
PKI Data Formats

Contents

Introduction
Prerequisites
Requirements
Components Used
Conventions
ASN.1 Notation
BER/CER/DER Encodings
DER hex Dump
Base64 Encoding
PEM Encoding
X.509 Certificates and CRLs
PKCS Standards
Related Information

Introduction

This document describes the most common Public Key Infrastructure (PKI) data formats and
encodings.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

public-key cryptography (basic concepts).●

public-key infrastructure (basic concepts).●

Components Used

This document is not restricted to specific software and hardware versions.

The information in this document was created from the devices in a specific lab environment. All of
the devices used in this document started with a cleared (default) configuration. If your network is
live, make sure that you understand the potential impact of any command.

Conventions

Refer to Cisco Technical Tips Conventions for information on document conventions.

ASN.1 Notation

Abstract Syntax Notation One (ASN.1) is a formal language for the definition of data types and
values, and how those data types and values are used and combined in various data structures.
The goal of the standard is to define the abstract syntax of information without constraining how
the information is encoded for transmission.

Here is an example excerpted from the X.509 RFC:

 Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

notBefore Time,

notAfter Time }

Time ::= CHOICE {

utcTime UTCTime,

generalTime GeneralizedTime }

Refer to these documents from the International Telecommunication Union (ITU-T) standards
sites:

X.680 ASN.1: Specification of basic notation●

X.681 ASN.1: Information object specification●

X.682 ASN.1: Constraint specification●

X.683 ASN.1: Parameterization of ASN.1 specifications●

ITU-T recommendations search - Search for X.509 in Rec. or standard with Language set to
ASN.1.

BER/CER/DER Encodings

The ITU-T has defined a standard way of encoding data structures described in ASN.1 into binary
data. X.690 defines Basic Encoding Rules (BER) and its two subsets, Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER). All three are based on type-length-value data
fields packed in a hierarchical structure, which is built from SEQUENCEs, SETs, and CHOICEs,
with these differences:

BER provides multiple ways of encoding the same data, which is not suited for crypto
operations.

●

CER provides unequivocal encoding and uses indefinite length data, with an end-of-data
marker in specific cases.

●

DER provides unequivocal encoding and uses explicit length tags in specific cases.●

Among the three, DER is the one that is usually encountered when dealing with PKI
and crypto payloads.

●

Example: In DER, the 20-bit value 1010 1011 1100 1101 1110 is encoded as :

/c/en/us/support/docs/dial-access/asynchronous-connections/17016-techtip-conventions.html
http://www.itu.int/rec/T-REC-X.680/en
http://www.itu.int/rec/T-REC-X.681/en
http://www.itu.int/rec/T-REC-X.682/en
http://www.itu.int/rec/T-REC-X.683/en
http://www.itu.int/ITU-T/recommendations/fl.aspx?lang=1

tag: 0x03 (bitstring)●

length: 0x04 (bytes)●

value: 0x04ABCDE0●

complete DER encoding: 0x030404ABCDE0●

The leading 04 means that the last 4 bits (equals the trailing 0 digit) of the encoded value must be
discarded because the encoded value does not end on a byte boundary.

Refer to these documents from the TU-T standards site:

X.690 ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER)

●

From the Wikipedia site, refer to these documents:

Basic Encoding Rules●

Canonical Encoding Rules●

Distinguished Encoding Rules●

DER hex Dump

Cisco IOS, Adaptive Security Appliance (ASA), and other devices display DER content as a hex
dump with the show running-config command. Here is the output:

crypto pki certificate chain root

certificate ca 01

30820213 3082017C A0030201 02020101 300D0609 2A864886 F70D0101 04050030

1D310C30 0A060355 040B1303 54414331 0D300B06 03550403 1304726F 6F74301E

170D3039 30373235 31313436 33325A17 0D313230 37323431 31343633 325A301D

...

This kind of hex dump can be converted back to DER in various ways. For instance, you can
remove the space characters and pipe it to the xxd program:

$ cat ca.hex | tr -d ' ' | xxd -r -p -c 32 | openssl x509 -inform der -text -noout

Another easy way is to use this Perl script :

#!/usr/bin/perl

foreach (<>) {

s/[^a-fA-F0-9]//g;

print join("", pack("H*", $_));

} $ perl hex2der.pl < hex-file.txt > der-file.der
In addition, a compact way to convert cert dumps, each one previously manually copied to a file
with extension .hex, from a bash command line as shown here:

for hex in *.hex; do

b="${hex%.hex}"

hex2der.pl < "$hex" > "$b".der

openssl x509 -inform der -in "$b".der > "$b".pem

openssl x509 -in "$b".pem -text -noout > "$b".txt

done

Each file results in:

file.hex - The original file (must contain hex digits only).●

file.der - Certificate in DER (binary) format.●

file.pem - Certificate in PEM (Base64 + header/footer) format.●

http://www.itu.int/rec/T-REC-X.690/en
http://www.itu.int/rec/T-REC-X.690/en
http://en.wikipedia.org/wiki/Basic_encoding_rules
http://en.wikipedia.org/wiki/Canonical_Encoding_Rules
http://en.wikipedia.org/wiki/Distinguished_Encoding_Rules

file.txt - User-friendly, readable version of the certificate.●

Base64 Encoding

Base64 encoding represents the binary data with only 64 printable characters (A-Za-z0-9+/)
similarly to uuencode. In the conversion from binary to Base64, every 6-bit block of the original
data is encoded into an 8-bit printable ASCII character with a translation table. Therefore, the size
of the data after encoding has increased by 33 percent (data times 8 divided by 6 bits, equals
1.333).

