Troubleshoot Catalyst 3850 Series Switch High
CPU Usage

Contents

Introduction
Backaround Information
Case Study: Address Resolution Protocol (ARP) Interrupts
Step 1: |dentify the Process that Consumes CPU Cycles
Step 2: Determine the CPU Queue that Causes the High CPU Usage Condition

Step 3: Dump the Packet Sent to the CPU

Step 4: Use FED Tracing
Sample Embedded Event Manager (EEM) Script for the Cisco Catalyst 3850 Series Switch
Cisco |IOS XE 16.x or L ater Releases

Related I nfor mation

| ntroduction

This document describes how to troubleshoot CPU usage concerns, primarily due to interrupts, on the new
Cisco |0S® XE platform.

Background I nformation

It isimportant to understand howCisco |OS® XE is built. WithCisco IOS® XE, Cisco has moved to a Linux
kernel and all of the subsystems have been broken down into processes. All of the subsystems that were
inside Cisco 10S before such as the modules drivers, High Availability (HA), and so on now run as software
processes within the Linux Operating System (OS). Cisco I0S itself runs as a daemon within the Linux OS
(10sd).Cisco 10OS® XE retains not only the same look and feel of the classic Cisco IOS®, but also its
operation, support, and management.

Additionally, the document introduces several new commands on this platform that are integral in order to
troubleshoot CPU usage problems.

Here are some useful definitions:

» Forwarding Engine Driver (FED): Thisisthe heart of the Cisco Catalyst 3850 Series Switchand is
responsible for all hardware programming/forwarding.

¢ Cisco 1OSd: Thisisthe Cisco IOS® daemon that runs on the Linux kerndl. 1t isrun as a software
process within the kernel.

» Packet Delivery System (PDS): Thisisthe architecture and process of how packets are delivered to
and from various subsystems. As an example, it controls how packets are delivered from the FED to
the 10Sd and vice versa.

» Handle: A handle can be thought of as a pointer. It is ameans to discover more detailed information
about specific variables that are used in the outputs that the box produces. Thisis similar to the

concept of Local Target Logic (LTL) indices on the Cisco Catalyst 6500 Series Switch.

Case Study: Address Resolution Protocol (ARP) Interrupts

The troubleshoot and verification process in this section can be broadly used for high CPU usage due to
interrupts.

Step 1: Identify the Processthat Consumes CPU Cycles

The show process cpu command naturally displays how the CPU currently looks. Notice that the Cisco
Catalyst 3850 Series Switch uses four cores, and you see the CPU usage listed for all four cores:

<#root>

3850-2#

show processes cpu sorted | exclude 0.0

Core 0: CPU utilization for five seconds: 53%; one minute: 39%; five minutes: 41%
Core 1: CPU utilization for five seconds: 43%; one minute: 57%; five minutes: 54%
Core 2: CPU utilization for five seconds: 95%; one minute: 60%; five minutes: 58%
Core 3: CPU utilization for five seconds: 32%; one minute: 31%; five minutes: 29%
PID Runtime(ms) Invoked uSecs 5Sec IMin 5Min TTY Process

8525 472560 2345554 7525 31.37 30.84 30.83 0 iosd

5661 2157452 9234031 698 13.17 12.56 12.54 1088 fed

6206 19630 74895 262 1.83 0.43 0.10 0 eicored

6197 725760 11967089 60 1.41 1.38 1.47 0 pdsd

From the output, it is clear that the Cisco IOS® daemon consumes amajor portion of the CPU along with
the FED, which isthe heart of this box. When CPU usage is high due to interrupts, you see that Cisco 10Sd
and FED use amajor portion of the CPU, and these subprocesses (or a subset of these) use the CPU:

FED Punject TX

FED Punject RX

FED Punject replenish
FED Punject TX complete

Y ou can zoom into any of these processes with the show process cpu detailed <process> command. Since
Cisco |0Od is responsible for the magjority of the CPU usage, hereis a closer look into that.

