
Cisco DCNM Programmable Report APIs

• Template, on page 1
• Template Functions, on page 2
• Report Layout, on page 3
• Report Python Library, on page 5

Template
In Cisco DCNM Release 11.4(1), the new template type “REPORT” is added with following two subtypes:
UPGRADE and GENERIC. The template type is python and requires providing an implementation of method
“generateReport”.

UPGRADE
UPGRADE templates are used for ISSU pre and post ISSU. These templates will be listed in ISSU wizard.

GENERIC
The GENERIC template can be used for any generic reporting purpose. For example, collecting inventory
report.

Template Structure
The following image shows an example template structure:

Cisco DCNM Programmable Report APIs
1

Template Functions
generateReport Method

The generateReport method is invoked while generating the report. All the report implementation logic should
be provided. This method accepts context object. Asmentioned above, this method should returnWrappersResp
object.

Validation Method

The Validation method is optional. If the template defines this method, report application calls this method
to perform pre validation while creating the job. This method is called only when the job is created and invoked
only once irrespective of device or fabrics selected.

If the validation is passed, this method should return WrappersResp with SuccessRetCode, and for failure
FailureRetCode with error in error list.

For example:

Validation failed

def validate (context):
respObj = WrappersResp.getRespObj()

Cisco DCNM Programmable Report APIs
2

Cisco DCNM Programmable Report APIs
Template Functions

Validation logic here

respObj.setFailureRetcode()
respObj.addErrorReport(template_name,error)
return respObj

Validation success

def validate (context):
respObj = WrappersResp.getRespObj()

Validation logic here

respObj.setSuccessRetcode()
return respObj

You can perform validation based on content of context parameter.

Context Parameter
Context parameter consists of following attributes:

1. User name: Name of the user who created the job

2. User role: Role of the user who created the job

3. Job Id

4. Recurrence: NOW, ONCE, DAILY, WEEKLY, MONTHLY, ONDEMAND, or PERIODIC

5. Period: If the recurrence is periodic, then period will have frequency selected. For example, 10MINUTES.

To read these values from context, see the APIs mentioned in Get Job Context Information.

Report Layout
A report contains the following components:

1. Summary

a. Key and values

b. Messages – Inferences

2. Details/Sections

a. Key and values

b. A JSON document – Cards

c. Array of JSON Documents – Tables

3. Command log

Cisco DCNM Programmable Report APIs
3

Cisco DCNM Programmable Report APIs
Context Parameter

Summary View
This view shows summary for each entity included in the report.

Detail View
The Detail view displays complete report JSON data along with summary. Report detail is logically grouped
into sections. Each section is displayed separately with a collapsible widget.

Both summary and detail views provide counts of number of errors, warnings, info, success messages generated
in the report.

Cisco DCNM Programmable Report APIs
4

Cisco DCNM Programmable Report APIs
Summary View

Command Log
Command log contains all commands executed in the report, based on the API used to execute the commands.

Report Python Library
Reporting infrastructure provides an easy to use and light weight python library to generate the report JSON
model. To use this API, you should add following import statement in the template:
from reportlib.preport import Report

Report APIs

Create Report Object
Every report should create a “Report” object as the first step.
report = Report (“Report title”)

Add Summary
Every report can have one summary and it’s a python dictionary. Summary can be added as follows:
summary = report.add_summary()

Adding Content to Summary

Key and values

summary [‘NXOS Version’] = ‘8.1(0)’

Messages – Inferences

Cisco DCNM Programmable Report APIs
5

Cisco DCNM Programmable Report APIs
Command Log

summary.add_message (“Simple message”)

In DCNM 11.4(1), DCNM does not support JSON object as value in summary. Following example is not
supported.
summary[“info”] = {“key”:”value”,”key-2”:”value-2”}

Note

Tables in Summary

table = summary.add_table(title,_id)

• title: Table title

• _id : Unique identifier for the table

Adding Rows to Table

table.append(value, _id)

• value: A JSON object. Nested json not supported.

• _id : Unique identifier for the table

For example:
table.append({'column1': 'value1',’column2’:’value2’},” FOX1816G0S9”)

Add Section
Section is a logical grouping of report contents. It’s up to the user to create these sections and add information
to be displayed.

Section can be added as shown:
section = report.add_section (“Section title”,_id)

• _id : Unique identifier for the table

• section : It is a dictionary

Adding Content to a Section

Key and values

You can add simple key and value pair to section as shown below:
section[‘key’] = ‘value’

A JSON document – Cards

A single JSON document can be added as same as any key value pair. Nested JSON is not supported in 11.4(1)
section[‘key’] = {‘key’:’value’,’key-2’:’value’}

The JSON document is displayed in a card widget as shown:

Cisco DCNM Programmable Report APIs
6

Cisco DCNM Programmable Report APIs
Add Section

Array of JSON Documents – Tables

The section.append API allows user to create a table and add rows to it with following restriction:

1. All JSON document should have same set of keys

2. Nested JSON is not supported

section.append(key, dictionary, _id)

_id: Unique identifier which uniquely identifies a row in a table. Duplicate _id resultx in Unique id violation
error.

