
Configure Advanced gRPC workflow with
Telegraf, InfluxDB and Grafana on Catalyst 9800

Contents
Introduction

Prerequisites

Requirements

Components Used

Configure

Network Diagram

Configurations

Step 1. Prepare the Database

Step 2. Prepare Telegraf

Step 3. Determine Telemetry Subscription Containing the Desired Metric

Step 4. Enable NETCONF on the Controller

Step 5. Configure the Telemetry Subscription on the Controller

Step 6. Configure Grafana Data Source

Step 7. Create a Dashboard

Step 8. Add a Visualization to the Dashboard

Verify

WLC Running Configuration

Telegraf Configuration

InfluxDB Configuration

Grafana Configuration

Troubleshoot

WLC One Stop-Shop Reflex

Confirm Network Reachability

Logging and Debugging

Making Sure Metrics Reach the TIG Stack

From InfluxDB CLI

From Telegraf

References

Introduction

This document describes how to deploy the Telegraf, InfluxDB and Grafana (TIG) stack and interconnect it
with the Catalyst 9800.

Prerequisites

This document demonstrates Catalyst 9800's programmatic interfaces capacities through a complex
integration. This document aims at showing how these can be fully customizable based on any need and be
daily time savers. The deployment showcased here relies on gRPC and presents telemetry configuration to

make wireless data from the Catalyst 9800 available in any Telegraf, InfluxDB, Grafana (TIG) observability
stack.

Requirements

Cisco recommends that you have knowledge of these topics:

Catalyst Wireless 9800 configuration model. •
Network programmability and data models.•
TIG stack basics.•

Components Used

The information in this document is based on these software and hardware versions:

Catalyst 9800-CL (v. 17.12.03).•
Ubuntu (v. 22.04.03).•
InfluxDB (v. 1.06.07).•
Telegraf (v. 1.21.04).•
Grafana (v. 10.02.01).•

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network is live, ensure
that you understand the potential impact of any command.

Configure

Network Diagram

Configurations

In this example, telemetry is configured on a 9800-CL using gRPC dial-out to push information on a
Telegraf application storing them into an InfluxDB database. Here, two devices were used,

An Ubuntu server hosting the whole TIG stack.•
A Catalyst 9800-CL.•

This configuration guide does not focus on the whole deployment of these devices but rather on the
configurations required on each application for the 9800 information to be sent, received and presented
properly.

Step 1. Prepare the Database

Before going into the configuration part, make sure your Influx instance is running properly. This can be
easily done using the systemctl status command, if you are using a Linux distribution.

admin@tig:~$ systemctl status influxd
● influxdb.service - InfluxDB is an open-source, distributed, time series database
 Loaded: loaded (/lib/systemd/system/influxdb.service; enabled; vendor preset: enabled)
 Active: active (running) since Wed 2023-06-14 13:06:18 UTC; 2 weeks 5 days ago
 Docs: https://docs.influxdata.com/influxdb/
 Main PID: 733 (influxd)
 Tasks: 15 (limit: 19180)
 Memory: 4.2G
 CPU: 1h 28min 47.366s
 CGroup: /system.slice/influxdb.service
 └─733 /usr/bin/influxd -config /etc/influxdb/influxdb.conf

For the example to work, Telegraf needs a database to store the metrics as well as a user to connect to this
one. These can be easily created from the InfluxDB CLI, using these commands:

admin@tig:~$ influx
Connected to http://localhost:8086 version 1.8.10
InfluxDB shell version: 1.8.10
> create database TELEGRAF
> create user telegraf with password 'YOUR_PASSWORD'

The database now created, Telegraf can be configured to store metrics into it properly.

Step 2. Prepare Telegraf

Only two Telegraf configurations are interesting for this example to work. These can be made (as usual for
applications running on Unix) from the /etc/telegraf/telegraf.conf configuration file.

The first one declares the output used by Telegraf. As previously stated, InfluxDB is used here and is
configured in the output section of the telegraf.conf file as follow:

OUTPUT PLUGINS #

Output Plugin InfluxDB
[[outputs.influxdb]]
The full HTTP or UDP URL for your InfluxDB instance.