<#root>

3850-2#

show processes cpu detail ed process iosd sorted | ex 0.0

Core
Core

CPU utiTlization for five seconds: 36%; one minute: 39%; five minutes: 40%
CPU utiTlization for five seconds: 73%; one minute: 52%; five minutes: 53%
Core CPU utiTlization for five seconds: 22%; one minute: 56%; five minutes: 58%
Core 3: CPU utilization for five seconds: 46%; one minute: 40%; five minutes: 31%
PID TC TID Runtime(ms)Invoked uSecs 5Sec IMin 5Min TTY Process

%)))
8525 L 556160 2356540 7526 30.42 30.77 30.83 0 iosd

w N RO

8525 L 1 8525 712558 284117 0 23.14 23.33 23.38 0 dosd

59 I 1115452 4168181 0 42.22 39.55 39.33 0 ARP Snoop

198 I 3442960 4168186 0 25.33 24.22 24.77 O IP Host Track Proce
30 I 3802130 4168183 0 24.66 27.88 27.66 0 ARP Input

283 I 574800 3225649 0 4.33 4.00 4.11 O DAI Packet Process
3850-2#

show processes cpu detailed process fed sorted | ex 0.0

CPU utiTlization for five seconds: 45%; one minute: 44%; five minutes: 44%
CPU utiTlization for five seconds: 38%; one minute: 44%; five minutes: 45%
Core CPU utiTlization for five seconds: 42%; one minute: 41%; five minutes: 40%
Core CPU utilization for five seconds: 32%; one minute: 30%; five minutes: 31%
PID T C TID Runtime(ms)Invoked uSecs 5Sec 1Min 5Min TTY Process

(%) (%) %)

Core
Core

w N R O

5638 L 612840 1143306 536 13.22 12.90 12.93 1088 fed
5638 L 3 8998 396500 602433 0 9.87 9.63 9.61 O PunjectTx
5638 L 3 8997 159890 66051 O 2.70 2.70 2.74 O PunjectRx

The output (Cisco 10Sd CPU output) shows that ARP Snoop, IP Host Track Process, and ARP Input are
high. Thisis commonly seen when the CPU isinterrupted due to ARP packets.

Step 2: Deter mine the CPU Queue that Causesthe High CPU Usage Condition

The Cisco Catalyst 3850 Series Switch has a number of queues that cater to different types of packets (the
FED maintains 32 RX CPU queues, which are queues that go directly to the CPU). It isimportant to monitor
these queues in order to discover which packets are punted to the CPU and which are processed by the Cisco
|OSd. These queues are per ASIC.

% Note: There aretwo ASICs: 0 and 1. Ports 1 through 24 belong to ASIC 0.

In order to look at the queues, enter the show platform punt statistics port-asic <port-asic>cpuq <queue>
direction <rxjtx> command.

In the show platform punt statistics port-asic O cpuq -1 direction rx command, the -1 argument lists all
of the queues. Therefore, this command lists all receive queues for Port-ASIC 0.

Now, you must identify which queue pushes alarge number of packets at a high rate. In this example, an
examination of the queues revealed this cul prit:

<snip>
RX (ASIC2CPU) Stats (asic 0 gn 16 1gn 16):
RXQ 16: CPU_Q_PROTO_SNOOPING

Packets received from ASIC 1 79099152
Send to I0Sd total attempts : 79099152
Send to I0OSd failed count 1 1240331
RX suspend count : 1240331
RX unsuspend count : 1240330
RX unsuspend send count : 1240330
RX unsuspend send failed count : 0O

RX dropped count : 0

RX conversion failure dropped : 0O

RX pkt_hdr allocation failure 0
RX INTACK count : 0
RX packets dg'd after intack : 0
Active RxQ event 9
RX spurious interrupt 0
<snip>

The queue number is 16 and the queue nameis CPU_Q PROTO_SNOOPING.

Another way to discover the culprit queue isto enter the show platform punt client command.

