Deploy And Troubleshoot Authorization Code
Grant Flow - OAuth Enhancement: Cisco
Collaboration Solutions 12.0

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Feature Highlights
Important Considerations
Elements of Authorization Code Grant Flow
Configure

Network Diagram
Refresh Tokens

Revoke Refresh Tokens
Verify

Troubleshoot

Related Information

Introduction

This document describes how Authorization Code Grant flow is based on refresh token in order to
improve Jabber User Experience across various devices, especially for Jabber on Mobile.

Prerequisites

Requirements
Cisco recommends that you have knowledge of these topics:

- Cisco Unified Communications Manager (CUCM) 12.0 version
. Single Sign On (SSO)/SAML
- Cisco Jabber
- Microsoft ADFS
- Identity Provider (IdP)
In order to get more information on these topics, refer to these links:

- SAML SSO Deployment Guide for Cisco Unified Communications
. Unified Communications Manager SAML SSO Configuration Example:
- AD FS Version 2.0 Setup for SAML SSO Configuration Example:

https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucm/SAML_SSO_deployment_guide/10_0_1/CUCM_BK_SB003832_00_saml-sso-deployment-guide-for.html
https://www.cisco.com/c/en/us/support/docs/unified-communications/unified-communications-manager-version-105/118770-configure-cucm-00.html
https://www.cisco.com/c/en/us/support/docs/unified-communications/unified-communications-manager-callmanager/118771-configure-samlsso-00.html

Components Used

The information in this document is based on thise software:

- Microsoft ADFS (IdP)
- LDAP Active Directory
- Cisco Jabber Client
- CUCM 12.0
The information in this document was created from the devices in a specific lab environment. All of

the devices used in this document started with a cleared (default) configuration. If your network is
live, ensure that you understand the potential impact of any command.

Background Information

As of today, Jabber SSO flow with Infrastructure is based on Implicit Grant Flow where CUCM
Authz service allocates the short-lived access tokens.

Post access token expiry, CUCM redirects Jabber to IdP for re-authentication.

This leads to a bad user experience, especially with jabber on mobile where the user is asked to
enter credentials frequently.

Security Re-architecture Solution also proposes Authorization Code Grant Flow (with the use of
Refresh Tokens approach (extendible to End Points/Other Collaboration Apps)) for the unification
of Jabber and End Point log in flow for both SSO and Non-SSO scenarios.

Feature Highlights

- Authorization Code Grant flow is based on refresh token (extendible to End Points/Other
Collaboration Apps) in order to improve Jabber User Experience across various devices,
especially for Jabber on Mobile.

- Supports Self Contained Signed and Encrypted OAuth Tokens to allow various collaboration
applications to validate and respond to client resource requests.

- The implicit grant flow model is retained which allows backwards compatibility. This also
allows a seamless path for other clients (like RTMT) who have not moved to Authorization
Code Grant flow.

Important Considerations

- Implementation such that the old jabber client can work with the new CUCM (since it supports
both implicit grant and authorization code grant flows). Also, the new jabber can work with the
old CUCM. Jabber can determine if CUCM supports Authorization Code Grant flow and only if
it supports this model, it switches and uses implicit grant flow.

- The AuthZ service runs on the CUCM server.

- AuthZ supports only Implicit Grant Flow. This means there was no refresh token/offline access
token. Each time client wanted a new Access token, the user needs to re-authenticate with
the 1dP.

- Access Tokens were issued only if your deployment is SSO enabled. Non-SSO deployments

didn’t work in this case and access Tokens were not used on all interfaces consistently.

- Access Tokens are not self-contained but rather retained in the memory of the server that
issued them. If CUCML1 issued the access token, it can be verified only by CUCML. If the
client tries to access service on CUCM2, CUCM2 needs to validate that token on CUCML1.
Network delays (proxy mode).

- User experience on mobile clients is very bad since the user has to re-enter credentials on an
alpha-numeric keypad when the user re-authenticates with the IdP (typically running from 1
hour to 8 hours which depends on several factors).

- Clients that speak to multiple applications over multiple interfaces need to maintain multiple
credentials/blocks. No seamless support for same user log in from 2 similar clients. For
instance, user A logs in from jabber instances that run on 2 different iPhones.

- AuthZ to support both SSO and Non-SSO deployments.

- AuthZ to support implicit grant flow + authorization code grant flow. As it is backward
compatible, it allows clients like RTMT to continue work until they adapt.

