
Deploy And Troubleshoot Authorization Code
Grant Flow - OAuth Enhancement: Cisco
Collaboration Solutions 12.0

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Feature Highlights
Important Considerations
Elements of Authorization Code Grant Flow
Configure
Network Diagram
Refresh Tokens
Revoke Refresh Tokens
Verify
Troubleshoot
Related Information

Introduction

This document describes how Authorization Code Grant flow is based on refresh token in order to
improve Jabber User Experience across various devices, especially for Jabber on Mobile.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

Cisco Unified Communications Manager (CUCM) 12.0 version●

Single Sign On (SSO)/SAML●

Cisco Jabber●

Microsoft ADFS●

Identity Provider (IdP)●

In order to get more information on these topics, refer to these links:

SAML SSO Deployment Guide for Cisco Unified Communications●

Unified Communications Manager SAML SSO Configuration Example:●

AD FS Version 2.0 Setup for SAML SSO Configuration Example:●

https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/SAML_SSO_deployment_guide/10_0_1/CUCM_BK_SB003832_00_saml-sso-deployment-guide-for.html
https://www.cisco.com/c/en/us/support/docs/unified-communications/unified-communications-manager-version-105/118770-configure-cucm-00.html
https://www.cisco.com/c/en/us/support/docs/unified-communications/unified-communications-manager-callmanager/118771-configure-samlsso-00.html

Components Used

The information in this document is based on thise software:

Microsoft ADFS (IdP)●

LDAP Active Directory●

Cisco Jabber Client●

CUCM 12.0●

The information in this document was created from the devices in a specific lab environment. All of
the devices used in this document started with a cleared (default) configuration. If your network is
live, ensure that you understand the potential impact of any command.

Background Information

As of today, Jabber SSO flow with Infrastructure is based on Implicit Grant Flow where CUCM
Authz service allocates the short-lived access tokens.

Post access token expiry, CUCM redirects Jabber to IdP for re-authentication.

This leads to a bad user experience, especially with jabber on mobile where the user is asked to
enter credentials frequently.

Security Re-architecture Solution also proposes Authorization Code Grant Flow (with the use of
Refresh Tokens approach (extendible to End Points/Other Collaboration Apps)) for the unification
of Jabber and End Point log in flow for both SSO and Non-SSO scenarios.

Feature Highlights

Authorization Code Grant flow is based on refresh token (extendible to End Points/Other
Collaboration Apps) in order to improve Jabber User Experience across various devices,
especially for Jabber on Mobile.

●

Supports Self Contained Signed and Encrypted OAuth Tokens to allow various collaboration
applications to validate and respond to client resource requests.

●

The implicit grant flow model is retained which allows backwards compatibility. This also
allows a seamless path for other clients (like RTMT) who have not moved to Authorization
Code Grant flow.

●

Important Considerations

Implementation such that the old jabber client can work with the new CUCM (since it supports
both implicit grant and authorization code grant flows). Also, the new jabber can work with the
old CUCM. Jabber can determine if CUCM supports Authorization Code Grant flow and only if
it supports this model, it switches and uses implicit grant flow.

●

The AuthZ service runs on the CUCM server.●

AuthZ supports only Implicit Grant Flow. This means there was no refresh token/offline access
token. Each time client wanted a new Access token, the user needs to re-authenticate with
the IdP.

●

Access Tokens were issued only if your deployment is SSO enabled. Non-SSO deployments●

didn’t work in this case and access Tokens were not used on all interfaces consistently.
Access Tokens are not self-contained but rather retained in the memory of the server that
issued them. If CUCM1 issued the access token, it can be verified only by CUCM1. If the
client tries to access service on CUCM2, CUCM2 needs to validate that token on CUCM1.
Network delays (proxy mode).

●

User experience on mobile clients is very bad since the user has to re-enter credentials on an
alpha-numeric keypad when the user re-authenticates with the IdP (typically running from 1
hour to 8 hours which depends on several factors).

●

Clients that speak to multiple applications over multiple interfaces need to maintain multiple
credentials/blocks. No seamless support for same user log in from 2 similar clients. For
instance, user A logs in from jabber instances that run on 2 different iPhones.

●

AuthZ to support both SSO and Non-SSO deployments.●

AuthZ to support implicit grant flow + authorization code grant flow. As it is backward
compatible, it allows clients like RTMT to continue work until they adapt.

●

With Authorization code grant flow, AuthZ issues access token and refresh token. The refresh
token can be used to get another access token without the need for authentication.

●

Access Tokens are self-contained, signed and encrypted and use the JWT (JSON web
tokens) standard (RFC compliant).

●

Signing and encryption keys are common to the cluster. Any server in the cluster can verify
the access token. There is no need to maintain in memory.

