in a destroyed state. This command brings up the Guest Shell with the specified package.

Guest Shell
23

Guest Shell
Replicating the Guest Shell

• Use the guestshell upgrade package rootfs-file-URI command to import a Guest Shell rootfs when the
Guest Shell is already installed. This command removes the existing Guest Shell and installs the specified
package.

The rootfs-file-URI parameter is the rootfs file that is stored on local storage (bootflash, USB, and so on).

When this command is executed with a file that is on bootflash, the file is moved to a storage pool on bootflash.

As a best practice, you should copy the file to the bootflash and validate the md5sum before using the
guestshell upgrade package rootfs-file-URI command.

The guestshell upgrade package rootfs-file-URI command can be executed from within the Guest Shell.Note

The rootfs file is not a Cisco signed package, you must configure to allow unsigned packages before enabling
as shown in the example.

(config-virt-serv-global)# signing level unsigned
Note: Support for unsigned packages has been user-enabled. Unsigned packages are not endorsed
by Cisco. User assumes all responsibility.

Note

To restore the embedded version of the rootfs:

• Use the guestshell upgrade command (without extra parameters) when the Guest Shell has already
been installed.

• Use the guestshell enable command (without extra parameters) when the Guest Shell had been destroyed.

Note

When running this command from within a Guest Shell, or outside a switch using NX-API, you must set
terminal dont-ask to skip any prompts.

Note

The guestshell enable package rootfs-file-URI command:

• Performs basic validation of the rootfs file.

• Moves the rootfs into the storage pool.

• Mounts the rootfs to extract the YAML file from the /cisco directory.

• Parses the YAML file to obtain VM definition (including resource requirements).

• Activates the Guest Shell.

Example workflow for guestshell enable :

switch# copy scp://user@10.1.1.1/my_storage/gs_rootfs.ext4 bootflash: vrf management
switch# guestshell resize cpu 8

Guest Shell
24

Guest Shell
Importing Guest Shell rootfs

Note: System CPU share will be resized on Guest shell enable
switch# guestshell enable package bootflash:gs_rootfs.ext4
Validating the provided rootfs
switch# 2017 Jul 31 14:58:01 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual
service 'guestshell+'
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual
service 'guestshell+'; Activating
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service
'guestshell+'
2017 Jul 31 14:58:33 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'

Workflow for guestshell upgrade is preceded by the existing Guest Shell being destroyed.Note

Resize values are cleared when the guestshell upgrade command is used.Note

Importing YAML File
A YAML file that defines some user modifiable characteristics of the Guest Shell is automatically created as
a part of the export operation. The YAML file is embedded into the Guest Shell rootfs in the /cisco directory.
The YAML file is not a complete descriptor for the Guest Shell container. The file only contains some of the
user-modifiable parameters.

Example of a guest shell import YAML file:

import-schema-version: "1.0"
info:
name: "GuestShell"
version: "2.4.0"
description: "Exported GuestShell: 20170216T175137Z"

app:
apptype: "lxc"
cpuarch: "x86_64"
resources:
cpu: 3
memory: 307200
disk:
- target-dir: "/"
capacity: 250

...

The YAML file is generated when the guestshell export rootfs package command is executed. The file
captures the values of the currently running Guest Shell.

The info section contains non-operational data that is used to help identify the Guest Shell. Some of the
information will be displayed in the output of the show guestshell detail command.

The description value is an encoding of the UTC time when the YAML file was created. The time string
format is the same as DTSTAMP in RFC5545 (iCal).

The resources section describes the resources that are required for hosting the Guest Shell. The value "/" for
the target-dir in the example identifies the disk as the rootfs.

Guest Shell
25

Guest Shell
Importing YAML File

If you specified resized values while the Guest Shell was destroyed, those values take precedence over the
values in the import YAML file when you use the guestshell enable package command.

Note

The cpuarch value indicates the CPU architecture that is expected for the container to run.

You can modify the YAML file (such as the description or increase the resource parameters, if appropriate)
after the export operation is complete.

Cisco provides a Python script that you can run to validate a modified YAML file with a JSON schema. It is
not meant to be a complete test (for example, device-specific resource limits are not checked), but it is able
to flag common errors. The Python script with examples is located at Guest Shell Import Export . The following
JSON file describes the schema for version 1.0 of the Guest Shell import YAML.

{
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Guest Shell import schema",
"description": "Schema for Guest Shell import descriptor file - ver 1.0",
"copyright": "2017 by Cisco systems, Inc. All rights reserved.",
"id": "",
"type": "object",
"additionalProperties": false,
"properties": {
"import-schema-version": {
"id": "/import-schema-version",
"type": "string",
"minLength": 1,
"maxLength": 20,
"enum": [

"1.0"
]

},
"info": {
"id": "/info",
"type": "object",
"additionalProperties": false,
"properties": {
"name": {
"id": "/info/name",
"type": "string",
"minLength": 1,
"maxLength": 29

},
"description": {
"id": "/info/description",
"type": "string",
"minLength": 1,
"maxLength": 199

},
"version": {
"id": "/info/version",
"type": "string",
"minLength": 1,
"maxLength": 63