For example:
section.append('Switch Details', {'name': 'N5K'},'DSDAS244455')
section.append('Switch Details', {'name': 'N6K'}, 'CSDAS244456')
section.append('Switch Details', {'name': 'N7K'}, 'ASDAS244457')

Formatters
Formatter allows you to add additional formatting to values displayed in UI.

Cisco DCNM Programmable Report APIs
7

Cisco DCNM Programmable Report APIs
Formatters

As shown, you can mark values as:

1. ERROR

2. SUCCESS

3. WARNING

4. INFO

When you add these markers to report, corresponding counts error, warning, success, info are automatically
updated to be displayed in the UI.

Formatter.add_marker(value,marker)

• value: Value to add marker.

• marker: Marker.ERROR,Marker.SUCCESS,Marker.WARNING,Marker.INFO

Cisco DCNM Programmable Report APIs
8

Cisco DCNM Programmable Report APIs
Formatters

For example:
Formatter.add_marker (“NXOS version”,Marker.INFO)

Chart
Report supports adding chart in both summary and section.

Adding Chart to Summary

report = Report(“title”)
summary = report.add_summary()
summary.add_chart(ChartType, _id)

• ChartType: ChartTypes.COLUMN_CHART, ChartTypes.PIE_CHART, ChartTypes.LINE_CHART.

• _id: Unique ID for the chart.

Adding Chart to Section

report = Report(“title”)
section = report.add_section(“Section title”,_id)
section.add_chart(ChartType, _id)

• ChartType: ChartTypes.COLUMN_CHART, ChartTypes.PIE_CHART, ChartTypes.LINE_CHART

• _id: Unique ID for the chart

Pie Chart

Set and subtitle title

pie_chart.set_title("Chart title")
pie_chart.set_subtitle(“Sub title”)

Add value

pie_chart.add_value("key",value)

• key: String key

• value: Numeric value

Column Chart

Set and subtitle title

column_chart.set_title("Chart title")
column_chart.set_subtitle(“Sub title”)

Set X-Axis and Y-Axis title

column_chart.set_xAxis_title("X-Axis title")
column_chart.set_yAxis_title("y-Axis title")

Add Value

bar_chart.add_value("key",value,category)

Cisco DCNM Programmable Report APIs
9

Cisco DCNM Programmable Report APIs
Chart

• key: String key

• value: Numeric value

• category: Bar chart divides the data into logical group called “category”. A given key should have value
in each category.

For example, device count is a key and Fabric Names are categories. Chart should have Device count for each
fabric that is, each category.

Line Chart

Set and Subtitle Title

line_chart.set_title("Chart title")
line_chart.set_subtitle(“Sub title”)

Set X-Axis and Y-Axis title

line_chart.set_xAxis_title("X-Axis title")
line_chart.set_yAxis_title("y-Axis title")

Add Value

line_chart.add_value("key",value,category)

• key: String key

• value: Numeric value

• category: Line chart divides the data into logical group called “category”. A given key should have value
in each category.

For example, device count is a key and Fabric Names are categories. Chart should have Device count for each
fabric, that is, each category.

Run CLIs on Device

Show Command

from reportlib.preport import show
cli_responses = show (serial_number ,*commands)

• serial_number: Serial number of the device to run commands. In case of VDC serial number should be
serial_number:vdc_name. You can pass list of serial number to execute the same set of commands on
multiple devices.

• *commands: Commands to run on device. It’s a var args. You can specify multiple commands.

Examples:

• Executing command on single switch:
cli_responses = show(“FOX1816G0S9”,'show version | xml', 'show inventory | xml', 'show
license usage | xml')

• Executing command on multiple switches:

Cisco DCNM Programmable Report APIs
10

Cisco DCNM Programmable Report APIs
Run CLIs on Device

cli_responses = show([“FOX1816G0S9”,”SSI15470HJ5”],'show version | xml', 'show inventory
| xml', 'show license usage | xml')

Show Commands and Store Response

from reportlib.preport import show_and_store
cli_responses = show_and_store(report,serial_number,*commands)

report: Report Object created.

serial_number: Serial number of the device to run commands. In case of VDC, serial number should be
serial_number:vdc_name. You can pass a list of serial number to execute the same set of commands onmultiple
devices

*commands: Commands to run on device. It’s a var args. You can specify multiple commands.

Examples:

• Executing command on single switch:
cli_responses = show_and_store(report, “FOX1816G0S9”, 'show version | xml', 'show
inventory | xml', 'show license usage | xml')

• Executing command on multiple switches:
cli_responses = show_and_store(report, [“FOX1816G0S9”,”SSI15470HJ5”], 'show version |
xml', 'show inventory | xml', 'show license usage | xml')

Caution: This API stores the response from the device in elasticsearch along with report. User should be
cautious while using this API, since storing all response may increase storage drastically.