●

the service that runs on CUCM 12.0 is the centralized Authentication Server in the cluster.●

Refresh tokens are stored in Database (DB). Admin needs to be able to revoke it, if required.
Revocation is based on userid or userid & clientID.

●

Signed access tokens allow different products to validate access tokens without the need to
store them. Configurable access token and refresh token lifetimes (default 1 hour and 60 days
respectively).

●

JWT format is aligned with Spark which allows synergies in the future with Spark Hybrid
services.

●

Support for the same user logs in from 2 similar devices. Eg: User A can log in from jabber
instances that runs on 2 different iPhones.

●

Elements of Authorization Code Grant Flow

Auth Z Server●

Encryption Keys●

Signing Keys●

Refresh Tokens●

Configure

This feature is not enabled by default.

Step 1. In order to enable this feature, navigate to System > Enterprise Parameters.

Step 2. Set the param OAuth with Refresh Login Flow to Enabled as shown in the image.

Access token is signed and encrypted. Signing and encryption key is common to the cluster.
This means any node in the cluster can validate the access token.

●

The access token is in JWT format (RFC 7519).●

Access tokens re-use enterprise parameter (OAuth Access Token Expiry timer), which is
applicable for both old token and new token formats.

●

Default value - 60 Mins.●

Minimum Value - 1 Min.●

Maximum Value - 1440 Mins●

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjhkMGQ1MzI0LWY0ZjAtNGIwYi04MTFlLTRhNTlmZGI2YjcyMjpj

Mjc3MGM5N2JkYTlkMzRmZDA1YTdlYTFhZWQzZTU0Y2E4MGJkZDdlZTM1ZDk3MDNiNjBiNTQ5MTBiZDQ0ODRiIn0.eyJwcml2

YXRlIjoiZXlKaGJHY2lPaUprYVhJaUxDSmpkSGtpT2lKS1YxUWlMQ0psYm1NaU9pSkJNVEk0UTBKRExVaFRNalUySWl3aWEy

bGtJam9pT0dRd1pEVXpNalF0WmpSbU1DMDBZakJpTFRneE1XVXROR0UxT1daa1lqWmlOekl5T21Vd1ptUm1ZMk16WlRRMU5E

RTFOV0ZpTkRJek5tRTJOMlV4T0RCbU1qWmxZMkl3WXpJeE56SXlOREJtWlRFellXWXlOak14TkRkalpHVXpNR1l3TjJJaWZR

Li5xQWd6aGdRaTVMMkdlaDl5V2RvN25nLmdMTHNpaTRjQk50c1NEUXRJTE51RWRnWTl4WkJVczJ4YzBaeTFGQjZQNmNzWWJf

ZkRnaDRZby04V1NaNjUzdXowbnFOalpXT1E1dGdnYW9qMlp6ZFk2ZzN2SWFHbF9JWUtNdkNIWWNscmt4YUFGTk5MWExLQlJm

aTA2LVk2V3l1dUdxNmpNWk5DbnlKX1pTbUpkVFQwc1Z4RTdGTXVxaUJsMElrRGdyVDdvOFNXMEY5cXFadndEZDJSaDdqNkRJ

WGdkS3VtOWltU2xNU1pjejhueVdic01Udk5yMWY0M25VenJzMHk5WWN6NnBDX0czZmlWYjJsX2VWLVFkcFh4TUo2bnZodXcy

djRiUGVkM3VMQlpaVW1oQ3B6TUVDdW5NMlh1TVBrTGdlS1NqWG44aGhPRFNVcW1WQ0Uta3RZdnRBc2Q0RnJxcGNxWlZiS0Zi

VTFRbU0wV2pMYVJtUk9IVllQVkc0a3FBdTRWalVMUzVCRWszNnZ4Nmp3U3BMUy1IdTcwbVRNcmR3dmV5Q2ZOYkhyT0FlVmVv

ekFIR3JqdGlmaFpmSFVUTWZiNkMtX2tOQVJGQWdDclZTZy0wUzlxb1JvTWVkUENETEE4MDJiaWwtNDJjOC15MWo4X1FVaC02

UUtCV2dodVd4VWtBODRpekFFaWl0QTlsSHFKM3Nxd2JFNURkZmhIay05bTJfTTN5MWlWVkdoRVQ3ZW9XVDBqWllnRGRBQjFz

