Contents

Introduction

Topology

Determine the Ingress Forwarding Engine

Configure the Trigger

Start the Capture

Interpret the Results

Additional Verification

Introduction

This document describes the steps used in order to perform an ELAM on Cisco Nexus 7700 (N7700) M3 modules, explains the most relevant outputs, and describes how to interpret the results.

Tip: Refer to the **ELAM Overview** document for an overview on ELAM.

Topology

In this example, a host on VLAN 2500 (10.0.5.101), port Eth4/1 sends an Internet Control Message Protocol (ICMP) request to a host on VLAN 55 (10.0.3.101), port Eth3/5. ELAM is used in order to capture this single packet from 10.0.5.101 to 10.0.3.101. It is important to remember that ELAM allows you to capture a single frame.

In order to perform an ELAM on the N7K, you must first connect to the appropriate module (this requires the network-admin privilege):

```
N7700# attach module 4
Attaching to module 4 ...
module-4#
```

Determine the Ingress Forwarding Engine

Traffic is expected to ingress the switch on port **Eth4/1**. When you check the modules in the system, you see that **Module 4** is an M3 module. It is important to remember that the N7K is fully-distributed, and that the modules, not the supervisor, make the forwarding decisions for dataplane

traffic.

```
N7700# show module
                                         Model
Mod Ports Module-Type
                                                          Status
___ ____
   12
         100 Gbps Ethernet Module
                                         N77-F312CK-26 ok
3 48 1/10 Gbps Ethernet Module N77-M348XP-23L ok 4 24 10/40 Gbps Ethernet Module
N77-M324FQ-25L ok
  0 Supervisor Module-2 N77-SUP2E
0 Supervisor Module-2 N77-SUP2E
24 10/40 Gbps Ethernet Module N77-F324FQ-25
                                                          active *
                                                          ha-standby
Mod Sw
    7.3(0)DX(1) 1.1
3 7.3(0)DX(1) 1.1 4 7.3(0)DX(1) 1.0 5 7.3(0)DX(1) 1.2 6 7.3(0)DX(1) 1.2 7 7.3(0)DX(1) 1.0
```

For M-Series modules, perform the ELAM on the Layer 2 (L2) Forwarding Engine (FE) with internal codename **F4**. Note that the L2 FE Data Bus (DBUS) contains the original header information before the L2 and Layer 3 (L3) lookups, and the Result Bus (RBUS) contains the results after both L3 and L2 lookups.

N7K M3 modules can use multiple FEs for each module, so you must determine the **F4** ASIC that is used for the FE on port **Eth4/1**. Enter this command in order to verify this:

In the output, you can see that port **Eth4/1** is on **F4 (L2LKP)** instance **0**. On the N77-M312CQ-26L module, there are **6** F4 ASICs with 2 ports in each port group. On the N77-M324FQ-25L module, there are **4** F4 ASICs with 6 ports in each port group. The N77-M348XP-23L module has **2** F4 ASICs with 12 ports in each port group.

Note: Just like F-series modules, M3 module ELAM syntax uses 0-based values. This is not the case for M1 and M2 modules, which use 1-based values.

```
module-4# elam asic f4 instance 0
module-4(f4-elam)# layer2
module-4(f4-l2-elam)#
```

Configure the Trigger

The **F4** ASIC supports ELAM triggers for IPv4, IPv6, and others. The ELAM trigger must align with the frame type. If the frame is an IPv4 frame, then the trigger must also be IPv4. An IPv4 frame is not captured with an *other* trigger. The same logic applies to IPv6.

With Nexus Operating Systems (NX-OS), you can use the question mark character in order to separate the ELAM trigger:

```
module-4(f4-12-elam)# trigger dbus ipv4 ingress if ?
```

```
(some output omitted)
destination-index Destination-index
destination-ipv4-address Destination ipv4 address
destination-ipv4-mask Destination ipv4 mask
destination-mac-address Destination mac address
14-protocol L4 protocol
source-index Source-index
source-ipv4-address Source ipv4 address
source-ipv4-mask Source ipv4 mask
source-mac-address Source mac address
```

For this example, the frame is captured according to the source and destination IPv4 addresses, so only those values are specified.

F4 requires separate triggers for the DBUS and the RBUS.

Here is the DBUS trigger:

```
module-4(f4-l2-elam)# trigger dbus ipv4 ingress if source-ipv4-address
10.0.5.101 destination-ipv4-address 10.0.3.101
Here is the RBUS trigger:
module-4(f4-l2-elam)# trigger rbus ingress result if tr 1
```

Start the Capture

Now that the ingress FE is selected and you configured the trigger, you can start the capture:

```
module-4(f4-12-elam)# start
```

In order to check the status of the ELAM, enter the status command:

```
module-4(f4-l2-elam)# status
ELAM Slot 4 instance 0: L2 DBUS/LBD Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101
L2 DBUS/LBD: Configured
ELAM Slot 4 instance 0: L2 RBUS Configuration: trigger rbus ingress result if tr 1
L2 RBUS: Configured
L2 BIS: Unconfigured
L2 BPL: Unconfigured
L2 EGR: Unconfigured
L2 PLI: Unconfigured
L2 PLI: Unconfigured
```

Once the frame that matches the trigger is received by the FE, the ELAM status shows as **Triggered**:

```
module-4(f4-l2-elam)# status
ELAM Slot 4 instance 1: L2 DBUS/LBD Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101
L2 DBUS/LBD: Triggered
ELAM Slot 4 instance 1: L2 RBUS Configuration: trigger rbus ingress result if tr 1
L2 RBUS: Triggered
L2 BIS: Unconfigured
L2 BPL: Unconfigured
L2 EGR: Unconfigured
L2 PLI: Unconfigured
L2 PLE: Unconfigured
```

