Guidelines for Programmable Reports

* Prerequisites, on page 1

* CLI Output Processing, on page 2
* Report Template, on page 3

* Template Content, on page 4

Prerequisites

Planning

1. Determine if the report is meant to be run for a whole fabric or device(s).

2. Find out which show command(s) should be run on switch(es) to collect the required data.
* Find out if the CLI output supports xml, json, or neither.
« If neither, plain CLI output is returned by the switch.

* Determine if the CLI response, including the command executed, needs to be stored in elasticsearch.
You should be cautious as storing responses may increase storage tremendously.

3. Determine if you need to pre-validate the report creation input such as Recurrence, Period, etc. For example,
does the report job support a periodic report, and how frequent should the job run?

Report Presentation

1. Ifyou want Summary, choose the format to display the data:
* Key-value pairs
* Table

* Chart (column, pie, line)

2. For Section (Detailed View), choose which format to display the data:
* Key-value pairs

* Array of JSON objects

Guidelines for Programmable Reports [Jj

. CLI Output Processing

CLI Qutput

Guidelines for Programmable Reports |

* Chart (column, pie, line)

3. For Formatters, the following are applicable:

* Add additional formatting to values displayed in UL
» Markers supported: ERROR, SUCCESS, WARNING, INFO

Data Comparison between Reports

1. Determine if the report needs to compare data between the current report and an older report.
2. Ifyes, report infra APIs allow you to retrieve previous report(s) like:

* One or more previously generated reports

* The oldest report in the report job

» Summary of a particular report

* A particular section of a reportCLI Output Processing

Processing

XML Format

If the CLI output returns data in XML format, you can use the report infra provided XML utilities to read the
XML data out:

From reportlib.preport import *:
* getxmltree(xml_string, tag)
* getxmlrows(xml _tree, tag_xpath)
* getnodevalue(xml_tree, node xpath)

* has tag(xml_tree, tag)

For an example, see the report template switch_inventory.

JSON Format

If the CLI output returns data in JSON format, import Python’s json module and use the json.loads() method
to parse a JSON string.

import json
json_string = <CLI response>
json_obj = json.loads(json_string)

For an example, see the report template fabric_nve vni_counter.

[l Guidelines for Programmable Reports

| Guidelines for Programmable Reports
Report Template .

Plain CLI Output

If the CLI output returns data in the same format as seen on the CLI Ul, you need to write your own parsing
method to read the data out in the CLI response.

Logger

Logger allows you to log messages from a report template. Logged messages are written to
/usr/local/cisco/dcm/fm/logs/preport_jython.log.

Report Template

Template Properties

Specify the following mandatory template properties:

name = <template-name>;

tags = fabric or device;
userDefined = true or false;
templateType = REPORT;
templateSubType = GENERIC;
contentType = PYTHON;

\}

Note * Set tags = fabric if report is run for a fabric; tags = device if report is run for a device
* Set user Defined = true if template is created by a customer; user Defined = false if template is created
by a DCNM developer.
Template Variables

Specify the following template variables:
##template variables

@ (IsInternal=true)

string fabric name or serial number;
string user input;

)

Note + Configure variable fabric_name if tags = fabric

* Configure variable serial_number if tags = device

» User variables are optional. All data types and annotations supported by DCNM template infra can be
used.

Guidelines for Programmable Reports [Jj

Guidelines for Programmable Reports |
. Template Content

Template Content

Imported Libraries

The following 2 python libraries are required. Note that reportlib.preport contains all reporting infrastructure
APIs.

##template content
from com.cisco.dcbu.vinci.rest.services.jython import WrappersResp
from reportlib.preport import *

Template Functions
gener ateReport()

generateReport() is the entry function and is invoked while generating a report. All the report implementation
logic should be provided here. This function takes a context object. The ‘context’ parameter is created by the
report infrastructure when a report job is created.

def generateReport (context) :

report = Report (“Report title”) ## Create a report object
Gather data and fill in content for the report

respObj = WrappersResp.getRespObj ()
respObj.setSuccessRetCode ()
respObj.setValue (report)

return respObj

)

Note * This function must return a WrappersResp object.

« If there is no error in generating the report, the report object created within this function must be set in
Wrapper sResp.setValue() before the Wrapper sResp object is returned.

Run CLI and Process CLI Response

Below is a sample code on how to send show command(s) to one or multiple devices, and on how to process
the responses from the device(s).

show cmdl = ‘show xxx’
show cmd2 = ‘show yyy’
device list = [devicel,device2]

run the command(s) on each device in the device list

cli_responses = show(device list, show_cmdl, show_cmd2)

run the command(s) on each device in the device list and store the CLI response(s)
cli responses = show and store(device list, show cmdl, show cmd2)

For resp in cli_responses:

command = resp['command'].strip ()

if show cmdl in command:
cmdl_response = resp| ‘response’].strip()
process show cmdl response

[l Guidelines for Programmable Reports

| Guidelines for Programmable Reports
Template Content .

elif show_cmd2 in command:

cmd2_response = resp| ‘response’].strip()
process show cmdl response
validate()

The validate() function is an optional function and is used to perform pre-validation of report creation input
such as Recurrence, Period, etc. This function, if defined, is called while creating a report job. The report job
is only created if this function returns a WrappersResp with SuccessRetCode. If validation fails, a WrappersResp
with FailureRetCode with errors should be returned.

def validate (context) :
respObj = WrappersResp.getRespObj ()
Validation content

if validation failed:
respObj.addErrorReport (..)
respObj.setFailureRetCode ()
else:
respObj.setSuccessRetCode ()
return respObj

report.add_summary

Each report can have one summary and the content is a python dictionary.

summary = report.add summary ()
summary[key] = value

summary.add message (msg)

Present the summary in a table format

table = summary.add table(title, id) ## id must be a unique id for the table
table.append(value, id) ## adding rows to table
Present the summary in a chart format

chart = summary.add chart (ChartType, id)
ChartTypes: ChartTypes.COLUMN CHART, ChartTypes.PIE CHART, ChartTypes.LINE CHART

report.add_section

Section is a logical grouping of report content. Section details are displayed in View Details.

section = report.add section(title, id) ## _id must be a unique id for the section
section[key] = value
section.append(key, json_obj, _id) ## adding rows of json objects to section

Present the section details in a chart format

chart = section.add chart (ChartType, id)
ChartTypes: ChartTypes.COLUMN CHART, ChartTypes.PIE CHART, ChartTypes.LINE CHART

Guidelines for Programmable Reports [Jj

Guidelines for Programmable Reports |
. Template Content

[l Guidelines for Programmable Reports

	Guidelines for Programmable Reports
	Prerequisites
	CLI Output Processing
	Report Template
	Template Content