UGwxLTlaSFNYYmsydTE3SkJVRV9FOXI0V0tWMnBqWGtiN0lQSWgtQ3JWQTZkcVdQRHVIbmx1V19wblNLYnYtTkZVbGQ0WEY3

cmZLYmQySlg4eUhhX05pOVVVUnUwZVdsNWxGRUVabklubmFKZEdHLUZrb3VuN2xHSFlwSE4ydXVudmRnOHZVZzZsa0JPbmoz

eUFjc1ZTMGxKc1NWdUxFYldwd2c4YjdBdDM3d3AtMWt2Y1ZQaWpCQ1lCV181d2JzbTFYd2k4MVc2WHVpNzMzQVg3cEJVQnBf

T2VRNzQ2ZXJJekNUUFZCYUpZUGJuZWEtdFhsU3RmZzBGeVRmbnhnX1Vzazl3QXJkemE4c204T0FQaWMxZmFQOG0uUTdFN0FV

X2xUVnNmZFI2bnkydUdhQSJ9.u2fJrVA55NQC3esPb4kcodt5rnjc1o-5uEDdUf-

KnCYEPBZ7t2CTsMMVVE3nfRhM39MfTlNS-qVOVpuoW_51NYaENXQMxfxlU9aXp944QiU1OeFQKj_g-

n2dEINRStbtUc3KMKqtz38BFf1g2Z51sdlnBn4XyVWPgGCf4XSfsFIa9fF051awQ0LcCv6YQTGer_6nk7t6F1MzPzBZzja1a

bpm--6LNSzjPftEiexpD2oXvW8Vl0Z9ggNk5Pn3Ne4RzqK09J9WChaJSXkTTE5G39EZcePmVNtcbayq-

L2pAK5weDa2k4uYMfAQAwcTOhUrwK3yilwqjHAamcG-CoiPZQ

OAuth Refresh Token Expiry Timer” parameter in enterprise parameters page in CUCM.

Path: System -> Enterprise parameters

Values are integers ranging from 1 – 90

Minimum lifetime = 1 Day

Default lifetime = 60 days

Maximum lifetime = 90 days

New access token is issued each time client requests for one. The old one continues to be valid as
long as:

Signing/Encryption keys have not changed●

Validity (stored inside the token) breaks.●

JSON web-tokens: consist of three parts, separated by dots, which are: Header, Payload &
Signature.

●

Sample access token:

At the start of the token that is highlighted in bold is the Header.●

Middle part is the Payload.●

At the end, if the token is highlighted in bold then it is the Signature.●

Network Diagram

Here is a high level overview of the call flow involved:

Refresh Tokens

Refresh token are signed.●

Refresh token is stored in refreshtokendetails table in the database as a hash value of itself.
This is to prevent replication by DB as it can be picked by someone. To review the table you
can run:
run sql select * from refreshtokendetails

Or with a readable validity date:

run sql select pkid,refreshtokenindex,userid,clientid,dbinfo('utc_to_datetime',validity) as

validity,state from refreshtokendetails

●

Warning: Refresh token is flushed from DB when the validity is expired. Timer thread runs at
2 am everyday (not configurable via UI, but can be modified via remote support account). If
the table has a large number of access tokens, that are invalid and need to be flushed out.
This can cause a CPU spike.

Sample refresh token:

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjhkMGQ1MzI0LWY0ZjAtNGIwYi04MTFlLTRhNTlmZGI2YjcyMjpj

Mjc3MGM5N2JkYTlkMzRmZDA1YTdlYTFhZWQzZTU0Y2E4MGJkZDdlZTM1ZDk3MDNiNjBiNTQ5MTBiZDQ0ODRiIn0.eyJleHAi

OjE1MDI2MjAwNTIsImlzcyI6IjhkMGQ1MzI0LWY0ZjAtNGIwYi04MTFlLTRhNTlmZGI2YjcyMiIsInR5cCI6InVzZXIiLCJ0

aWQiOiJiOTkxMjIxZi1mNDJlLTRlNTItODg3MS1jODc2ZTYzNWRkNWIiLCJjdHlwIjoicmVmcmVzaCIsImNjaWQiOiJDM2Iw

YWZmZWZlMTQzOTA0MTY4M2U5YzJjMzdkMzZmNDM4ZWYwZWYyN2MwOTM4YWRjNjIyNmUwYzAzZDE2OWYyYSJ9.creRusfwSYA

MAtttS2FIPAgIVvCiREvnzlouxeyGVndalJlMa-ZpRqv8FOBrsYwqEyulrl-

TeM8XGGQCUvFaqO9IkhJqSYz3zvFvvySWzDhl_pPyWIQteAhL1GaQkue6a5ZegeHRp1sjEczKMLC6H68CHCfletn5-

j2FNrAUOX99Vg5h4mHvlhfjJEel3dU_rciAIni12e3LOKajkzFxF6W0cXzzujyi2yPbY9gZsp9HoBbkkfThaZQbSlCEpvB3t

7yRfEMIEaHhEUU4M3-uSybuvitUWJnUIdTONiWGRh_fOFR9LV3Iv9J54dbsecpsncc369pYhu5IHwvsglNKEQ

Revoke Refresh Tokens

Admin has the capability to revoke all refresh tokens for a user or device-only refresh tokens for a
user through userID or userID and ClientID.