Multiple URLs can be specified for a single cluster, only ONE of the
urls will be written to each interval.

 urls = ["http://127.0.0.1:8086"]
The target database for metrics; will be created as needed.
For UDP url endpoint database needs to be configured on server side.
 database = "TELEGRAF"
HTTP Basic Auth
 username = "telegraf"
 password = "YOUR_PASSWORD"

This instructs the Telegraf process to store the data it receives in the InfluxDB running on the same host on
port 8086 and to use the database called “TELEGRAF” (as well as the credentials
telegraf/YOUR_PASSWORD to access it).

If the first thing declared was the output format, the second one is, of course, the input one. To inform
Telegraf that the data it receives comes from a Cisco device using telemetry, you can use the
cisco_telemetry_mdt” input module. To configure this, you just need to add these lines in
the /etc/telegraf/telegraf.conf file:

INPUT PLUGINS #

Cisco model-driven telemetry (MDT) input plugin for IOS XR, IOS XE and NX-OS platforms
[[inputs.cisco_telemetry_mdt]]
Telemetry transport can be "tcp" or "grpc". TLS is only supported when
using the grpc transport.
 transport = "grpc"

Address and port to host telemetry listener
 service_address = ":57000"
Define aliases to map telemetry encoding paths to simple measurement names
[inputs.cisco_telemetry_mdt.aliases]
 ifstats = "ietf-interfaces:interfaces-state/interface/statistics"

This makes the Telegraf application running on the host (on default port 57000) able to decode the received
data coming from the WLC.

Once the configuration saved, make sure to restart Telegraf to apply it to the service. Make sure also that the
service restarted properly:

admin@tig:~$ sudo systemctl restart telegraf
admin@tig:~$ systemctl status telegraf.service
● telegraf.service - Telegraf
 Loaded: loaded (/lib/systemd/system/telegraf.service; enabled; vendor preset: enabled)
 Active: active (running) since Mon 2023-07-03 17:12:49 UTC; 2min 18s ago
 Docs: https://github.com/influxdata/telegraf
 Main PID: 110182 (telegraf)
 Tasks: 10 (limit: 19180)
 Memory: 47.6M
 CPU: 614ms
 CGroup: /system.slice/telegraf.service
 └─110182 /usr/bin/telegraf -config /etc/telegraf/telegraf.conf -config-directory /etc/telegraf/telegraf.d

https://github.com/influxdata/telegraf/blob/master/plugins/inputs/cisco_telemetry_mdt/README.md

Step 3. Determine Telemetry Subscription Containing the Desired Metric

As stated, on Cisco devices as on many others, metrics are organized according to the YANG model. The
particular Cisco YANG models for each version of IOS XE (used on the 9800) can be found here, in
particular the one for IOS XE Dublin 17.12.03 used in this example.

In this example, we focus on collecting CPU utilization metrics from the 9800-CL instance used. By
inspecting the YANG model for Cisco IOS XE Dublin 17.12.03, one can determine which module contains
the CPU utilization of the controller, and in particular for the last 5 seconds. These are part of the Cisco-
IOS-XE-process-cpu-oper module, under the cpu-utilization grouping (leaf five-seconds).

Step 4. Enable NETCONF on the Controller

The gRPC dial out framework relies on NETCONF to work the same. Therefore, this feature must be
enabled on the 9800 and this is achieved by running these commands:

WLC(config)#netconf ssh
WLC(config)#netconf-yang

Step 5. Configure the Telemetry Subscription on the Controller

Once the XPaths (a.k.a, XML Paths Language) of the metrics determined from the YANG model, a
telemetry subscription can be easily configured from the 9800 CLI in order to start streaming these to the
Telegraf instance configured in Step 2. This is done by executing these commands:

WLC(config)#telemetry ietf subscription 101
WLC(config-mdt-subs)#encoding encode-kvgpb
WLC(config-mdt-subs)#filter xpath /process-cpu-ios-xe-oper:cpu-usage/cpu-utilization/five-seconds
WLC(config-mdt-subs)#source-address 10.48.39.130
WLC(config-mdt-subs)#stream yang-push
WLC(config-mdt-subs)#update-policy periodic 100
WLC(config-mdt-subs)#receiver ip address 10.48.39.98 57000 protocol grpc-tcp

In this code block, first the telemetry subscription with identifier 101 is defined. The subscription Identifier
can be any number between <0-2147483647> as long as it does not overlap with another subscription. For
this subscription are configured, in this order:

The encoding method used, which must be kvGPB when working with the gRPC transport protocol.•
The filter for the metrics sent by the subscription, being the XPath defining the metric interesting us
(to know, /process-cpu-ios-xe-oper:cpu-usage/cpu-utilization/five-seconds).

•

The source IP address used by the controller to send the metrics.•
The stream type used to communicate the metrics, in this case YANG Push IETF standard.•
The frequency used by the controller to send data to the subscriber in 100th of seconds. In this case, it
was configured to send update periodically every second.

•

The receiver IP address and port number as well as the protocol used for the communication between
the controller and the subscriber. In this example, gRPC-TCPis used to send metric to host
10.48.39.98 on port 57000.

•

https://github.com/YangModels/yang/tree/main/vendor/cisco/xe
https://en.wikipedia.org/wiki/NETCONF
https://en.wikipedia.org/wiki/XPath

Step 6. Configure Grafana Data Source

Now that the controller starts sending data to Telegraf and that these are stored in the TELEGRAF InfluxDB
database, it is time to configure Grafana to let it browse these metrics.

From your Grafana GUI, navigate to Home > Connections > Connect data and use the search bar to find the
InfluxDB data source.

Select this data source type and use the "Create a InfluxDB data source" button to connect Grafana and
the TELEGRAPH database created at Step 1.

Fill the form appearing to the screen, especially provide:

A name for the data source.•
The URL of the InfluxDB instance used.•
The database name used (in this example, "TELEGRAF").•
The credential of the user defined to access it (in this example, telegraf/YOUR_PASSWORD).•

Step 7. Create a Dashboard

Grafana visualizations are organized into Dashboards. To create a dashboard containing the Catalyst 9800
metrics visualizations, navigate to Home > Dashboards and use the "New dashboard" button

This opens the new dashboard created. Click on the gear icons to access the dashboard parameter and
change its name. In the example, "Catalyst 9800 Telemetry" is used. Once this performed, use the "Save
dashboard" button to save your dashboard.

Step 8. Add a Visualization to the Dashboard

Now that data are sent, received and stored properly and that Grafana has access to this storage location, it is
time to create a visualization for them.

From any of your Grafana dashboard, use the “Add” button and select “Visualization" from the menu
appearing to create a visualization of your metrics.

This opens the Edit panel of the created visualization:

From this panel, select

The name of the data source you created in Step 6, TELEGRAF in this example.•
The measurement (schema) containing the data you want to visualize, "Cisco-IOS-XE-process-cpu-
oper:cpu-usage/cpu-utilization" in this example.

•

The field from the database representing the metrics you want to visualize, “five_seconds” in this
example.

•

The title of the visualization, “CPU Utilisation 9800-CL” in this example.•

Once the "Save/Apply" button from the previous figure pressed, the visualization showing the CPU usage of
the Catalyst 9800 controller over time is added to the dashboard. The changes made to the dashboard can be
saved by using the floppy disk icon button.