- With Authorization code grant flow, AuthZ issues access token and refresh token. The refresh
token can be used to get another access token without the need for authentication.

- Access Tokens are self-contained, signed and encrypted and use the JWT (JSON web
tokens) standard (RFC compliant).

- Signing and encryption keys are common to the cluster. Any server in the cluster can verify
the access token. There is no need to maintain in memory.

- the service that runs on CUCM 12.0 is the centralized Authentication Server in the cluster.

- Refresh tokens are stored in Database (DB). Admin needs to be able to revoke it, if required.
Revocation is based on userid or userid & clientID.

- Signed access tokens allow different products to validate access tokens without the need to
store them. Configurable access token and refresh token lifetimes (default 1 hour and 60 days
respectively).

- JWT format is aligned with Spark which allows synergies in the future with Spark Hybrid
services.

- Support for the same user logs in from 2 similar devices. Eg: User A can log in from jabber
instances that runs on 2 different iPhones.

Elements of Authorization Code Grant Flow

- Auth Z Server

- Encryption Keys
- Signing Keys

- Refresh Tokens

Configure

This feature is not enabled by default.
Step 1. In order to enable this feature, navigate to System > Enterprise Parameters.

Step 2. Set the param OAuth with Refresh Login Flow to Enabled as shown in the image.

550 and OAuth Configuration

Qauth Access Token Expiry Timer (minytes) &0 €0

Dayth Refresh Token Expiry ar {davs) &0 &0

Redirect URTs for Third Party S50 Clisnt

550 Login Behavior for ios * Use embedded browser [Webview) v Use embedded browser (WebView)
with Refresh Login Flow * Enabled v Disabled
i5e S50 for RTHT ©

True v True

- Access token is signed and encrypted. Signing and encryption key is common to the cluster.
This means any node in the cluster can validate the access token.

- The access token is in JWT format (RFC 7519).

- Access tokens re-use enterprise parameter (OAuth Access Token Expiry timer), which is
applicable for both old token and new token formats.

- Default value - 60 Mins.

- Minimum Value - 1 Min.

- Maximum Value - 1440 Mins

eyJhbGci G JSUzI INi | sl nR5cCl 61 kpXVCl sl nt pZCl 61 j hk MGQLMz1 OLWY0Zj At NG wYi 04MTFI LTRhNTI nZG 2Yj cyM pj
M c3MAVBN2JK YTl kMz RnZDALYTdI YTFhZWQz ZTUOY2E4AMSIkZDdI ZTMLZDk3VDNI Nj Bi NTQEMTBiI ZDQOODRi | n0. eyJweni 2
YXRI | j oi ZXI KaGIHY2| PaUpr YVhJaUxDSnpkSG pT2] KS1YxUW MQOps Yl NaU9pSkJNVEKOUTBKRExVaFRNal Uy SW 3aV\Ey
bG Jam®pTOdRd1pEVXpNal FOWmpShULDVDBZakJpTFRNeELXVXROROUx T1daall gWh Cekl 5T21Vd1pt UnlZMk16W RRMUSE
RTFOVOZpTkRIek5t RTJOM VATORCbULqWKZMKI 3WKpJeE56SXI OREJt W RFel | XWKI Cak14TkRkal pHVXpNRLI 3Tj JJaWZR
Li 5SxQM6aCGdRaTVMWKdI aDl 5V2RvN25nLndMIHNpaTR] Qk50¢ INEUXRITES1IRWRNWITT 4VWKkJVczJ4YzBaeTFGQY ZQNmNz WM f
ZkRnaDRZby04V1NaN UzdXowbnFQal pXT1E1dGdnYWAgM p6ZFk2ZzN2SWFHbF9JIWt NdkNI WANs et 4 YUFGTKSMAEXLQ Jm
aTA2LVk2V3l 1dUdx NnpNVWk5Dbnl KX1pTbhbUpk VFQAac 1Z4RTdGTXVxaUJs MVEl r RGdy VDdv OFNXMEY5c XFadndEZDJ SaDdqNkR]
WGk S3VE OW t U2xNULpj ej hueVdi c01Udk5y MAYOMR25VenJz MHk5WAN6NNBDX0czZm W) Js X2VWALVFkcFh4TUo2bnZodXcy
dj R UGVkMBVMY paVWLo@BB6TUVDAWSNM h1TVBr TGl SINgW344aGh PRFNVEWLWQ Ut a3RZdnRBc2QORNJIXcGNxW Zi SOZi
VTFROUOW2pMYVJt UK9I VI | Qvkc0a3FBdTRWAlI VMUz VCRW zNnZ4Nmp3U3BMUy 11 d TcwbVRNe mR3dmv5 QR ZOYkhy TOFI Vimvw
ekFl R3Jqdd maFpnSFVUTWZI NkM X2t OQVIGQWIDcl ZTZy 0wzl xb1JvTWKUENETEE4AMDIi aVWwt NDJj OC15MA4X1FVaC02
UUt Cv2dodVd4VW BODRpek FFaW 0QTT s SHFKMBNxd2JFNURKZmh1 ay 05bTJf TTNSMW WKk doRVQBZVWOXVDBgW | nRGRBQ Fz
UGMXLTI aSFNYYnsydTE3SkJVRVIFOXI 0VOt WWhBgW& | NOI QSWt QBIWQITZKk c VAQRHVI bnmx1V19wbl NLYNYt TkZVbGQOWVEY3
cnZLYmQy S| g4eUhhX05pOvWWUNUWZVds NW GRUVabk | ubnFKZEdHLUZr b3VuN2x HSFI wSE4y d XVudmRnOHZVZz Zsa0J Pbnoz
eUFj c1ZTMaxKc INWHUxFYI dwd2c4Yj dBdDVBA3At MAf 2Y1ZQaWCQLI CV181d2JzbTFYd2k4M/ec2WHVpNz Mz QVg3c EJ VQn Bf
T2VRNz 2 ZXJJ ek NUUFZCYUpZUGJ uZWEt dFhs U3RnZz BGeVRmbnhnX1Vzaz| 3QXJkenE4c204TOFQaVWk ZnFQOGOUUTdFNOFV
X2x UVnNZFl 2bnkydUdh@SJ9. u2f Jr VAS5NQC3esPb4kcodt 5r nj clo- SUEDdUf -