A 24-bit buffer is used for translation of three (3) groups of eight (8) bits into four (4) groups of six
(6) bits. Therefore one (1) or two (2) bytes of padding might be required at the end of the input
data stream. Padding is indicated at the end of the Base64-encoded data, by one equals (=) sign
for each group of eight (8) padding bits added to the input during encoding.

Refer to this example from Wikipedia.

Refer to the most recent information in RFC 4648: The Base16, Base32, and Base64 Data
Encodings.

PEM Encoding

Privacy Enhanced Mail (PEM) is a full Internet Engineering Task Force (IETF) PKI standard in
order to exchange secure messages. It is no longer widely used as such, but its encapsulation
syntax has been widely borrowed in order to format and exchange Base64-encoded PKI-related
data.

The PEM RFC 1421, section 4.4: Encapsulation Mechanism, defines PEM messages as delimited
by Encapsulation Boundaries (EBs), which are based on RFC 934, with this format:

-----BEGIN PRIVACY-ENHANCED MESSAGE-----

Header: value

Header: value

...

Base64-encoded data

...

-----END PRIVACY-ENHANCED MESSAGE-----

In practice today, when PEM-formatted data is distributed, this boundary format is used:

-----BEGIN type-----

...

-----END type-----

type can be with other keys or certificates such as:

RSA PRIVATE KEY●

ENCRYPTED PRIVATE KEY●

CERTIFICATE●

CERTIFICATE REQUEST●

X509 CRL●

Note: Although the RFCs do not make this mandatory, the number of leading and trailing dashes
(-) in the EBs is significant and should always be five (5). Otherwise, some applications, such

http://en.wikipedia.org/wiki/Base64#Example
http://tools.ietf.org/rfc/rfc4648
http://tools.ietf.org/rfc/rfc4648
http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc934

as OpenSSL, choke on the input. On the other hand, other applications, such as Cisco IOS, do not
require EBs at all.

Refer to these most recent RFCs for further information:

RFC 1421 : PEM Part I: Message Encryption and Authentication Procedures●

RFC 1422 : PEM Part II: Certificate-Based Key Management●

RFC 1423 : PEM Part III: Algorithms, Modes, and Identifiers●

RFC 1424 : PEM Part IV: Key Certification and Related Services●

X.509 Certificates and CRLs

X.509 is a subset of X.500, which is an extended ITU specification about Open Systems
Interconnection. It deals specifically with certificates and public keys and has been adapted as an
Internet standard by the IETF. X.509 provides a structure and syntax, expressed in the RFC with
ASN.1 Notation, in order to store certificate information and certificate revocation lists.

In an X.509 PKI, a CA issues a certificate that binds a public key, for example: a Rivest-Shamir-
Adleman (RSA) or Digital Signature Algorithm (DSA) key to a particular Distinguished Name (DN),
or to an alternative name such as an email address or fully qualified domain name (FQDN). The
DN follows the structure in the X.500 standards. Here is an example:

CN=common-name,OU=organizational-
unit,O=organization,L=location,C=country

Because of the ASN.1 definition, X.509 data can be encoded into DER in order to be exchanged in
binary form, and optionally, converted to Base64/PEM for text-based means of communication,
such as copy-paste on a terminal.

Refer to this ITU-T standards document X.509 Open Systems Interconnection - The Directory:
Public-key and attribute certificate frameworks.

●

Refer to RFC 5280: X.509 Certificate and Certificate Revocation List (CRL) Profile for more
information.

●

PKCS Standards

The Public-Key Cryptography Standards (PKCS) are specifications from RSA Labs that have
partly evolved into industry standards. Those most often encountered, deal with these topics;
however, not all of them deal with data formats.

PKCS#1 (RFC 3347) - Covers the implementation aspects of RSA-based cryptography (crypto
primitives, encryption/signature schemes, ASN.1 syntax).

PKCS#5 (RFC 2898) - Covers password-based key derivation.

PKCS#7 (RFC 2315) and S/MIME RFC 3852 - Defines a message syntax to transmit signed and
encrypted data and related certificates. Often used simply as a container for X.509 certificates.

PKCS#8- Defines a message syntax to transport cleartext or encrypted RSA keypairs.

http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1422
http://tools.ietf.org/html/rfc1423
http://tools.ietf.org/html/rfc1424
http://www.itu.int/rec/T-REC-X.509/en
http://www.itu.int/rec/T-REC-X.509/en
http://www.ietf.org/rfc/rfc5280.txt
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc2898
http://tools.ietf.org/html/rfc2315
http://tools.ietf.org/html/rfc3852

PKCS#9 (RFC 2985) - Defines additional object classes and identity attributes.

PKCS#10 (RFC 2986) - Defines a message syntax for Certificate Signing Requests (CSRs). A
CSR is sent by an entity to a CA and contains the information to be signed by the CA, such as
public key information, identity, and additional attributes.

PKCS#12 - Defines a container for packaging related PKI data (typically, entity keypair + entity
cert + root and intermediate CA certificates) within a single file. It is an evolution of
Microsoft's Personal Information Exchange (PFX) format.

Refer to these resources:
Wikipedia article on PKCS●

RSA Labs page on PKCS●

Related Information

Technical Support & Documentation - Cisco Systems●

http://tools.ietf.org/html/rfc2985
http://tools.ietf.org/html/rfc2986
http://en.wikipedia.org/wiki/PKCS
http://www.rsa.com/rsalabs/node.asp?id=2124
http://www.cisco.com/cisco/web/support/index.html?referring_site=bodynav

	PKI Data Formats
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used
	Conventions

	ASN.1 Notation
	BER/CER/DER Encodings
	DER hex Dump
	Base64 Encoding
	PEM Encoding
	X.509 Certificates and CRLs
	PKCS Standards
	Related Information