<#root>

3850-2#

show pl atform punt client

tag buffer jumbo fallback packets received failures
alloc free bytes conv buf

27 0/1024/2048 0/5 0/5 0 0 0 0 0
65536 0/1024/1600 0/0 0/512 0 0 0 0 0
65537 0/ 512/1600 0/0 0/512 1530 1530 244061 0 0
65538 0/ 5/5 0/0 0/5 0 0 0 0 0
65539 0/2048/1600 0/16 0/512 0 0 0 0 0
65540 0/ 128/1600 0/8 0/0 0 0 0 0 0
65541 0/ 128/1600 0/16 0/32 0 0 0 0 0
65542 0/ 768/1600 0/4 0/0 0 0 0 0 0
65544 0/ 96/1600 0/4 0/0 0 0 0 0 0
65545 0/ 96/1600 0/8 0/32 0 0 0 0 0
65546 0/ 512/1600 0/32 0/512 0 0 0 0 0
65547 0/ 96/1600 0/8 0/32 0 0 0 0 0
65548 0/ 512/1600 0/32 0/256 0 0 0 0 0
65551 0/ 512/1600 0/0 0/256 0 0 0 0 0
65556 0/ 16/1600 0/4 0/0 0 0 0 0 0
65557 0/ 16/1600 0/4 0/0 0 0 0 0 0
65558 0/ 16/1600 0/4 0/0 0 0 0 0 0
65559 0/ 16/1600 0/4 0/0 0 0 0 0 0
65560 0/ 16/1600 0/4 0/0 0 0 0 0 0
s65561 421/ 512/1600 0/0 0/128 79565859 131644697 478984244 0 37467
65563 0/ 512/1600 0/16 0/256 0 0 0 0 0
65564 0/ 512/1600 0/16 0/256 0 0 0 0 0
65565 0/ 512/1600 0/16 0/256 0 0 0 0 0
65566 0/ 512/1600 0/16 0/256 0 0 0 0 0
65581 o/ 1/1 0/0 0/0 0 0 0 0 0
131071 0/ 96/1600 0/4 0/0 0 0 0 0 0
fallback pool: 98/1500/1600
jumbo pool: 0/128/9300

Determine the tag for which the most packets have been allocated. In this example, it is 65561.

Then, enter this command:

<#root>

3850-2#

show pds tag all | in Active| Tags| 65561

Active C(Client Client
Tags Handle Name TDA SDA FDA TBufD TBytD
65561 7296672 Punt Rx Proto Snoop 79821397 79821397 0 79821397 494316524

This output shows that the queue is Rx Proto Snoop.

The s before the 65561 in the output of the show platform punt client command means that the FED
handle is suspended and overwhelmed by the number of incoming packets. If the s does not vanish, it means
the queue is stuck permanently.

Step 3: Dump the Packet Sent to the CPU

In the results of the show pdstag all command, notice a handle, 7296672, is reported next to the Punt Rx
Proto Snoop.

Use this handle in the show pds client <handle> packet last sink command. Notice that you must enable
debug pds pktbuf-last before you use the command. Otherwise, you encounter this error:

<#root>

3850-2#

show pds client 7296672 packet |ast sink

% switch-2:pdsd:This command works in debug mode only. Enable debug using
"debug pds pktbuf-Tast" command

With the debug enabled, you see this output:

<#root>

3850-2#

show pds client 7296672 packet |ast sink

Dumping Packet(54528) # 0 of Length 60

Meta-data

0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 'vvvuunnnn..
0010 00 00 16 1d 00 00 00 00 00 00 00 00 55 5a 57 fO uzw.
0020 00 00 00 00 fd 01 10 df 00 5b 70 00 00 10 43 00 [p...C.

