
SSL Introduction with Sample Transaction
and Packet Exchange
 
Contents

Introduction
SSL Record Overview
Record Format
Record Type
Record Version
Record Length
Types of Records
Handshake Records
CCS Records
Alert Records
Application Data Record
Sample Transaction
The Hello Exchange
Client Exchange
Cipher Change
Related Information

Introduction

This document describes the basic concepts of Secure Sockets Layer (SSL) protocol, and
provides a sample transaction and packet capture.

SSL Record Overview

The basic unit of data in SSL is a record. Each record consists of a five-byte record header,
followed by data.

Record Format

Type: uint8 - values listed●

Version: uint16●

Length: uint16●

Type Version Length
 T  VH  VL  LH  LL

Record Type

There are four record types in SSL:



Handshake (22, 0x16)●

Change Cipher Spec (20, 0x14)●

Alert (21, 0x15)●

Application Data (23, 0x17)●

Record Version

The record version is a 16-bits value and is formatted in network order. 

Note: For SSL Version 3 (SSLv3), the version is 0x0300. For Transport Layer Security
Version 1 (TLSv1), the version is 0x0301. The Cisco Adaptive Security Appliance (ASA)
does not support SSL Version 2 (SSLv2), which uses version 0x0002, or any version of TLS
greater than TLSv1.

Record Length

The record length is a 16-byte value and is formatted in network order.

In theory, this means that a single record can be up to 65,535 (2^16 -1) bytes in length. The
TLSv1 RFC2246 states that the maximum length is 16,383 (2^14 -1) bytes. Microsoft products
(Microsoft Internet Explorer and Internet Information Services) are known to exceed these limits.

Types of Records

This section describes the four types of SSL records.

Handshake Records

Handshake records contain a set of messages that are used in order to handshake. These are the
messages and their values:

Hello Request (0, 0x00)●

Client Hello (1, 0x01)●

Server Hello (2, 0x02)●

Certificate (11, 0x0B)●

Server Key Exchange (12, 0x0C)●

Certificate Request (13, 0x0D)●

Server Hello Done (14, 0x0E)●

Certificate Verify (15, 0x0F)●

Client Key Exchange (16, 0x10)●

Finished (20, 0x14)●

In the simple case, handshake records are not encrypted. However, a handshake record that
contains a finished message is always encrypted, as it always occurs after a Change Cipher Spec
(CCS) record.

CCS Records



CCS records are used in order to indicate a change in cryptographic ciphers. Immediately after the
CCS record, all data is encrypted with the new cipher. CCS records might or might not be
encrypted; in a simple connection with a single handshake, the CCS record is not encrypted.

Alert Records

Alert records are used in order to indicate to the peer that a condition has occured. Some alerts
are warnings, while others are fatal and cause the connection to fail. Alerts might or might not be
encrypted, and might occur during a handshake or during data transfer. There are two types of
alerts:

Closure Alerts: The connection between the client and the server must be properly closed in
order to avoid any kind of truncation attacks. A close_notify message is sent that indicates to
the recipient that the sender will not send anymore messages on that connection.

●

Error Alerts: When an error is detected, the detecting party sends a message to the other
party. Upon transmission or receipt of a fatal alert message, both parties immediately close
the connection. Some examples of error alerts are:

●

unexpected_message (fatal)●

decompression_failure●

handshake_failure●

Application Data Record

These records contain the actual application data. These messages are carried by the record layer
and are fragmented, compressed, and encrypted, based on the current connection state.

Sample Transaction

This section describes a sample transaction between the client and server.



The Hello Exchange



When an SSL client and server begin to communicate, they agree on a protocol version, select
cryptographic algorithms, optionally authenticate each other, and use public key encryption
techniques in order to generate shared secrets. These processes are performed in the handshake
protocol. In summary, the client sends a Client Hello message to the server, which must respond
with a Server Hello message or a fatal error occurs and the connection fails. The Client Hello and
Server Hello are used to establish security enhancement capabilities between the client and
server. 

Client Hello

The Client Hello sends these attributes to the server: 

Protocol Version: The version of the SSL protocol by which the client wishes to
communicate during this session.

●

Session ID: The ID of a session the client wishes to use for this connection. In the first Client
Hello of the exchange, the session ID is empty (refer to the packet capture screen shot after
the note).

●

Cipher Suite: This is passed from the client to the server in the Client Hello message. It
contains the combinations of cryptographic algorithms supported by the client in order of the
client's preference (first choice first). Each cipher suite defines both a key exchange algorithm
and a cipher spec. The server selects a cipher suite or, if no acceptable choices are
presented, returns a handshake failure alert and closes the connection.

●

Compression Method: Includes a list of compression algorithms supported by the client. If
the server does not support any method sent by the client, the connection fails. The
compression method can also be null. 

●

Note: The server IP address in the captures is 10.0.0.2 and the client IP address is 10.0.0.1.