KnCYEPBZ7t 2CTs MWVE3nf RhVBIOM TI NS- qVOVpuoW 51NYaENXQWKT x| U9aXp944Q ULCeFQK| _g-

n2dEl NRSt bt Uc3KMKqt z38BFf 1g2Z51sdl nBn4 Xy VWPgGCF 4XSf sFI a9f FO51aw@LcCv6YQTGer _6nk7t 6F1MzPzBZzj ala
bpm - 6LNSzj Pf t Ei expD2oXvWBVI 0Z29ggNk5Pn3Ne4RzqK09J9WChaJ SXk TTESG39EZcePnVNt cbayq-
L2pAK5weDa2k4uYM AQAWC TChUr wK3yi | wgj HAant G- Coi PZQ

QAut h Refresh Token Expiry Timer” paraneter in enterprise paranmeters page in CUCM
Path: System -> Enterprise paraneters

Val ues are integers ranging from1l — 90

Mnimumlifetine = 1 Day

Default lifetine = 60 days

Maxi mum lifetine = 90 days

New access token is issued each time client requests for one. The old one continues to be valid as
long as:

- Signing/Encryption keys have not changed
- Validity (stored inside the token) breaks.
- JSON web-tokens: consist of three parts, separated by dots, which are: Header, Payload &
Signature.
Sample access token:

- At the start of the token that is highlighted in bold is the Header.

- Middle part is the Payload.
- At the end, if the token is highlighted in bold then it is the Signature.

Network Diagram

Here is a high level overview of the call flow involved:

LODAP Farm

. . | Authenticate }%
User 1.’,-. A

CoT for SAML
Validation=

el =)

Refresh Tokens

- Refresh token are signed.
- Refresh token is stored in refreshtokendetails table in the database as a hash value of itself.
This is to prevent replication by DB as it can be picked by someone. To review the table you

can run:
run sql select * fromrefreshtokendetails

Or with a readable validity date:

run sql select pkid,refreshtokeni ndex, userid,clientid,dbinfo('utc_to_datetinme',validity) as

validity,state fromrefresht okendetails
n:run sgl sel * £ F]

Warning: Refresh token is flushed from DB when the validity is expired. Timer thread runs at
2 am everyday (not configurable via Ul, but can be modified via remote support account). If
the table has a large number of access tokens, that are invalid and need to be flushed out.
This can cause a CPU spike.