0030 00 10 43 00 00 41 fd 00 00 41 fd 00 00 00 00 00 ..C..A...A......
0040 00 00 00 00 00 00 00 00 OO OO OO 00 00 00 00 00vvvunnnnnn

0050 00 00 00 3c 00 00 00 00 00 01 00 19 00 00 00 00 ...<...vvuunennnn
0060 01 01 b6 80 00 00 00 4f 00 00 00 00 00 00 00 OO0 O........
0070 01 04 d8 80 00 00 00 33 00 00 00 00 00 00 00 OO 3.t

0080 00 00 00 00 00 00 OO0 00 OO0 00 OO0 OO0 OO0 00 00 00 ..vvvvvvnnnnnnns
0090 00 01 00 00 00 00 OO0 00 OO0 00 OO0 OO OO0 00 00 00 ..vvvvvvnnnnnns
00a0 00 00 00 00 00 00 00 02 00 00 OO0 OO0 OO0 00 00 00 ..vvvvvvnnnnnnnn
Data

0000 ff ff ff ff ff ff aa bb cc dd 00 00 08 06 00 01

0010 08 00 06 04 00 01 aa bb cc dd 00 00 cO a8 01 0accnn..
0020 ff ff ff ff ff ff cO a8 01 14 00 01 02 03 04 05
0030 06 07 08 09 0a Ob Oc Od Oe Of 10 11ou.n..

This command dumps the last packet received by the sink, which is Cisco 10Sd in this example. This shows
that it dumps the header and it can be decoded with Terminal-based Wireshark (TShark). The Meta-dataiis
for internal use by the system, but the Data output provides actual packet information. The Meta-data,
however, remains extremely useful.

Notice the line that starts with 0070. Use the first 16 bits after that as shown here:

<#root>

3850-2#

show platformport-asic ifmiif-id 0x0104d88000000033

Interface Table

Interface IIF-ID : 0x0104d88000000033
Interface Name : Gi2/0/20
Interface Block Pointer : 0x514d2f70
Interface State : READY
Interface Stauts : IFM-ADD-RCVD, FFM-ADD-RCVD
Interface Ref-Cnt G
Interface Epoch : 0
Interface Type : ETHER

Port Type : SWITCH PORT

Port Location : LOCAL
STot 12

Unit : 20

STot Unit : 20

Acitve Y

SNMP IF Index 1 22

GPN : 84

EC Channel : 0

EC Index : 0

ASIC
0

ASIC Port : 14

Port LE Handle : 0x514cd990

Non Zero Feature Ref Counts
FID : 48(AL_FID_L2_PM), Ref Count : 1
FID : 77(AL_FID_STATS), Ref Count : 1
FID : 51(AL_FID_L2_MATM), Ref Count : 1
FID : 13(AL_FID_SC), Ref Count : 1
FID : 26(AL_FID_QOS), Ref Count : 1
Sub block information
FID : 48(AL_FID_L2_PM), Private Data : 0x54072618
FID : 26(AL_FID_QOS), Private Data : 0x514d31b8

The culprit interface is identified here. Gig2/0/20 is where there is atraffic generator that pumps ARP
traffic. If you shut this down, then it would resolve the problem and minimize the CPU usage.

Step 4: Use FED Tracing

The only drawback with the method discussed in the last section isthat it only dumps the last packet that
goes into the sink, and it cannot be the cul prit.

A better way to troubleshoot this would be to use a feature called FED tracing. Tracing is a packet capture
method (using various filters) that are pushed by the FED to the CPU. FED tracing is not as simple as the
Netdr feature on the Cisco Catalyst 6500 Series Switch, however.

Here the process is broken into steps:

1. Enable detail tracking. By default, event tracing is on. Y ou must enable detail tracing in order to
capture the actual packets:

<#root>

3850-2#

set trace control fed-punject-detail enable

2. Fine-tune the capture buffer. Determine how deep your buffers are for detail tracing and increase as
needed.

<#root>

3850-2#

show ngmt-infra trace settings fed-punject-detai

One shot Trace Settings:

Buffer Name: fed-punject-detail

Default Size: 32768

Current Size: 32768

Traces Dropped due to internal error: No
Total Entries Written: 0

One shot mode: No

One shot and full: No

Disabled: False

Y ou can change the buffer size with this command:

<#root>

3850-2#

set trace control fed-punject-detail buffer-size <buffer size>

The values available to you are:

<#root>

3850-2#

set trace control fed-punject-detail buffer-size ?

<8192-67108864> The new desired buffer size, in bytes
default Reset trace buffer size to default

3. Add capture filters. Y ou now need to add various filters for the capture. Y ou can add different filters
and either choose to match all or match any of those for your capture.