Server Hello

The server sends back these attributes to the client: 

Protocol Version: The chosen version of the SSL protocol that the client supports.●

Session ID: This is the identity of the session that corresponds to this connection. If the
session ID sent by the client in the Client Hello is not empty, the server looks in the session
cache for a match. If a match is found and the server is willing to establish the new connection

●



using the specified session state, the server responds with the same value that was supplied
by the client. This indicates a resumed session and dictates that the parties must proceed
directly to the finished messages. Otherwise, this field contains a different value that identifies
the new session. The server might return an empty session_id in order to indicate that the
session will not be cached, and therefore cannot be resumed.
Cipher Suite: As selected by the server from the list that was sent from the client. ●

Compression Method: As selected by the server from the list that was sent from the client. ●

Certificate Request: The server sends the client a list of all the certificates that are
configured on it, and allows the client to select which certificate it wants to use for
authentication.

●

For SSL session resumption requests:

The server can send a Hello request to the client as well. This is only to remind the client that
it should start the renegotiation with a Client Hello request when convenient. The client
ignores the Hello request from the server if the handshake process is already underway.

●

The handshake messages have more precedence over the transmission of application data.
The renegotiation must begin in no more than one or two times the transmission time of a
maximum-length application data message.

●

Server Hello Done

The Server Hello Done message is sent by the server in order to indicate the end of the server
hello and associated messages. After it sends this message, the server waits for a client
response. Upon receipt of the Server Hello Done message, the client verifies that the server
provided a valid certificate, if required, and checks that the Server Hello parameters are
acceptable.



Server Certificate, Server Key Exchange, and Certificate Request (Optional)

Server Certificate: If the server must be authenticated (which is generally the case), the
server sends its certificate immediately after the Server Hello message. The certificate type
must be appropriate for the selected cipher suite key exchange algorithm, and is generally an
X.509.v3 certificate.

●

Server Key Exchange: The Server Key Exchange message is sent by the server if it has no
certificate. If the Diffie–Hellman (DH) parameters are included with the server certificate, this
message is not used.

●

Certificate Request: A server can optionally request a certificate from the client, if
appropriate for the selected cipher suite.

●

Client Exchange

Client Certificate (Optional)

This is the first message that the client sends after he/she receives a Server Hello Done message.
This message is only sent if the server requests a certificate. If no suitable certificate is available,
the client sends a no_certificate alert instead. This alert is only a warning; however, the server
might respond with a fatal handshake failure alert if client authentication is required. Client DH
certificates must match the server specified DH parameters.

Client Key Exchange

The content of this message depends on the public key algorithm selected between the Client
Hello and the Server Hello messages. The client uses either a premaster key encrypted by
the Rivest-Shamir-Addleman (RSA) algorithm or DH for key agreement and authentication. When
RSA is used for server authentication and key exchange, a 48-byte pre_master_secret is
generated by the client, encrypted under the server public key, and sent to the server. The server
uses the private key in order to decrypt the pre_master_secret. Both parties then convert the
pre_master_secret into the master_secret.



Certificate Verify (Optional)

If the client sends a certificate with signing ability, a digitally-signed Certificate Verify message is
sent in order to explicitly verify the certificate.

Cipher Change

Change Cipher Spec Messages

The Change Cipher Spec message is sent by the client, and the client copies the pending Cipher
Spec (the new one) into the current Cipher Spec (the one that was previously used). Change
Cipher Spec protocol exists in order to signal transitions in ciphering strategies. The protocol
consists of a single message, which is encrypted and compressed under the current (not the
pending) Cipher Spec. The message is sent by both the client and server in order to notify the
receiving party that subsequent records are protected under the most recently negotiated Cipher
Spec and keys. Reception of this message causes the receiver to copy the read pending state into
the read current state. The client sends a Change Cipher Spec message after the handshake key
exchange and Certificate Verify messages (if any), and the server sends one after it successfully
processes the key exchange message it received from the client. When a previous session is
resumed, the Change Cipher Spec message is sent after the Hello messages. In the captures, the
Client Exchange, Change Cipher, and Finished messages are sent as a single message from the
client.

Finished Messages

A Finished message is always sent immediately after a Change Cipher Spec message in order to
verify that the key exchange and authentication processes were successful. The Finished
message is the first protected packet with the most recently negotiated algorithms, keys, and
secrets. No acknowledgment of the Finished message is required; parties can begin to send
encrypted data immediately after they send the Finished message. Recipients of Finished
messages must verify that the contents are correct.



Related Information

RFC 6101 - The Secure Sockets Layer Protocol Version 3.0●

Wireshark SSL wiki - decrypt SSL packets with Wireshark●

Technical Support & Documentation - Cisco Systems●

https://wiki.wireshark.org/SSL
http://www.cisco.com/cisco/web/support/index.html?referring_site=bodynav

	SSL Introduction with Sample Transaction and Packet Exchange
	Contents
	Introduction
	SSL Record Overview
	Record Format
	Record Type
	Record Version
	Record Length

	Types of Records
	Handshake Records
	CCS Records
	Alert Records
	Application Data Record

	Sample Transaction
	The Hello Exchange
	Client Exchange
	Cipher Change

	Related Information