Sanpl e refresh token:

eyJhbCci O JSUzI 1N | sl nR5¢cCl 61 kpXVCI sl nt pZCl 61 j hk MGQLMzI OLWY0Zj At NG wYi 04MTFI LTRhNTI nzd 2Yj cyM pj

M c3MAVBN2JK YTl kMz RnZDALYTdI YTFhZWQz ZTUOY2E4AMAIkZDdI ZTMLZDk3VDNi Nj Bi NTQEMTBi ZDQOCDRi | n0. eyJl eHAi

g EIMDI 2M AWNTI sI ml zcyl 61 j hkM3QLMzI OLWY0Zj At NG wYi 04MTFI LTRhNTI nZd 2Yj cyM | sl nR5¢cCl 61 nVzZXl i LCJO
aWQ O Ji OTkxM | xZi 1nNDJI LTRI NTI t ODg3Ms1j CDc2ZTYzZNWRKNW i LCIj dH Wi j oi cnivntnVzaCl sl ni\j aWQ G JDMVRI w
YWZnmZWZI MTQz OTAOMIY4M2US Yz Jj Mz dk Mz ZmiNDIVA ZVWwWZWYy N2 MVMOTMAYWR] Nj |y NmwYz Az ZDE2 OAYY YSJ 9. cr eRusf wSYA
MAt t t S2FI PAgl WG REvnzl ouxeyGvndal JI Ma- ZpRqv8FOBr sYwgEyul r | -

TeMBXGEQCW Faqg®I1 khJqSYz3zvFvvySWeDhl _pPyW Q¢ eAhL1GaGkueba5ZegeHRplsj EczKML.C6H68CHCS | et n5-

j 2FNr AUOX99Vg5h4mHv] hf j JEel 3dU_rci Al ni 12e3LOKaj kzFxF6WIcXzzuj yi 2yPbY9gZsp9HoBbkkf ThazQbS| CEpvB3t
7yRf EM EaHhEUU4AMS- uSybuvi t UMNnUI dTONi WGRh_f OFRILV3I v9J54dbsecpsncc369pYhu5l Hwsgl NKEQ

Revoke Refresh Tokens

Admin has the capability to revoke all refresh tokens for a user or device-only refresh tokens for a
user through userlID or userID and ClientID.

In order to revoke device-based RTs for a user:

- revoke RT for user xyz and device identified by client_id abc.
. https://lcucm-193:8443/ssosp/token/revoke?user id=xyz&client id=abc
Signing and Encryption keys

- Signing key is RSA based, who has public/private key pair.

- The encryption key is a symmetric key.

.- These keys are created only on the publisher and are distributed across all the nodes in the
cluster.

- Both the signing key and encryption key can be re-generated, with the use of the options
listed. However, this must be done only if the administrator believes that the keys have been
compromised. The impact of the re-generation of either of these keys is that all the access
tokens issued by AuthZ service becomes invalid.

. Signing keys can be re-generated with Ul and CLI.

- Encryption keys can be regenerated only with CLI.

The regeneration of Authz certs (signing key) from the Cisco Unified OS Administration page on
CUCM is as shown in the image.

https://cucm-193:8443/ssosp/token/revoke?user_id=xyz&client_id=abc

Certificate Details for AUTHZ _CUCM-184, authz

[Es Regenerate [7!1 Download PEM File [51 Download .DER File

—Status

@ Status: Ready
— Certificate Settings

File Name authz.pem

Certificate Purpose authz

Certificate Type certs

Certificate Group product-cpi

Description{friendly name) Self-signed certificate generated by system
~ Certificate File Data

[

[fa)

Version: V3

Subject: L=i, 5T=i, CN=AUTHZ_CUCM-184, OU=i, O=i, C=IN
Signature Algorithm: SHA256withRSA, OID = 1.2.840.113549.1.1.11

Key: Ciscol RSA Public Key, 2048 bits

modulus:
3100889524121327746500415253920629167237879710935753621934671843
216346326898490353644164813514840735197164588055185219996734516
256663568507413840247845202675452170850077675141884383314726763
520023902784651553941826511494962731151521000167892375623419501
739811988911210916820812069748957615302991414362015465824669063
319779866264424936428249029193098223306846888723560182717860238 W
318402233050626785154245146789308145325775236137097363983609689

| Regensrate || Download .PEM File] | Download .DER. File |

The regeneration of the Authz signing key with the use of the CLI command is as shown in the
image.