Filters are added with this command:

<#root>

3850-2#

set trace fed-punject-detail direction rx filter_add <filter>

These options are currently available:

<#root>

3850-2#

set trace fed-punject-detail direction rx filter_add ?

cpu-queue rxq 0..31
field field
offset offset

Now you must link things together. Remember the culprit queue that was identified in Step 2 of this
troubleshoot process? Since queue 16 is the queue that pushes alarge number of packets towards the
CPU, it makes sense to trace this queue and see what packets are punted to the CPU by it.

Y ou can choose to trace any queue with this command:

<#root>

3850-2#

set trace fed-punject-detail direction rx filter_add cpu-queue

<start queue>

<end queue>

Here is the command for this example:

<#root>

3850-2#

set trace fed-punject-detail direction rx filter_add cpu-queue 16 16

Y ou must choose either amatch all or a match any for your filters and then enable the trace:

<#root>

3850-2#

set trace fed-punject-detail direction rx match_all

3850-2#

set trace fed-punject-detail direction rx filter_enable

. Display filtered packets. Y ou can display the packets captured with the show mgmt-infra trace
messages fed-punject-detail command.

<#root>

3850-2#

show ngnt-infra trace nessages fed-punject-detail

[11/25/13 07:05:53.814 UTC 2eb0c9 5661]

00 00 00 00 00 4e 00 40 07 00 02 08 00 00 51 3b
00 00 00 00 00 01 00 00 03 00 00 00 00 00 00 O1
00 00 00 00 20 00 00 Oe 00 00 00 OO 00O 01 00 74
00 00 00 04 00 54 41 02 00 00 00 00 0O 00 00 0O

[11/25/13 07:05:53.814 UTC 2eb0Oca 5661]

ff ff ff ff ff ff aa bb cc dd 00 00 08 06 00 01

08 00 06 04 00 01 aa bb cc dd 00 00 cO a8 01 Oa

ff ff ff ff ff ff cO a8 01 14 00 01 02 03 04 05

06 07 08 09 Oa Ob Oc 0d Oe Of 10 11 f6 b9 10 32

[11/25/13 07:05:53.814 UTC 2ebOcb 5661] Frame descriptors:
[11/25/13 07:05:53.814 UTC 2eb0Occ 5661]

fdFormat=0x4 systemTt1=0xe
JoadBalHash1=0x8 ToadBaTlHash2=0x8

spanSessionMap=0x0 forwardingMode=0x0

destModIndex=0x0 skipIdIndex=0x4
srcGpn=0x54 goslLabel=0x41

srcCos=0x0 ingressTranslatedVlan=0x3
bpdu=0x0 spanHistory=0x0

sgt=0x0 fpeFirstHeaderType=0x0

srcVlan=0x1 rcpServiceld=0x2

wccpSkip=0x0 srcPortLeIndex=0xe
cryptoProtocol=0x0 debugTagId=0x0
vrfIld=0x0 salndex=0x0
pendingAfdLabel=0x0 destClient=0x1
appId=0x0 finalStationIndex=0x74
decryptSuccess=0x0 encryptSuccess=0x0
rcpMiscResults=0x0 stackedFdPresent=0x0
spanDirection=0x0 egressRedirect=0x0
redirectIndex=0x0 exceptionlLabel=0x0
destGpn=0x0 inlineFd=0x0
suppressRefPtrUpdate=0x0 suppressRewriteSideEfects=0x0
cmi2=0x0 currentRi=0x1
currentDi=0x513b dropIpUnreachable=0x0

srcZoneId=0x0 srcAsicId=0x0
originalDi=0x0 originalRi=0x0

srcL3IfIndex=0x2 dstL3IfIndex=0x0
dstV1an=0x0 framelLength=0x40
fdCrc=0x7 tunnelSpokeId=0x0

[11/25/13 07:05:53.814 UTC 2eb0Ocd 5661]

[11/25/13 07:05:53.814 UTC 2ebOce 5661] PUNT PATH (fed_punject_rx_process_packet:
830):RX: Q: 16, Tag: 65561