Return Value

The Return Value API will return list of responses, and each response is a dictionary with following structure:

{
'status': 'success' | 'failed,
'response':<response from device>,
'command':<cli command>,
'serial_number': <device serial number>
}

In case of multiple switches, the response still be a list of responses with entries for each switch.
[
{
'status': 'success',
'response':<response from device>,
'command':’show version’,
'serial_number': ‘FOX1816G0S9’
},
{
'status': 'success',
'response':<response from device>,
'command':’show version’,
'serial_number': ‘SSI15470HJ5
}
]

Cisco DCNM Programmable Report APIs
11

Cisco DCNM Programmable Report APIs
Run CLIs on Device

Get Job Context Information

Get Recurrence Selected While Scheduling the Job from APP

get_recurrence(context)

This API returns the recurrence selected while creating the job. Returns value can be
NOW,ONCE,DAILY,WEEKLY,MONTHLY,ONDEMAND, and PERIODIC.

get_period

If job is scheduled as Periodic, then period information can be accessed using the API:
period = get_period(context)
period.get_period() will return the period
period.get_time_unit() will return time Unit (HOURS, MINUTES)

Analyze with Historical Reports

Get Previously Generated Reports

The “get_previous_reports()” method allows to get reports generated in the past. This can be used to perform
analysis based on current data and historical data. This API will return the report in descending order of created
time.
List of reports = get_previous_reports (context,entity,count)

This API returns a list of reports.

context: The object received as input from generateReport(context) method.

entity: serial_number or fabric name.

count: Number of reports to fetch.

Get Oldest Report

oldest_report = get_oldest_report(context,entity)

context: The object received as input from generateReport(context) method

entity: serial_number or fabric name

Both the above APIs return Report object with the following API to retrieve information:

1. Get summary : report.get_summary()

2. Get section : report.get_section(_id)

report.get_section(_id)

_id: Unique Identifier for the section.

XML Utilities

Get XML Tree

from reportlib.preport import getxmltree
xml_element_tree = getxmltree(xml_string,tag)

Cisco DCNM Programmable Report APIs
12

Cisco DCNM Programmable Report APIs
Get Job Context Information

This API returns the XML tree under the given tag.

xml_string: XML response from device.

tag: XML tag. Complete XML under this tag will be returned as ElementTree.

xml_element_tree: This API returns xml.etree.ElementTree object.

Get XML Rows

If the CLI response has rows, you can get the array of rows by using the getxmlrows API.
from reportlib.preport import getxmlrows
rows = getxmlrows(xml_tree,tag_xpath)

xml_tree: xml.etree.ElementTree object

tag_xpath: xpath of the XML record. For more info, see
https://docs.python.org/2/library/xml.etree.elementtree.html#xpath-support.

rows: Array of rows.

Get Node Value

XML node value can read using the getnodevalueAPI. This API should be used get the node value of primitive
type.
from reportlib.preport import getnodevalue
value = getnodevalue(xml_tree,node_xpath)

Check Whether Node Exists

from reportlib.preport import has_tag
has_tag(xml_tree,tag)

This API returns true or false based on whether the given tag is present in XML tree.

WrapperResp
Every report should return an object of the type WrapperResp.

WrapperResp can be instantiated as:
respObj = WrappersResp.getRespObj()

The return code in WrapperResp indicates whether the report ran successfully or not.

1. If all commands are run and required information is extracted, then report returns success
respObj.setSuccessRetCode().

2. In case of any exception like commands failure, then report returns failure respObj.setFailureRetCode().

3. In case of an error, you can add the reason for error as
respObj.addErrorReport(template_name,error_message).

The report object created in the Report section should be set to value of WrappersResp as shown:
respObj.setValue(report)

Cisco DCNM Programmable Report APIs
13

Cisco DCNM Programmable Report APIs
WrapperResp

https://docs.python.org/2/library/xml.etree.elementtree.html#xpath-support

Logger
Logger allows you to log messages from report template. All information logged using the logger is logged
to: “/usr/local/cisco/dcm/fm/logs/preport_jython.log”.
Logger.info(“message”)
Logger.debug(“message”)
Logger.error(“message”)
Logger.trace(“message”)
Logger.warn(“message”)

Cisco DCNM Programmable Report APIs
14

Cisco DCNM Programmable Report APIs
Logger

	Cisco DCNM Programmable Report APIs
	Template
	UPGRADE
	GENERIC
	Template Structure

	Template Functions
	Context Parameter

	Report Layout
	Summary View
	Detail View
	Command Log

	Report Python Library
	Report APIs
	Create Report Object
	Add Summary
	Add Section
	Formatters
	Chart
	Run CLIs on Device
	Get Job Context Information
	Analyze with Historical Reports
	XML Utilities
	WrapperResp
	Logger