In order to revoke device-based RTs for a user:

revoke RT for user xyz and device identified by client_id abc.●

https://cucm-193:8443/ssosp/token/revoke?user_id=xyz&client_id=abc●

Signing and Encryption keys

Signing key is RSA based, who has public/private key pair.●

The encryption key is a symmetric key.●

These keys are created only on the publisher and are distributed across all the nodes in the
cluster.

●

Both the signing key and encryption key can be re-generated, with the use of the options
listed. However, this must be done only if the administrator believes that the keys have been
compromised. The impact of the re-generation of either of these keys is that all the access
tokens issued by AuthZ service becomes invalid.

●

Signing keys can be re-generated with UI and CLI.●

Encryption keys can be regenerated only with CLI.●

The regeneration of Authz certs (signing key) from the Cisco Unified OS Administration page on
CUCM is as shown in the image.

https://cucm-193:8443/ssosp/token/revoke?user_id=xyz&client_id=abc

The regeneration of the Authz signing key with the use of the CLI command is as shown in the
image.

Admin can display authz signing and encryption keys with the use of CLI. Hash of the key is
displayed rather than original key.

Command to display keys are:

Signing Key: show key authz signing and as shown in the image.

Encryption Key: show key authz encryption and as shown in the image.

Note: The signing authz and encryption authz are always different.

Verify

Use this section in order to confirm that your configuration works properly.

When it is intended to use OAuth on the Cisco Unity Connection (CUC) server, the network
administrator must perform two steps.

Step 1. Configure the Unity Connection Server to fetch the OAuth Token signing and encryption
keys from the CUCM.

Step 2. Enable OAuth Services on the CUC Server.

Note: To fetch the signing and encryption keys, Unity must be configured with the CUCM
host details and a user account enabled of the CUCM AXL Access. If this is not configured,
the Unity Server cannot retrieve the OAuth Token from the CUCM and the voicemail log in
for the users cannot be available.

Navigate to Cisco Unity Connection Administration > System Settings > Authz Servers

Troubleshoot

This section provides the information you can use in order to troubleshoot your configuration.

Note: If OAuth is used and the Cisco Jabber users are unable to log in, always review the
signing and encryption keys from the CUCM and Instant Messaging and Presence (IM&P)
Servers.

The network administrators need to run these two commands on all the CUCM and IM&P nodes:

show key authz signing●

show key authz encryption●

If the signing authz and encryption authz outputs do not match across all the nodes, they require
to be regenerated. In order to perform that, these two commands need to be run on all the CUCM
and IM&P nodes:

set key regen authz encryption●

set key regen authz signing●

Afterwards, the Cisco Tomcat service needs to be restarted on all the nodes.

Along with the keys' mismatch, this error line can be found on the Cisco Jabber logs:

2021-03-30 14:21:49,631 WARN [0x0000264c] [vices\impl\system\SingleSignOn.cpp(1186)] [Single-Sign-On-

Logger] [CSFUnified::SingleSignOn::Impl::handleRefreshTokenFailure] - Failed to get valid access token
from refresh token, maybe server issue.

The sso app logs are generated in these locations:

file view activelog platform/log/ssoApp.log This does not require any trace
configuration for log collection. Every time SSO App operation is done, a new log entries
are generated in ssoApp.log file.

●

SSOSP logs: file list activelog tomcat/logs/ssosp/log4j
Every time sso is enabled, a new log file is created at this location with name,
ssosp00XXX.log. Any other SSO operation and all Oauth operations are also logged into
this file.

●

Certificate logs: file list activelog platform/log/certMgmt*.log
Everytime AuthZ certificate is regenerated (UI or CLI), a new log file is generated for this
event.
For authz encryption key re-generation, a new log file is generated for this event.

●

Related Information

Deploying OAuth with Cisco Collaboration Solution Release 12.0

https://www.cisco.com/c/dam/en/us/td/docs/voice_ip_comm/jabber/11_9/Unified-CM-OAuth-Whitepaper-v17-FINAL.pdf

	Deploy And Troubleshoot Authorization Code Grant Flow - OAuth Enhancement: Cisco Collaboration Solutions 12.0
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used

	Background Information
	Feature Highlights
	Important Considerations
	Elements of Authorization Code Grant Flow

	Configure
	Network Diagram
	Refresh Tokens
	Revoke Refresh Tokens

	Verify
	Troubleshoot
	Related Information