Verify

WLC Running Configuration

Building configuration...
Current configuration : 112215 bytes
!
! Last configuration change at 14:28:36 UTC Thu May 23 2024 by admin
! NVRAM config last updated at 14:28:23 UTC Thu May 23 2024 by admin
!
version 17.12
[...]
aaa new-model
!
!
aaa authentication login default local
aaa authentication login local-auth local
aaa authentication dot1x default group radius
aaa authorization exec default local
aaa authorization network default group radius
[...]
vlan internal allocation policy ascending
!
vlan 39
!
vlan 1413
 name VLAN_1413
!
!
interface GigabitEthernet1
 switchport access vlan 1413
 negotiation auto
 no mop enabled
 no mop sysid
!
interface GigabitEthernet2

 switchport trunk allowed vlan 39,1413
 switchport mode trunk
 negotiation auto
 no mop enabled
 no mop sysid
!
interface Vlan1
 no ip address
 no ip proxy-arp
 no mop enabled
 no mop sysid
!
interface Vlan39
 ip address 10.48.39.130 255.255.255.0
 no ip proxy-arp
 no mop enabled
 no mop sysid
[...]
telemetry ietf subscription 101
 encoding encode-kvgpb
 filter xpath /process-cpu-ios-xe-oper:cpu-usage/cpu-utilization
 source-address 10.48.39.130
 stream yang-push
 update-policy periodic 1000
 receiver ip address 10.48.39.98 57000 protocol grpc-tcp
[...]
netconf-yang

Telegraf Configuration

Configuration for telegraf agent
[agent]
 metric_buffer_limit = 10000
 collection_jitter = "0s"
 debug = true
 quiet = false
 flush_jitter = "0s"
 hostname = ""
 omit_hostname = false

OUTPUT PLUGINS #

Configuration for sending metrics to InfluxDB
[[outputs.influxdb]]
 urls = ["http://127.0.0.1:8086"]
 database = "TELEGRAF"
 username = "telegraf"
 password = "Wireless123#"

INPUT PLUGINS #

SERVICE INPUT PLUGINS #

Cisco model-driven telemetry (MDT) input plugin for IOS XR, IOS XE and NX-OS platforms

[[inputs.cisco_telemetry_mdt]]
 transport = "grpc"
 service_address = "10.48.39.98:57000"
 [inputs.cisco_telemetry_mdt.aliases]
 ifstats = "ietf-interfaces:interfaces-state/interface/statistics"

InfluxDB Configuration

Welcome to the InfluxDB configuration file.
reporting-enabled = false
[meta]
 dir = "/var/lib/influxdb/meta"

[data]
 dir = "/var/lib/influxdb/data"
 wal-dir = "/var/lib/influxdb/wal"

[retention]
 enabled = true
 check-interval = "30m"

Grafana Configuration

#################################### Server ####################################
[server]
http_addr = 10.48.39.98
domain = 10.48.39.98

Troubleshoot

WLC One Stop-Shop Reflex

From the WLC side, the very first thing to verify is that processes related to programmatic interfaces are up
and running.

#show platform software yang-management process
confd : Running
nesd : Running
syncfd : Running
ncsshd : Running <-- NETCONF / gRPC Dial-Out
dmiauthd : Running <-- For all of them, Device Managment Interface needs to be up.
nginx : Running <-- RESTCONF
ndbmand : Running
pubd : Running
gnmib : Running <-- gNMI

For NETCONF (used by gRPC dial-out), these command can also help checking the status of the process.

WLC#show netconf-yang status
netconf-yang: enabled
netconf-yang candidate-datastore: disabled
netconf-yang side-effect-sync: enabled
netconf-yang ssh port: 830
netconf-yang turbocli: disabled
netconf-yang ssh hostkey algorithms: rsa-sha2-256,rsa-sha2-512,ssh-rsa
netconf-yang ssh encryption algorithms: aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,aes256-cbc
netconf-yang ssh MAC algorithms: hmac-sha2-256,hmac-sha2-512,hmac-sha1
netconf-yang ssh KEX algorithms: diffie-hellman-group14-sha1,diffie-hellman-group14-sha256,ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-group16-sha512

Once the process status checked, another important check is the telemetry connection status between the
Catalyst 9800 and the Telegraf receiver. It can be viewed using the “show telemetry connection all”
command.

WLC#show telemetry connection all
Telemetry connections

Index Peer Address Port VRF Source Address State State Description
----- -------------------------- ----- --- -------------------------- ---------- --------------------
28851 10.48.39.98 57000 0 10.48.39.130 Active Connection up

If the telemetry connection is up between the WLC and the receiver, one can also ensure that the
subscriptions configured are valid using the show telemetry ietf subscription all brief command.