},
"author-name": {
"id": "/info/author-name",
"type": "string",
"minLength": 1,
"maxLength": 199

Guest Shell
26

Guest Shell
Importing YAML File

https://github.com/datacenter/opennxos/tree/master/guestshell_import_export

},
"author-link": {
"id": "/info/author-link",
"type": "string",
"minLength": 1,
"maxLength": 199

}
}

},
"app": {
"id": "/app",
"type": "object",
"additionalProperties": false,
"properties": {
"apptype": {
"id": "/app/apptype",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [
"lxc"

]
},
"cpuarch": {
"id": "/app/cpuarch",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [
"x86_64"

]
},
"resources": {
"id": "/app/resources",
"type": "object",
"additionalProperties": false,
"properties": {
"cpu": {
"id": "/app/resources/cpu",
"type": "integer",
"multipleOf": 1,
"maximum": 100,
"minimum": 1

},
"memory": {
"id": "/app/resources/memory",
"type": "integer",
"multipleOf": 1024,
"minimum": 1024

},
"disk": {
"id": "/app/resources/disk",
"type": "array",
"minItems": 1,
"maxItems": 1,
"uniqueItems": true,
"items": {
"id": "/app/resources/disk/0",
"type": "object",
"additionalProperties": false,
"properties": {
"target-dir": {
"id": "/app/resources/disk/0/target-dir",
"type": "string",

Guest Shell
27

Guest Shell
Importing YAML File

"minLength": 1,
"maxLength": 1,
"enum": [
"/"

]
},
"file": {
"id": "/app/resources/disk/0/file",
"type": "string",
"minLength": 1,
"maxLength": 63

},
"capacity": {
"id": "/app/resources/disk/0/capacity",
"type": "integer",
"multipleOf": 1,
"minimum": 1

}
}

}
}

},
"required": [
"memory",
"disk"

]
}

},
"required": [
"apptype",
"cpuarch",
"resources"

]
}

},
"required": [
"app"

]
}

show guestshell Command
The output of the show guestshell detail command includes information that indicates whether the Guest
Shell was imported or was installed from an OVA.

Example of the show guestshell detail command after importing rootfs.
switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : guestshell.ova
Path : /isanboot/bin/guestshell.ova
Application
Name : GuestShell
Installed version : 2.4(0.0)
Description : Cisco Systems Guest Shell

Signing
Key type : Cisco release key
Method : SHA-1

Licensing
Name : None
Version : None

Resource reservation

Guest Shell
28

Guest Shell
show guestshell Command

Disk : 190 MB
Memory : 256 MB
CPU : 1% system CPU

Attached devices
Type Name Alias

Disk _rootfs
Disk /cisco/core
Serial/shell
Serial/aux
Serial/Syslog serial2
Serial/Trace serial3

Verifying Virtual Service and Guest Shell Information
You can verify virtual service and Guest Shell information with the following commands:

DescriptionCommand

Displays the global state and
limits for virtual services.

show virtual-service global

switch# show virtual-service global
Virtual Service Global State and Virtualization Limits:

Infrastructure version : 1.10
Total virtual services installed : 1
Total virtual services activated : 1

Machine types supported : LXC
Machine types disabled : KVM

Maximum VCPUs per virtual service : 1

Resource virtualization limits:
Name Quota Committed Available

system CPU (%) 6 1 5
memory (MB) 5376 256 5120
bootflash (MB) 8192 190 8002

switch#

Displays a summary of the
virtual services, the status of
the virtual services, and
installed software packages.

show virtual-service list

switch# show virtual-service list

Virtual Service List:

Name Status Package Name
--
guestshell+ Activated guestshell.ova

Guest Shell
29

Guest Shell
Verifying Virtual Service and Guest Shell Information

DescriptionCommand

Displays details about the
guest shell package (such as
version, signing resources, and
devices).

show guestshell detail

switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : guestshell.ova
Path : /isanboot/bin/guestshell.ova
Application
Name : GuestShell
Installed version : 2.4(0.0)
Description : Cisco Systems Guest Shell

Signing
Key type : Cisco release key
Method : SHA-1

Licensing
Name : None
Version : None

Resource reservation
Disk : 190 MB
Memory : 256 MB
CPU : 1% system CPU

Attached devices
Type Name Alias

Disk _rootfs
Disk /cisco/core
Serial/shell
Serial/aux
Serial/Syslog serial2
Serial/Trace serial3

Persistently Starting Your Application from the Guest Shell
Your application should have a systemd / systemctl service file that gets installed in
/usr/lib/systemd/system/application_name.service. This service file should have the following
general format:
[Unit]
Description=Put a short description of your application here

[Service]
ExecStart=Put the command to start your application here
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target

To run systemd as a specific user, add User=<username> to the [Service] section of your service.Note

Guest Shell
30

Guest Shell
Persistently Starting Your Application from the Guest Shell

Procedure for Persistently Starting Your Application from the Guest Shell

Procedure

Step 1 Install your application service file that you created above into
/usr/lib/systemd/system/application_name.service

Step 2 Start your application with systemctl start application_name

Step 3 Verify that your application is running with systemctl status -l application_name

