
Troubleshoot Event Stream on Private Cloud

Contents

Introduction
Prerequisites
Requirements
Components Used
Configuration
Create API Key
Create Event Stream
MacOS/Linux
Windows
Response
List of Event Streams
MacOS/Linux
Windows
Response
Delete Event Streams
MacOS/Linux
Windows
Response
Verify
Troubleshooting
Check the AMQP Service
Check the Connection to Event Stream Receiver
Check for the Events in the Queue
Collect Network Traffic File
Related Information

Introduction

This document describes how to troubleshoot Event Streams in Advanced Malware Protection Secure
Endpoint Private Cloud.

Prerequisites

Requirements

Cisco recommends that you have knowledge of the topics:

Secure Endpoint Private Cloud•
API query•

Components Used

The information in this document is based on these software and hardware versions:

Secure Endpoint Private Cloud v3.9.0•

cURL v7.87.0•
cURL v8.0.1•

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network is live, ensure
that you understand the potential impact of any command.

Configuration

Create API Key

Step 1. Login to Private Cloud Console.

Step 2. Navigate to Accounts > API Credentials.

Step 3. Click New API Credential.

Step 4. Add the Application name and click Read & Write scope.

Create API Key

Step 5. Click Create.

Step 6. Save API credentials.

API Key

Caution: The API Key cannot be recovered if you leave this page.

Create Event Stream

This creates a new Advanced Message Queuing Protocol (AMQP) message stream for event information.

You can create an Event Stream for specified events types and groups:

--data '{"name":"EVENT_STREAM_NAME","event_type":["EVENT_TYPE_1", "EVENT_TYPE_2"],"group_guid":["GROUP_ID_1", "GROUP_ID_2"]}'

You can create an Event Stream for all event types and all groups by:

--data '{"name":"EVENT_STREAM_NAME","event_type":[],"group_guid":[]}'

MacOS/Linux

You can create an Event Stream on MacOS/Linux with the use of:

curl -X POST -k -H 'Accept: application/json' -H 'Content-Type: application/json' -u 'CLIENT_ID:API_KEY' -i 'https://CONSOLE_URL/v1/event_streams' --data '{"name":"EVENT_STREAM_NAME","event_type":[],"group_guid":[]}'

Windows

You can create an Event Stream on Windows with the use of:

curl -X POST -k -H "Accept: application/json" -H "Content-Type: application/json" -u "CLIENT_ID:API_KEY" -i "https://CONSOLE_URL/v1/event_streams" --data "{\"name\":\"EVENT_STREAM_NAME\",\"event_type\":[],\"group_guid\":[]}"

Response

HTTP/1.1 201 Created

(...)
"data": {
 "id": 17,
 "name": "EVENT_STREAM_NAME",
 "amqp_credentials": {
 "user_name": "17-1bfXXXXXXXXXX",
 "queue_name": "event_stream_17",
 "password": "3961XXXXXXXXXXXXXXXXXXXXXX814a77",
 "host": "FMC_SERVICE_URL",
 "port": 443,
 "proto": "https"
 }
}

List of Event Streams

This shows a list of event streams created on Private Cloud.

MacOS/Linux

You can list the Event Streams on MacOS/Linux with the use of:

curl -k -H 'Accept: application/json' -H 'Content-Type: application/json' -u 'CLIENT_ID:API_KEY' -i 'https://CONSOLE_URL/v1/event_streams'

Windows

You can list the Event Streams on Windows with the use of:

curl -k -H "Accept:application/json" -H "Content-Type:application/json" -u "CLIENT_ID:API_KEY" -i "https://CONSOLE_URL/v1/event_streams"

Response

HTTP/1.1 200 OK
(...)
"data": {
 "id": 17,
 "name": "EVENT_STREAM_NAME",
 "amqp_credentials": {
 "user_name": "17-1bfXXXXXXXXXX",
 "queue_name": "event_stream_17",
 "host": "FMC_SERVICE_URL",
 "port": 443,
 "proto": "https"
 }
}

Delete Event Streams

Deletes an active event stream.