[11/25/13 07:05:53.814 UTC 2eb0Ocf 5661] PUNT PATH (fed_punject_get_physical_iif:

579) :RX: Physical IIF-id 0x104d88000000033

[11/25/13 07:05:53.814 UTC 2eb0d0 5661] PUNT PATH (fed_punject_get_src_13if_index:
434):RX: L3 IIF-id 0x101b6800000004f

[11/25/13 07:05:53.814 UTC 2eb0dl 5661] PUNT PATH (fed_punject_fd_2_pds_md:478):

RX: 12_logical_if = 0x0

[11/25/13 07:05:53.814 UTC 2eb0d2 5661] PUNT PATH (fed_punject_get_source_cos:638):
RX: Source Cos 0

[11/25/13 07:05:53.814 UTC 2eb0d3 5661] PUNT PATH (fed_punject_get_vrf_id:653):

RX: VRF-id 0

[11/25/13 07:05:53.814 UTC 2eb0d4 5661] PUNT PATH (fed_punject_get_src_zoneid:667):
RX: Zone-id 0

[11/25/13 07:05:53.814 UTC 2eb0d5 5661] PUNT PATH (fed_punject_fd_2_pds_md:518):

RX: get_src_zoneid failed

[11/25/13 07:05:53.814 UTC 2eb0d6 5661] PUNT PATH (fed_punject_get_acl_log_direction:
695): RX: : Invalid CMI2

[11/25/13 07:05:53.814 UTC 2eb0d7 5661] PUNT PATH (fed_punject_fd_2_pds_md:541) :RX:
get_acl_log_direction failed

[11/25/13 07:05:53.814 UTC 2eb0d8 5661] PUNT PATH (fed_punject_get_acl_full_direction:
724) :RX: DI 0x513b ACL Full Direction 1

[11/25/13 07:05:53.814 UTC 2eb0d9 5661] PUNT PATH (fed_punject_get_source_sgt:446):
RX: Source SGT 0

[11/25/13 07:05:53.814 UTC 2eb0Oda 5661] PUNT PATH (fed_punject_get_first_header_type:680):
RX: FirstHeaderType 0

[11/25/13 07:05:53.814 UTC 2eb0db 5661] PUNT PATH (fed_punject_rx_process_packet:916):
RX: fed_punject_pds_send packet Ox1f00 to IOSd with tag 65561

[11/25/13 07:05:53.814 UTC 2eb0dc 5661] PUNT PATH (fed_punject_rx_process_packet:744):
RX: #*#*** RX packet 0x2360 on gqn 16, Ten 128 #**%%*

[11/25/13 07:05:53.814 UTC 2eb0dd 5661]

buf_no 0 buf_len 128

<snip>

This output provides plenty of information and can typically be enough to discover where the packets
come from and what is contained in them.

Thefirst part of the header dump is again the Meta-data that is used by the system. The second part is
the actual packet.

ff ff ff ff ff ff - destination MAC address
aa bb cc dd 00 00 - source MAC address

Y ou can choose to trace this source MAC address in order to discover the culprit port (once you have
identified that thisis the mgjority of the packets that are punted from queue 16; this output only shows
one instance of the packet and the other output/packets are clipped).

However, thereis a better way. Notice that logs that are present after the header information:

[11/25/13 07:05:53.814 UTC 2eb0Oce 5661] PUNT PATH (fed_punject_rx_process_packet:
830):RX: Q: 16, Tag: 65561

[11/25/13 07:05:53.814 UTC 2eb0Ocf 5661] PUNT PATH (fed_punject_get_physical_iif:
579) :RX: Physical IIF-id 0x104d88000000033

Thefirst log clearly tells you from which queue and tag this packet comes. If you were not aware of
the queue earlier, thisis a easy way to identify which queue it was.