Step 4 Enable your application to be restarted on reload with systemctl enable application_name

Step 5 Verify that your application is running with systemctl status -l application_name

An Example Application in the Guest Shell
The following example demonstrates an application in the Guest Shell:
root@guestshell guestshell]# cat /etc/init.d/hello.sh
#!/bin/bash

OUTPUTFILE=/tmp/hello

rm -f $OUTPUTFILE
while true
do

echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10

done
[root@guestshell guestshell]#
[root@guestshell guestshell]#
[root@guestshell system]# cat /usr/lib/systemd/system/hello.service
[Unit]
Description=Trivial "hello world" example daemon

[Service]
ExecStart=/etc/init.d/hello.sh &
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target
[root@guestshell system]#
[root@guestshell system]# systemctl start hello
[root@guestshell system]# systemctl enable hello
[root@guestshell system]# systemctl status -l hello
hello.service - Trivial "hello world" example daemon

Loaded: loaded (/usr/lib/systemd/system/hello.service; enabled)
Active: active (running) since Sun 2015-09-27 18:31:51 UTC; 10s ago

Main PID: 355 (hello.sh)
CGroup: /system.slice/hello.service

##355 /bin/bash /etc/init.d/hello.sh &
##367 sleep 10

Sep 27 18:31:51 guestshell hello.sh[355]: Executing: /etc/init.d/hello.sh &
[root@guestshell system]#

Guest Shell
31

Guest Shell
Procedure for Persistently Starting Your Application from the Guest Shell

[root@guestshell guestshell]# exit
exit
[guestshell@guestshell ~]$ exit
logout
switch# reload
This command will reboot the system. (y/n)? [n] y

After reload
[root@guestshell guestshell]# ps -ef | grep hello
root 20 1 0 18:37 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 123 108 0 18:38 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# cat /tmp/hello
Sun Sep 27 18:38:03 UTC 2015
Hello World
Sun Sep 27 18:38:13 UTC 2015
Hello World
Sun Sep 27 18:38:23 UTC 2015
Hello World
Sun Sep 27 18:38:33 UTC 2015
Hello World
Sun Sep 27 18:38:43 UTC 2015
Hello World
[root@guestshell guestshell]#

Running under systemd / systemctl, your application is automatically restarted if it dies (or if you
kill it). The Process ID is originally 226. After killing the application, it is automatically restarted with a
Process ID of 257.
[root@guestshell guestshell]# ps -ef | grep hello
root 226 1 0 19:02 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 254 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# kill -9 226
[root@guestshell guestshell]#
[root@guestshell guestshell]# ps -ef | grep hello
root 257 1 0 19:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 264 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#

Troubleshooting Guest Shell Issues

Unable to Access Files on Bootflash from Root in the Guest Shell

You may find that you are unable to access files on the bootflash from root in the Guest Shell.

From the host:
root@switch# ls -al /bootflash/try.that
-rw-r--r-- 1 root root 0 Apr 27 20:55 /bootflash/try.that
root@switch#

From the Guest Shell:
[root@guestshellbootflash]# ls -al /bootflash/try.that
-rw-r--r-- 1 65534 host-root 0 Apr 27 20:55 /bootflash/try.that
[root@guestshellbootflash]# echo "some text" >> /bootflash/try.that
-bash: /bootflash/try.that: Permission denied
[root@guestshellbootflash]#

Guest Shell
32

Guest Shell
Troubleshooting Guest Shell Issues

This might be because the user namespace is being used to protect the host system, so the root in the Guest
Shell is not actually the root of the system.

To recover from this issue, verify that the file permissions and group-id of the files allow for shared files on
bootflash to be accessed as expected. You may need to change the permissions or group-id from the host Bash
session.

Guest Shell
33

Guest Shell
Troubleshooting Guest Shell Issues

Guest Shell
34

Guest Shell
Troubleshooting Guest Shell Issues

	Guest Shell
	About the Guest Shell
	Guidelines and Limitations
	Accessing the Guest Shell
	Resources Used for the Guest Shell
	Capabilities in the Guest Shell
	NX-OS CLI in the Guest Shell
	Network Access in Guest Shell
	Access to Bootflash in Guest Shell
	Python in Guest Shell
	Python 3 in Guest Shell versions up to 2.10 (CentOS 7)
	Installing RPMs in the Guest Shell

	Security Posture for Guest Shell
	Kernel Vulnerability Patches
	ASLR and X-Space Support
	Namespace Isolation
	Root-User Restrictions
	Resource Management
	Guest File System Access Restrictions

	Managing the Guest Shell
	Disabling the Guest Shell
	Destroying the Guest Shell
	Enabling the Guest Shell
	Replicating the Guest Shell
	Exporting Guest Shell rootfs
	Importing Guest Shell rootfs
	Importing YAML File
	show guestshell Command

	Verifying Virtual Service and Guest Shell Information
	Persistently Starting Your Application from the Guest Shell
	Procedure for Persistently Starting Your Application from the Guest Shell
	An Example Application in the Guest Shell
	Troubleshooting Guest Shell Issues