Interpret the Results

In order to display the ELAM results, enter the **show dbus** and **show rbus** commands. If there is a high volume of traffic that matches the same triggers, the DBUS and RBUS might trigger on different frames. Therefore, it is important to check the internal sequence numbers on the DBUS and RBUS data in order to ensure that they match:

```
module-4(f4-l2-elam)# show dbus | i seq
port-id : 0x0 sequence-number : 0x868
module-4(f4-l2-elam)# show rbus | i seq
de-bri-rslt-valid : 0x1 sequence-number : 0x868
```

Here is the excerpt from the ELAM data that is most relevant to this example (some output is omitted):

```
module-4(f4-12-elam)# show dbus
               TRD TPV4
______
             : 0xff
                        13-packet-length : 0x54
destination-address: 10.0.3.101
source-address: 10.0.5.101
______
packet-length : 0x66
segid-lsb : 0x0
                        vlan
                                     : 0x9c4
                        source-index
                                     : 0xe05
destination-mac-address : 8c60.4f07.ac65
source-mac-address : 8c60.4fb7.3dc2
             : 0x0
                        sequence-number : 0x868
port-id
module-4(f4-12-elam)# show rbus
               I.2 RBUS RSLT CAP DATA
______
de-bri-rslt-valid : 0x1
            : 0x1
: 0x37
: 0x0
                        sequence-number : 0x868
                        rbh
vlan
                                      : 0x65
                        destination-index : 0x9ed
COS
```

With the **DBUS** data, you can verify that the frame is received on VLAN 2500 with a source MAC address of **8c60.4fb6.3dc2** and a destination MAC address of **8c60.4f07.ac65**. You can also see that this is an IPv4 frame that is sourced from **10.0.5.101**, and is destined to **10.0.3.101**.

Tip: There are several other useful fields that are not included in this output, such as Type of Service (TOS) value, IP flags, IP length, and L2 frame length.

In order to verify on which port the frame is received, enter the **SRC_INDEX** command (the source Local Target Logic (LTL)). Enter this command in order to map an LTL to a port or group of ports for the N7K:

```
N7700# show system internal pixm info ltl 0xe05

Member info
-----
Type LTL
------
PHY_PORT Eth4/1
FLOOD_W_FPOE 0xc031
```

The output shows that the **SRC_INDEX** of **0xe05** maps to port **Eth4/1**. This confirms that the frame is received on port **Eth4/1**.

With the **RBUS** data, you can verify that the frame is routed to VLAN 55. Notice that the TTL starts as **0xff** in the **DBUS** data. Additionally, you can confirm the egress port from the **DEST_INDEX**

(destination LTL):

```
N7K# show system internal pixm info ltl 0x9ed

Member info
-----

Type LTL
------

PHY_PORT Eth3/5

FLOOD_W_FPOE 0x8017

FLOOD_W_FPOE 0x8016
```

The output shows that the **DEST_INDEX** of **0x9ed** maps to port **Eth3/5**. This confirms that the frame is sent from port **Eth3/5**.

Additional Verification

LIBLTLMAP_LTL_TYPE_FLOOD_WITH_FPOE

In order verify how the switch allocates the LTL pool, enter the **show system internal pixm info ItI-region** command. The output from this command is useful in order to understand the purpose of an LTL if it is not matched to a physical port. A good example of this is a **Drop LTL**:

```
N7700# show system internal pixm info ltl 0xcad
0x0cad is Drop DI LTL
N7700# show system internal pixm info ltl-region
MAP Version: 3 Description: LTL Map for Crossbow
======= LTL TYPE SIZE START END
______
LIBLTLMAP LTL TYPE PHY PORT 3072 0x0 0xbff LIBLTLMAP LTL TYPE SUP ETH INBAND 64 0xc00 0xc3f
LIBLTLMAP LTL TYPE UCAST VPC VDC SI 32 0xc40 0xc5f LIBLTLMAP LTL TYPE EXCEPTION SPAN 32 0xc60
0xc7f LIBLTLMAP_LTL_TYPE_UCAST_GENERIC 48 0xc80 0xcaf ------
----- SUB-TYPE LTL ------
----- LIBLTLMAP_LTL_TYPE_UCAST_GENERIC_NOT_USED 0xcaf
LIBLTLMAP_LTL_TYPE_DROP_DI_WO_HW_BITSET 0xcae LIBLTLMAP_LTL_TYPE_DROP_DI
0xcad
     LIBLTLMAP_LTL_TYPE_SUP_DIAG_SI_V5
                                           0xcac
     LIBLTLMAP_LTL_TYPE_RESERVED_ERSPAN_LTL
                                     192 0xcb0 0xd6f
LIBLTLMAP_LTL_TYPE_LC_CPU
                                     144
                                          0xd70 0xdff
LIBLTLMAP_LTL_TYPE_UCAST_RESERVED
                                     1536 0xe00
                                                0x13ff
LIBLTLMAP_LTL_TYPE_PC
                                     5120 0x1400 0x27ff
LIBLTLMAP_LTL_TYPE_DYNAMIC_UCAST
                                     48 0x2800 0x282f
LIBLTLMAP_LTL_TYPE_MCAST_RESERVED
LIBLTLMAP_LTL_TYPE_DYNAMIC_MCAST
                                     38848 0x2830 0xbfef
LIBLTLMAP_LTL_TYPE_SAC_FLOOD
                                     16 0xbff0 0xbfff
```

16384 0xc000 0xffff