
RSA Token Server and SDI Protocol Usage for ASA
and ACS

Document ID: 116304

Contributed by Michal Garcarz, Roger Nobel, and Artem Tkachov,
Cisco TAC Engineers.
Mar 03, 2015

Contents

Introduction
Prerequisites
 Requirements
 Components Used
Theory
RSA via RADIUS
RSA via SDI
SDI Protocol
Configuration
 SDI on ACS
 SDI on ASA
Troubleshoot
 No Agent Configuration on RSA
 Corrupted Secret Node
 Node in Suspended Mode
 Account Locked
 Maximum Transition Unit (MTU) Issues and Fragmentation
 Packets and Debugs for ACS
Related Information

Introduction

This document describes troubleshooting procedures for the RSA Authentication Manager, which can be
integrated with the Cisco Adaptive Security Appliance (ASA) and the Cisco Secure Access Control Server
(ACS).

The RSA Authentication Manager is a solution that provides the One Time Password (OTP) for
authentication. That password is changed every 60 seconds and can be used only once. It supports both
hardware and software tokens.

Prerequisites

Requirements

Cisco recommends that you have basic knowledge of these topics:

Cisco ASA CLI configuration•
Cisco ACS configuration•

Components Used

The information in this document is based on these software versions:

Cisco ASA software, Version 8.4 and later•
Cisco Secure ACS, Version 5.3 and later•

The information in this document was created from the devices in a specific lab environment. All of the
devices used in this document started with a cleared (default) configuration. If your network is live, make sure
that you understand the potential impact of any command.

Theory

The RSA server can be accessed with RADIUS or the proprietary RSA protocol: SDI. Both the ASA and the
ACS can use both protocols (RADIUS, SDI) in order to access the RSA.

Remember that the RSA can be integrated with the Cisco AnyConnect Secure Mobility Client when a
software token is used. This document focuses solely on ASA and ACS integration. For more information
about AnyConnect, refer to the Using SDI Authentication section of the Cisco AnyConnect Secure Mobility
Client Administrator Guide, Release 3.1.

RSA via RADIUS

RADIUS has one big advantage over SDI. On the RSA, it is possible to assign specific profiles (called groups
on ACS) to users. Those profiles have specific RADIUS attributes defined. After successful authentication,
the RADIUS−Accept message returned from the RSA contains those attributes. Based on those attributes, the
ACS makes additional decisions. The most common scenario is the decision to use ACS Group Mapping in
order to map specific RADIUS−attributes, related to the profile on the RSA, to a specific group on the ACS.
With this logic, it is possible to move the whole authorization process from the RSA to the ACS and still
maintain granular logic, as on the RSA.

RSA via SDI

SDI has two main advantages over RADIUS. The first is that the whole session is encrypted. The second is
the interesting options that the SDI agent provides: it is able to determine if the failure is created because
authentication or authorization failed or because the user was not found.

This information is used by the ACS in action for identity. For example, it could continue for "user not found"
but reject for "authentication failed."

There is one more difference between RADIUS and SDI. When a Network Access Device like ASA uses SDI,
the ACS performs only authentication. When it uses RADIUS, the ACS performs authentication,
authorization, accounting (AAA). However, this is not a big difference. It is possible to configure SDI for
authentication and RADIUS for accounting for the same sessions.

SDI Protocol

By default, SDI uses User Datagram Protocol (UDP) 5500. SDI uses a symmetric encryption key, similar to
the RADIUS key, in order to encrypt sessions. That key is saved in a node secret file and is different for every
SDI client. That file is deployed manually or automatically.

Note: ACS/ASA does not support manual deployment.

For the automatic deployment node, the secret file is downloaded automatically after the first successful
authentication. The node secret is encrypted with a key derived from the user's passcode and other
information. This creates some possible security issues, so the first authentication should be performed locally
and use encrypted protocol (Secure Shell [SSH], not telnet) in order to ensure that the attacker cannot
intercept and decrypt that file.

Configuration

Notes:

Use the Command Lookup Tool (registered customers only) in order to obtain more information on the
commands used in this section.

The Output Interpreter Tool (registered customers only) supports certain show commands. Use the Output
Interpreter Tool in order to view an analysis of show command output.

Refer to Important Information on Debug Commands before you use debug commands.

SDI on ACS

It is configured in Users and Identity Stores > External Identity Store > RSA Secure ID Token Servers.