WLC#show telemetry ietf subscription all brief
ID Type State State Description
101 Configured Valid Subscription validated

The detailed version of this command, show telemetry ietf subscription all detail, provide more information about
subscriptions and can help pointing out an issue from its configuration.

WLC#show telemetry ietf subscription all detail
Telemetry subscription detail:

 Subscription ID: 101
 Type: Configured
 State: Valid
 Stream: yang-push
 Filter:
 Filter type: xpath
 XPath: /process-cpu-ios-xe-oper:cpu-usage/cpu-utilization
 Update policy:
 Update Trigger: periodic
 Period: 1000

 Encoding: encode-kvgpb
 Source VRF:
 Source Address: 10.48.39.130
 Notes: Subscription validated

 Named Receivers:
 Name Last State Change State Explanation

 grpc-tcp://10.48.39.98:57000 05/23/24 08:00:25 Connected

Confirm Network Reachability

The Catalyst 9800 controller sends gRPC data to the receiver port configured for each telemetry
subscription.

WLC#show run | include receiver ip address
receiver ip address 10.48.39.98 57000 protocol grpc-tcp

To verify the network connectivity between the WLC and the receiver on this configured port, several tools
are available.

From the WLC, one can use telnet on the configured receiver IP/port (here 10.48.39.98:57000) to verify that
this one is open and reachable from the controller itself. If traffic is not being blocked, port must show up as
open in the output:

WLC#telnet 10.48.39.98 57000
Trying 10.48.39.98, 57000 ... Open <-------

Alternatively, one can use Nmap from any host to ensure that the receiver is exposed properly on the
configured port.

$ sudo nmap -sU -p 57000 10.48.39.98
Starting Nmap 7.95 (https://nmap.org) at 2024-05-17 13:12 CEST
Nmap scan report for air-1852e-i-1.cisco.com (10.48.39.98)
Host is up (0.020s latency).

PORT STATE SERVICE
57000/udp open|filtered unknown

Nmap done: 1 IP address (1 host up) scanned in 0.35 seconds

Logging and Debugging

2024/05/23 14:40:36.566486156 {pubd_R0-0}{2}: [mdt-ctrl] [30214]: (note): **** Event Entry: Configured legacy receiver creation/modification of subscription 101 receiver 'grpc-tcp://10.48.39.98:57000'