MacOS/Linux

You can delete Event Streams on MacOS/Linux with the use of:

curl -X DELETE -k -H 'Accept: application/json' -H 'Content-Type: application/json' -u 'CLIENT_ID:API_KEY' -i 'https://CONSOLE_URL/v1/event_streams/EVENT_STREAM_ID'

Windows

You can delete Event Streams on Windows with the use of:

curl -X DELETE -k -H "Accept:application/json" -H "Content-Type:application/json" -u "CLIENT_ID:API_KEY" -i "https://CONSOLE_URL/v1/event_streams/EVENT_STREAM_ID"

Response

HTTP/1.1 200 OK
(...)
 "data": {}

Verify

Step 1. Copy the Python script to your device and save it as EventStream.py.

import pika
import ssl

user_name = "USERNAME"
queue_name = "QUEUE_NAME"
password = "PASSWORD"
host = "FMC_SERVICE_URL"
port = 443
proto = "https"

def callback(channel, method, properties, body):
print(body)

amqp_url = f"amqps://{user_name}:{password}@{host}:{port}"

context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
amqp_ssl = pika.SSLOptions(context)

params = pika.URLParameters(amqp_url)
params.ssl_options = amqp_ssl

connection = pika.BlockingConnection(params)
channel = connection.channel()

channel.basic_consume(
 queue_name,
 callback,
 auto_ack = False
)

channel.start_consuming()

Step 2. Execute it in the terminal as python3 EventStream.py.

Step 3. Trigger any event which is added to the Event Stream queue.

Step 4. Check if the events appear in the terminal.

Troubleshooting

In order to execute these commands you must log in via SSH into the Private Cloud.

Check the AMQP Service

Verify if the service is enabled:

[root@fireamp rabbitmq]# amp-ctl service status rabbitmq
running enabled rabbitmq

Verify if the service is running:

[root@fireamp ~]# svstat /service/rabbitmq
/service/rabbitmq: up (pid 25504) 7402137 seconds

Check the Connection to Event Stream Receiver

Execute the command:

tail /data/log/rabbitmq/rabbit@fireamp.log

Connection is established:

=INFO REPORT==== 19-Apr-2023::08:40:12 ===
accepting AMQP connection <0.17588.27> (127.0.0.1:32946 -> 127.0.0.1:5672)

Connection is closed:

=WARNING REPORT==== 19-Apr-2023::08:41:52 ===
closing AMQP connection <0.17588.27> (127.0.0.1:32946 -> 127.0.0.1:5672):
connection_closed_abruptly

Check for the Events in the Queue

Events in the queue are ready to be sent on this event stream to the receiver after the connection is
established. In this example, there are 14 events for Event Stream ID 23.

<#root>

[root@fireamp rabbitmq]# rabbitmqctl list_queues
Listing queues ...
1acb0eb6-39f7-4b11-bd9b-fc4dd0e3bd77_60b15rn8mpftaico6or6l8zxavl1usm 26
1acb0eb6-39f7-4b11-bd9b-fc4dd0e3bd77_61984nlu8p11eeopmgmtcjra1v8gf5p 26
1acb0eb6-39f7-4b11-bd9b-fc4dd0e3bd77_iesRAgVo0h287mO_DetOx9PdDu8MxkS6kL4oSTeBm9s 26
event_decoration 0
event_log_store 0

event_stream_23 14

event_streams_api 0
events_delayed 0
events_retry 0
mongo_event_consumer 0
out_events_q1 0
tevent_listener 0

Collect Network Traffic File

In order to verify the Event Stream traffic from the Private Cloud, you can collect capture with a tcpdump tool:

Step 1. SSH into the Private Cloud.

Step 2. Execute the command:

tcpdump -vvv -i eth1 host <Event_Stream_Receiver_IP> -w file.pcap

Step 3. Stop the capture with Ctrl+C (Windows) or Command-C (Mac).

Step 4. Extract the pcap file from the Private Cloud.

Related Information

Configure AMP for Endpoints Event Stream Feature•
Technical Support & Documentation - Cisco Systems•

https://www.cisco.com/c/en/us/support/docs/security/amp-endpoints/215350-configure-amp-for-endpoints-event-stream.html#anc11
https://www.cisco.com/c/en/us/support/index.html?referring_site=bodynav