The RSA has multiple replica servers, such as the secondary servers for the ACS. There is no need to put all
the addresses there, just the sdconf.rec file provided by the RSA administrator. This file includes the IP
address of the primary RSA server. After the first successful authentication node, the secret file is downloaded
along with the IP addresses of all RSA replicas.

In order to differentiate "user not found" from "authentication failure," choose settings in the Advanced tab:

It is also possible to change the default routing (load balancing) mechanisms between multiple RSA servers
(primary and replicas). Change it with the sdopts.rec file provided by the RSA administrator. In ACS, it is
uploaded in Users and Identity Stores > External Identity Store > RSA Secure ID Token Servers > ACS
Instance Settings.

For cluster deployment, the configuration should be replicated. After the first successful authentication, each
ACS node uses its own node secret downloaded from the primary RSA server. It is important to remember to
configure the RSA for all the ACS nodes in the cluster.

SDI on ASA

The ASA does not allow upload of the sdconf.rec file. And, like the ACS, it allows for automatic deployment
only. The ASA needs to be configured manually in order to point to the primary RSA server. A password is
not needed. After the first successful authentication node, the secret file is installed (.sdi file on flash) and
further authentication sessions are protected. Also the IP address of other RSA servers are downloaded.

Here is an example:

aaa−server SDI protocol sdi
aaa−server SDI (backbone) host 1.1.1.1
debug sdi 255
test aaa auth SDI host 1.1.1.1 user test pass 321321321

After successful authentication, the show aaa−server protocol sdi or show aaa−server <aaa−server−group>
command shows all RSA servers (if there are more than one), while the show run command shows only the
primary IP address:

bsns−asa5510−17# show aaa−server RSA
Server Group: RSA
Server Protocol: sdi
Server Address: 10.0.0.101
Server port: 5500
Server status: ACTIVE (admin initiated), Last transaction at
10:13:55 UTC Sat Jul 27 2013
Number of pending requests 0
Average round trip time 706ms
Number of authentication requests 4
Number of authorization requests 0
Number of accounting requests 0
Number of retransmissions 0

Number of accepts 1
Number of rejects 3
Number of challenges 0
Number of malformed responses 0
Number of bad authenticators 0
Number of timeouts 0
Number of unrecognized responses 0

SDI Server List:
Active Address: 10.0.0.101

 Server Address: 10.0.0.101
 Server port: 5500
 Priority: 0
 Proximity: 2

 Status: OK
 Number of accepts 0
 Number of rejects 0
 Number of bad next token codes 0
 Number of bad new pins sent 0
 Number of retries 0
 Number of timeouts 0

Active Address: 10.0.0.102
 Server Address: 10.0.0.102
 Server port: 5500
 Priority: 8
 Proximity: 2

 Status: OK
 Number of accepts 1
 Number of rejects 0
 Number of bad next token codes 0
 Number of bad new pins sent 0
 Number of retries 0
 Number of timeouts 0

Troubleshoot

This section provides information you can use in order to troubleshoot your configuration.

No Agent Configuration on RSA

In many cases after you install a new ASA or change the ASA IP address, it is easy to forget to make the same
changes on the RSA. The Agent IP address on the RSA needs to be updated for all clients that access the
RSA. Then, the new node secret is generated. The same applies to the ACS, especially to secondary nodes
because they have different IP addresses and the RSA needs to trust them.

Corrupted Secret Node

Sometimes the secret node file on the ASA or the RSA becomes corrupted. Then, it is best to remove the
agent configuration on the RSA and add it again. You also need to do the same process on the ASA/ACS −
remove and add configuration again. Also, delete the .sdi file on the flash, so that in the next authentication, a
new .sdi file is installed. Automatic node secret deployment should occur once this is complete.

Node in Suspended Mode

Sometimes one of the nodes is in suspended mode, which is caused by no response from that server:

asa# show aaa−server RSA
<.....output ommited"

SDI Server List:
 Active Address: 10.0.0.101
 Server Address: 10.0.0.101
 Server port: 5500
 Priority: 0
 Proximity: 2

 Status: SUSPENDED

In suspended mode, the ASA does not try to send any packets to that node; it needs to have an OK status for
that. The failed server is put in active mode again after the dead timer. For more information, refer to the
reactivation−mode command section in the Cisco ASA Series Command Reference, 9.1 guide.