https://nmap.org/

2024/05/23 14:40:36.566598609 {pubd_R0-0}{2}: [mdt-ctrl] [30214]: (note): Use count for named receiver 'grpc-tcp://10.48.39.98:57000' set to 46.
2024/05/23 14:40:36.566600301 {pubd_R0-0}{2}: [mdt-ctrl] [30214]: (note): {subscription receiver event='configuration created'} received for subscription 101 receiver 'grpc-tcp://10.48.39.98:57000'
[...]
2024/05/23 14:40:36.572402901 {pubd_R0-0}{2}: [pubd] [30214]: (info): Collated data collector filters for subscription 101.
2024/05/23 14:40:36.572405081 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Creating periodic sensor for subscription 101.
2024/05/23 14:40:36.572670046 {pubd_R0-0}{2}: [pubd] [30214]: (info): Creating data collector type 'ei_do periodic' for subscription 101 using filter '/process-cpu-ios-xe-oper:cpu-usage/cpu-utilization'.
2024/05/23 14:40:36.572670761 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Creating crimson data collector for filter '/process-cpu-ios-xe-oper:cpu-usage/cpu-utilization' (1 subfilters) with cap 0x0001.
2024/05/23 14:40:36.572671763 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Need new data collector instance 0 for subfilter '/process-cpu-ios-xe-oper:cpu-usage/cpu-utilization'.
2024/05/23 14:40:36.572675434 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Creating CRIMSON periodic data collector for filter '/process-cpu-ios-xe-oper:cpu-usage/cpu-utilization'.
2024/05/23 14:40:36.572688399 {pubd_R0-0}{2}: [pubd] [30214]: (debug): tree rooted at cpu-usage
2024/05/23 14:40:36.572715384 {pubd_R0-0}{2}: [pubd] [30214]: (debug): last container/list node 0
2024/05/23 14:40:36.572740734 {pubd_R0-0}{2}: [pubd] [30214]: (debug): 1 non leaf children to render from cpu-usage down
2024/05/23 14:40:36.573135594 {pubd_R0-0}{2}: [pubd] [30214]: (debug): URI:/cpu_usage;singleton_id=0 SINGLETON
2024/05/23 14:40:36.573147953 {pubd_R0-0}{2}: [pubd] [30214]: (debug): 0 non leaf children to render from cpu-utilization down
2024/05/23 14:40:36.573159482 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Timer created for subscription 101, sensor 0x62551136f0e8
2024/05/23 14:40:36.573166451 {pubd_R0-0}{2}: [mdt-ctrl] [30214]: (note): {subscription receiver event='receiver connected'} received with peer (10.48.39.98:57000) for subscription 101 receiver 'grpc-tcp://10.48.39.98:57000'
2024/05/23 14:40:36.573197750 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Starting batch from periodic collector 'ei_do periodic'.
2024/05/23 14:40:36.573198408 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Building from the template
2024/05/23 14:40:36.575467870 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Created dbal batch:133, for crimson subscription
2024/05/23 14:40:36.575470867 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Done building from the template
2024/05/23 14:40:36.575481078 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Executing batch:133 for periodic subscription
2024/05/23 14:40:36.575539723 {pubd_R0-0}{2}: [mdt-ctrl] [30214]: (note): {subscription id=101 receiver name='grpc-tcp://10.48.39.98:57000', state='connecting'} handling 'receiver connected' event with result 'e_mdt_rc_ok'
2024/05/23 14:40:36.575558274 {pubd_R0-0}{2}: [mdt-ctrl] [30214]: (note): {subscription receiver event='receiver connected'} subscription 101 receiver 'grpc-tcp://10.48.39.98:57000' changed
2024/05/23 14:40:36.577274757 {ndbmand_R0-0}{2}: [ndbmand] [30690]: (info): get__next_table reached the end of table for /services;serviceName=ewlc_oper/capwap_data@23
2024/05/23 14:40:36.577279206 {ndbmand_R0-0}{2}: [ndbmand] [30690]: (debug): Cleanup table for /services;serviceName=ewlc_oper/capwap_data cursor=0x57672da538b0
2024/05/23 14:40:36.577314397 {ndbmand_R0-0}{2}: [ndbmand] [30690]: (info): get__next_object cp=ewlc-oper-db exit return CONFD_OK
2024/05/23 14:40:36.577326609 {ndbmand_R0-0}{2}: [ndbmand] [30690]: (debug): yield ewlc-oper-db
2024/05/23 14:40:36.579099782 {iosrp_R0-0}{1}: [parser_cmd] [26295]: (note): id= A.B.C.D@vty0:user= cmd: 'receiver ip address 10.48.39.98 57000 protocol grpc-tcp' SUCCESS 2024/05/23 14:40:36.578 UTC
2024/05/23 14:40:36.580979429 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Batch response received for crimson sensor, batch:133