The second log is even more useful because it provides the physical Interface ID Factory (I1F)-ID for
the source interface. The hex value is a handle that can be used in order to dump information about
that port:

<#root>
3850-2#

show platformport-asic ifmiif-id 0x0104d88000000033

Interface Table

Interface IIF-ID : 0x0104d88000000033
Interface Name : Gi2/0/20
Interface Block Pointer : 0x514d2f70
Interface State : READY
Interface Stauts : IFM-ADD-RCVD, FFM-ADD-RCVD
Interface Ref-Cnt)
Interface Epoch : 0
Interface Type : ETHER
Port Type : SWITCH PORT
Port Location : LOCAL

Slot 12

Unit : 20

Slot Unit : 20
Active Y
SNMP IF Index 1 22
GPN : 84
EC Channel : 0
EC Index : 0
ASIC : 0
ASIC Port : 14
Port LE Handle : 0x514cd990

Non Zero Feature Ref Counts
FID : 48(AL_FID_L2_PM), Ref Count : 1
FID : 77(CAL_FID_STATS), Ref Count : 1
FID : 51CAL_FID_L2_MATM), Ref Count : 1
FID : 13(CAL_FID_SC), Ref Count : 1
FID : 26(CAL_FID_QO0S), Ref Count : 1
Sub block information
FID : 48(AL_FID_L2_PM), Private Data : 0x54072618
FID : 26(AL_FID_QOS), Private Data : 0x514d31b8

Y ou have once again identified the source interface and cul prit.

Tracing isa powerful tool that is critical in order to troubleshoot high CPU usage problems and provides
plenty of information in order to successfully resolve such a situation.

Sample Embedded Event Manager (EEM) Script for the Cisco Catalyst 3850 Series
Switch

Use this command in order to trigger alog to be generated at a specific threshold:

process cpu threshold type total rising <CPU %> interval <interval in seconds>
switch <switch number>

The log generated with the command looks like this:

*Jan 13 00:03:00.271: %CPUMEM-5-RISING_THRESHOLD: 1 CPUMEMd[6300]: Threshold: : 50, Total CPU Utilzati

The log generated provides this information:

» Thetotal CPU utilization at the time of the trigger. Thisisidentified by Total CPU
Utilization(total/Intr) :50/0 in this example.
» Top processes - these are listed in the format of PID/CPU%. So in this example, these are:

8622/25 - 8622 is PID for IOSd and 25 implies that this process 1is using 25% CPU.
5753/12 - 5733 1is PID for FED and 12 implies that this process 1is using 12% CPU.

The EEM script is shown here:

event manager applet highcpu
event syslog pattern "%CPUMEM-5-RISING_THRESHOLD"

action
action
action
action
sorted
action

0
0
0
0
I

0

.1 sysli
.2 cli
.3 cli
.4 cli
nvram:
.5 cli

direction rx |
action 0.6 cli
direction rx |
action 0.7 cli
action 0.8 cli

og msg "high CPU detected"

command "enable"

command "show process cpu sorted | append nvram:<filename>.txt"
command "show process cpu detailed process <process name|process ID>
<filename>. txt"

command "show platform punt statistics port-asic 0 cpuq -1
append nvram:<filename>.txt"

command "show platform punt statistics port-asic 1 cpuq -1
append nvram:<filename>.txt"

command "conf t"

command "no event manager applet highcpu"

% Note: The process cpu threshold command does not currently work in the 3.2.X train. Another point
to remember is that this command looks at the average CPU utilization among the four cores and
generates alog when this average reaches the percentage that has been defined in the command.

Cisco IOS XE 16.x or Later Releases

If you have Catalyst 3850 switches that run Cisco |IOS® XE Software Release 16.x or later, see
Troubleshoot High CPU Usage in Catalyst Switch Platforms Running |OS-XE 16.x.

Related | nfor mation

e What isCisco |OS XE?

e Cisco Catalyst 3850 Switches - Data Sheetsand Literature

» Cisco Technical Support & Downloads

https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-xe-16/213549-troubleshoot-high-cpu-usage-in-catalyst.html
https://www.cisco.com/c/en/us/solutions/service-provider/index.html
https://www.cisco.com/c/en/us/support/switches/catalyst-3850-series-switches/series.html
https://www.cisco.com/c/en/us/support/index.html?referring_site=bodynav