In such scenarios, it is best to remove and add the AAA−server configuration for that group in order to trigger
that server into active mode again.

Account Locked

After multiple retries, the RSA might lock out of the account. It is easily checked on the RSA with reports. On
the ASA/ACS, reports only show "failed authentication."

Maximum Transition Unit (MTU) Issues and Fragmentation

SDI uses UDP as transport, not MTU path discovery. Also UDP traffic does not have the Don't Fragment
(DF) bit set by default. Sometimes for larger packets, there might be fragmentation problems. It is easy to
sniff traffic on the RSA (both the appliance and Virtual Machine [VM] use Windows and use Wireshark).
Complete the same process on the ASA/ACS and compare. Also, test RADIUS or WebAuthentication on the
RSA in order to compare it to SDI (in order to narrow down the problem).

Packets and Debugs for ACS

Because SDI payload is encrypted, the only way to troubleshoot the captures is to compare the size of the
response. If it is smaller than 200 bytes, there might be a problem. A typical SDI exchange involves four
packets, each of which is 550 bytes, but that might change with the RSA server version:

In case of problems, it is usually more than four packets exchanged and smaller sizes:

Also, the ACS logs are quite clear. Here are typical SDI logs on the ACS:

EventHandler,11/03/2013,13:47:58:416,DEBUG,3050957712,Stack: 0xa3de560
Calling backRSAIDStore: Method MethodCaller<RSAIDStore, RSAAgentEvent> in
thread:3050957712,EventStack.cpp:242

AuthenSessionState,11/03/2013,13:47:58:416,DEBUG,3050957712,cntx=0000146144,
sesn=acs−01/150591921/1587,user=mickey.mouse,[RSACheckPasscodeState
::onEnterState],RSACheckPasscodeState.cpp:23

EventHandler,11/03/2013,13:47:58:416,DEBUG,3002137488,Stack: 0xa3de560
Calling RSAAgent:Method MethodCaller<RSAAgent, RSAAgentEvent> in thread:
3002137488,EventStack.cpp:204

RSAAgent,11/03/2013,13:47:58:416,DEBUG,3002137488,cntx=0000146144,sesn=
acs−01/150591921/1587,user=mickey.mouse,[RSAAgent::handleCheckPasscode],
RSAAgent.cpp:319

RSASessionHandler,11/03/2013,13:47:58:416,DEBUG,3002137488,[RSASessionHandler::
checkPasscode] call AceCheck,RSASessionHandler.cpp:251

EventHandler,11/03/2013,13:48:00:417,DEBUG,2965347216,Stack: 0xc14bba0
Create newstack, EventStack.cpp:27

EventHandler,11/03/2013,13:48:00:417,DEBUG,3002137488,Stack: 0xc14bba0 Calling
RSAAgent: Method MethodCaller<RSAAgent, RSAServerResponseEvent> in
 thread:3002137488,EventStack.cpp:204

RSAAgent,11/03/2013,13:48:00:417,DEBUG,3002137488,cntx=0000146144,sesn=acs−01
/150591921/1587,user=mickey.mouse,[RSAAgent::handleResponse] operation completed
with ACM_OKstatus,RSAAgent.cpp:237

EventHandler,11/03/2013,13:48:00:417,DEBUG,3002137488,Stack: 0xc14bba0
EventStack.cpp:37

EventHandler,11/03/2013,13:48:00:417,DEBUG,3049905040,Stack: 0xa3de560 Calling
back RSAIDStore: Method MethodCaller<RSAIDStore, RSAAgentEvent> in thread:
3049905040,EventStack.cpp:242

AuthenSessionState,11/03/2013,13:48:00:417,DEBUG,3049905040,cntx=0000146144,sesn=
acs−01/150591921/1587,user=mickey.mouse,[RSACheckPasscodeState::onRSAAgentResponse]
Checkpasscode succeeded, Authentication passed,RSACheckPasscodeState.cpp:55

Related Information

RSA Authentication Manager Resources•
RSA/SDI Server Support section of the Cisco ASA 5500 Series Configuration Guide using the CLI,
8.4 and 8.6

•

RSA SecurID Server section of the User Guide for Cisco Secure Access Control System 5.4•
Technical Support & Documentation − Cisco Systems•

Updated: Mar 03, 2015 Document ID: 116304