2024/05/23 14:40:36.580988867 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Green response: Result rc 0, Length: 360, num_records 1
2024/05/23 14:40:36.581175013 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Green Resp cursor len 63
2024/05/23 14:40:36.581176173 {pubd_R0-0}{2}: [pubd] [30214]: (debug): There is no more data left to be retrieved from batch 133.
2024/05/23 14:40:36.581504331 {iosrp_R0-0}{2}: [parser_cmd] [24367]: (note): id= 10.227.65.133@vty1:user=admin cmd: 'receiver ip address 10.48.39.98 57000 protocol grpc-tcp' SUCCESS 2024/05/23 14:40:36.553 UTC
[...]
2024/05/23 14:40:37.173223406 {pubd_R0-0}{2}: [pubd] [30214]: (info): Added queue (wq: tc_inst 60293411, 101) to be monitored (mqid: 470)
2024/05/23 14:40:37.173226005 {pubd_R0-0}{2}: [pubd] [30214]: (debug): New subscription (subscription 101) monitoring object stored at id 19
2024/05/23 14:40:37.173226315 {pubd_R0-0}{2}: [pubd] [30214]: (note): Added subscription for monitoring (subscription 101, msid 19)
2024/05/23 14:40:37.173230769 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Stats updated for Q (wq: tc_inst 60293411, 101), total_enqueue: 1
2024/05/23 14:40:37.173235969 {pubd_R0-0}{2}: [pubd] [30214]: (debug): (grpc::events) Processing event Q
2024/05/23 14:40:37.173241290 {pubd_R0-0}{2}: [pubd] [30214]: (debug): GRPC telemetry connector update data for subscription 101, period 1 (first: true)
2024/05/23 14:40:37.173257944 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Encoding path is Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization
2024/05/23 14:40:37.173289128 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Creating kvgpb encoder
2024/05/23 14:40:37.173307771 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Creating combined parser
2024/05/23 14:40:37.173310050 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Beginning MDT yang container walk for record 0
2024/05/23 14:40:37.173329761 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Dispatching new container [data_node: name=Cisco-IOS-XE-process-cpu-oper:cpu-usage, type=container, parent=n/a, key=false]
2024/05/23 14:40:37.173334681 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Container 'Cisco-IOS-XE-process-cpu-oper:cpu-usage' started successfully
2024/05/23 14:40:37.173340313 {pubd_R0-0}{2}: [pubd] [30214]: (debug): add data in progress
2024/05/23 14:40:37.173343079 {pubd_R0-0}{2}: [pubd] [30214]: (debug): GRPC telemetry connector continue data for subscription 101, period 1 (first: true)
2024/05/23 14:40:37.173345689 {pubd_R0-0}{2}: [pubd] [30214]: (debug): (grpc::events) Processing event Q
2024/05/23 14:40:37.173350431 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Dispatching new container [data_node: name=cpu-utilization, type=container, parent=Cisco-IOS-XE-process-cpu-oper:cpu-usage, key=false]
2024/05/23 14:40:37.173353194 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Deferred container cpu-utilization
2024/05/23 14:40:37.173355275 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Container 'cpu-utilization' started successfully
2024/05/23 14:40:37.173380121 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Dispatching new leaf [name=five-seconds, value=3, parent=cpu-utilization, key=false]
2024/05/23 14:40:37.173390655 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Leaf 'five-seconds' added successfully
2024/05/23 14:40:37.173393529 {pubd_R0-0}{2}: [pubd] [30214]: (debug): add data in progress
2024/05/23 14:40:37.173395693 {pubd_R0-0}{2}: [pubd] [30214]: (debug): GRPC telemetry connector continue data for subscription 101, period 1 (first: true)
2024/05/23 14:40:37.173397974 {pubd_R0-0}{2}: [pubd] [30214]: (debug): (grpc::events) Processing event Q
2024/05/23 14:40:37.173406311 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Dispatching new leaf [name=five-seconds-intr, value=0, parent=cpu-utilization, key=false]
2024/05/23 14:40:37.173408937 {pubd_R0-0}{2}: [pubd] [30214]: (debug): Leaf 'five-seconds-intr' added successfully
2024/05/23 14:40:37.173411575 {pubd_R0-0}{2}: [pubd] [30214]: (debug): add data in progress
[...]