L

LA
iz

= I

CUCH-184 login: admin

Password:

Last login: Tue Nov 15 15:43:5Z on ttyl

Command Line Interface iz starting up, please wait

Welcome to the Platform Command Line Interface

UMware Installation:
1 vCPU: Intel(R) Xeon(R) CFU E5-Z643 B8 @ 3.38GH=z
Disk 1: 8BBGB, Partitions aligned
6144 Mbytes RAM

admin:set ke
admin:set key regen authz =signing

WARNING: This operation will regenerate the Authorization Service signing key an
d restart the Authorization Service on all the nodes. It is recommend that this

command be run off-hours to avoid end user impact.

Proceed with regeneration (yesinol? yes

gsigning key for the Authorization service generated succesfully.

admin:_

Admin can display authz signing and encryption keys with the use of CLI. Hash of the key is
displayed rather than original key.

Command to display keys are:

Signing Key: show key authz signing and as shown in the image.

admin:show key authz signing

authz signing key with checksum: al55d81be734 F990a62816flae] ynced on: 06/09/2017 13:04:47

admin:show key authz encryption

authz encryption key with checksum: 88edce92173e33f9%cedbbfb09cdleBcd4 last synced on: 06/14/2017 16:22:06

Note: The signing authz and encryption authz are always different.

Verify

Use this section in order to confirm that your configuration works properly.

When it is intended to use OAuth on the Cisco Unity Connection (CUC) server, the network
administrator must perform two steps.

Step 1. Configure the Unity Connection Server to fetch the OAuth Token signing and encryption
keys from the CUCM.

Step 2. Enable OAuth Services on the CUC Server.

Note: To fetch the signing and encryption keys, Unity must be configured with the CUCM
host details and a user account enabled of the CUCM AXL Access. If this is not configured,
the Unity Server cannot retrieve the OAuth Token from the CUCM and the voicemail log in
for the users cannot be available.

Navigate to Cisco Unity Connection Administration > System Settings > Authz Servers

New Authz Server

Authz Servers Reset Help

| Save |

HNew Authz Server
Display Name* | Authz Server

Authz Server® | cuCMPublisher. miguecas.lv

Port* B443
username* [miguecas
Password™® ..--..-.-..‘-.

¥| Ignore Certificate Errors

' Save

Fields marked with an asterisk (*) are required.

Troubleshoot

This section provides the information you can use in order to troubleshoot your configuration.

Note: If OAuth is used and the Cisco Jabber users are unable to log in, always review the
signing and encryption keys from the CUCM and Instant Messaging and Presence (IM&P)
Servers.

The network administrators need to run these two commands on all the CUCM and IM&P nodes:

- show key authz signing
- show key authz encryption

If the signing authz and encryption authz outputs do not match across all the nodes, they require
to be regenerated. In order to perform that, these two commands need to be run on all the CUCM
and IM&P nodes:

- set key regen authz encryption
- set key regen authz signing
Afterwards, the Cisco Tomcat service needs to be restarted on all the nodes.

Along with the keys' mismatch, this error line can be found on the Cisco Jabber logs:

2021-03-30 14:21:49,631 WARN [0x0000264c] [vices\impl\system\SingleSignOn.cpp(1186)] [Single-Sign-On-

Logger] [CSFUnified::SingleSignOn::Impl::handleRefreshTokenFailure] - Failed to get valid access token
from refresh token, maybe server issue.

The sso app logs are generated in these locations:

- file view activelog platform/log/ssoApp.log This does not require any trace
configuration for log collection. Every time SSO App operation is done, a new log entries
are generated in ssoApp.log file.

- SSOSP logs: file list activelog tomcat/logs/ssosp/log4j
Every time sso is enabled, a new log file is created at this location with name,
ssosp00XXX.log. Any other SSO operation and all Oauth operations are also logged into
this file.

- Certificate logs: file list activelog platform/log/certMgmt*.log
Everytime AuthZ certificate is regenerated (Ul or CLI), a new log file is generated for this
event.

For authz encryption key re-generation, a new log file is generated for this event.

Related Information

Deploying OAuth with Cisco Collaboration Solution Release 12.0

https://www.cisco.com/c/dam/en/us/td/docs/voice_ip_comm/jabber/11_9/Unified-CM-OAuth-Whitepaper-v17-FINAL.pdf

	Deploy And Troubleshoot Authorization Code Grant Flow - OAuth Enhancement: Cisco Collaboration Solutions 12.0
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used

	Background Information
	Feature Highlights
	Important Considerations
	Elements of Authorization Code Grant Flow

	Configure
	Network Diagram
	Refresh Tokens
	Revoke Refresh Tokens

	Verify
	Troubleshoot
	Related Information