Making Sure Metrics Reach the TIG Stack

From InfluxDB CLI

Just like any other database system, InfluxDB comes with a CLI which can be used to check metrics are
received correctly by Telegraf and stored in the database defined. InfluxDB organize metrics, so called
points, into measurements which are themselves organized as series. Some basic commands presented here
can be used to verify the data scheme on InfluxDB side and make sure data reach this application.

First, you can check that the series, measurements and their structure (keys) are properly generated. These
are automatically generated by Telegraf and InfluxDB based on the structure of the RPC used.

Note: Of course, this structure is fully customisable from the Telegraf and
InfluxDB configurations. However, this goes behind the scope of this configuration guide.

$ influx
Connected to http://localhost:8086 version 1.6.7~rc0
InfluxDB shell version: 1.6.7~rc0
> USE TELEGRAF

Using database TELEGRAF
> SHOW SERIES
key

Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization,host=ubuntu-virtual-machine,path=Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization,source=WLC,subscription=101
> SHOW MEASUREMENTS
name: measurements
name

Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization
> SHOW FIELD KEYS FROM "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization"
name: Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization
fieldKey fieldType
-------- ---------
cpu_usage_processes/cpu_usage_process/avg_run_time integer
cpu_usage_processes/cpu_usage_process/five_minutes float
cpu_usage_processes/cpu_usage_process/five_seconds float
cpu_usage_processes/cpu_usage_process/invocation_count integer
cpu_usage_processes/cpu_usage_process/name string
cpu_usage_processes/cpu_usage_process/one_minute float
cpu_usage_processes/cpu_usage_process/pid integer
cpu_usage_processes/cpu_usage_process/total_run_time integer
cpu_usage_processes/cpu_usage_process/tty integer
five_minutes integer
five_seconds integer
five_seconds_intr integer
one_minute integer

Once the data structure clarified (integer, string, boolean, ...), one can get the number of data points being
stored on these measurements based for a particular field.

Get the number of points from "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization" for the field "five_seconds".
> SELECT COUNT(five_seconds) FROM "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization"
name: Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization
time count
---- -----
0 1170
> SELECT COUNT(five_seconds) FROM "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization"
name: Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization
time count
---- -----
0 1171

Fix timestamp display
> precision rfc3339
Get the last point stored in "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization" for the field "five_seconds".
> SELECT LAST(five_seconds) FROM "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization"
name: Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization
time last
---- ----
2024-05-23T13:18:53.51Z 0
> SELECT LAST(five_seconds) FROM "Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization"
name: Cisco-IOS-XE-process-cpu-oper:cpu-usage/cpu-utilization
time last
---- ----
2024-05-23T13:19:03.589Z 2

If the number of points for a particular field and the timestamp for the last occurrence increase, it is good
sign that the TIG stack receives and stores properly the data sent by the WLC.

From Telegraf

To verify that the Telegraf receiver actually gets some metrics from the controller and checks their format,
you can redirect the Telegraf metrics to an output file on the host. This can be very handy when it comes to
device interconnection troubleshooting. In order to achieve this, simply make use of the “file” output plugin
from Telegraf, configurable from the /etc/telegraf/telegraf.conf.

Send telegraf metrics to file(s)
[[outputs.file]]
Files to write to, "stdout" is a specially handled file.
 files = ["stdout", "/tmp/metrics.out", "other/path/to/the/file"]

Use batch serialization format instead of line based delimiting. The
batch format allows for the production of non line based output formats and
may more efficiently encode metric groups.
use_batch_format = false

The file will be rotated after the time interval specified. When set
to 0 no time based rotation is performed.
rotation_interval = "0d"

The logfile will be rotated when it becomes larger than the specified
size. When set to 0 no size based rotation is performed.
rotation_max_size = "0MB"

Maximum number of rotated archives to keep, any older logs are deleted.
If set to -1, no archives are removed.
rotation_max_archives = 5

Data format to output.
Each data format has its own unique set of configuration options, read
more about them here:
https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
 data_format = "influx"

References

Hardware sizing guidelines

Grafana requirements

https://github.com/influxdata/telegraf/blob/master/plugins/outputs/file/README.md
https://docs.influxdata.com/influxdb/v1/guides/hardware_sizing/#main-nav
https://grafana.com/docs/enterprise-traces/latest/setup/hardware-requirements/#:%7E:text=CPU%20and%20memory&text=For%20most%20clusters%2C%20Grafana%20Labs,be%20of%20the%20same%20type

