CSR1000v HA Version 2 Configuration Guide
on Microsoft Azure

Contents

Introduction

Prerequisites

Requirements

Components Used

Restrictions

Configure

Step 1. Configure 10X for Application Hosting.
Step 2. Install Python Packages in Guestshell.
Step 3. Configure Authentication for CSR1000v API Calls.
Step 4. Configure HAv2 in Guestshell.

Step 5. Configure EEM to Trigger Failovers.
Verify

Troubleshoot

Introduction

This document serves as a supplemental config guide for High Availability Version 2 (HAv2) in
Azure. Full details are found in Cisco CSR 1000v Deployment Guide for Microsoft Azure. HAV2 is
first supported in Cisco IOS-XE® Denali 16.9.1s.

In HAv2, the implementation of HA has been moved out of the Cisco IOS XE code and runs in the
guestshell container. For further information on the guestshell, see the Guest Shell section in the
Programmability Configuration Guide. In HAv2, the configuration of redundancy nodes is
performed in the guestshell with a set of Python scripts.

Prerequisites

Requirements
Cisco recommends that you have knowledge of these topics:

- A Microsoft Azure account.

- 2x CSR1000v routers with 2x gigabit interfaces. The external facing interface must be on
GigabitEthernetl (eth0).

- A minimum of Cisco IOS-XE® Denali 16.9.1s.

Components Used

The information in this document is based on Cisco IOS-XE® Denali 16.9.1s natively deployed
from the Azure Marketplace.

https://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/azu/b_csr1000config-azure/b_csr1000config-azure_chapter_01001.html#id_74411

Resources deployed in Azure from the steps in this document may incur a cost.

The information in this document was created from the devices in a specific lab environment. All of
the devices used in this document started with a cleared (default) configuration. If your network is
live, ensure that you understand the potential impact of any command.

Restrictions

- The external public facing interface must be configured on ethO which corresponds
to GigabitEthernetl. Access to the Azure Metadata server can only be achieved via the
primary interface on a virtual machine.

- If HAv1 10S configuration exists, it must be removed prior to HAv2 configuration in guestshell.
HAv1 configuration consists of the redundancy and cloud provider commands.

Configure

Step 1. Configure IOX for Application Hosting.

1. Enable IOX app-hosting. Assign a private ip address to VirtualPortGroup0. NAT
VirtualPortGroupO with the public facing interface to allow guestshell to reach the internet. In
this example, the ip of GigabitEthernetl is 10.3.0.4.

vrf definition GS

!

iox

app-hosting appid guestshell

app-vnic gatewayl virtualportgroup 0 guest-interface 0
guest-ipaddress 192.168.35.102 netmask 255.255.255.0
app-default-gateway 192.168.35.101 guest-interface 0
name-server(8.8.8.8

!

interface VirtualPortGroupO

vrf forwarding GS

ip address 192.168.35.101 255.255.255.0

ip nat inside

!

interface GigabitEthernetl

ip nat outside

!

ip access-1list standard GS_NAT_ ACL

permit 192.168.35.0 0.0.0.255

!

ip nat inside source list GS_NAT_ACL interface GigabitEthernetl vrf GS overload
!

! The static route points to the gigl private ip address gateway
ip route vrf GS 0.0.0.0 0.0.0.0 GigabitEthernetl 10.1.0.1 global

Note: New instances deployed from the Azure Marketplace may have iox pre-configured.

Step 2. Install Python Packages in Guestshell.

1. Enable guestshell and login.

csr-l#guestshell enable
csr-l#guestshell

2. Ping www.google.com to verify guestshell can reach the internet. If it is unreachable, check
the name-server config in the app-hosting IOS config or add a server in resolv.conf in

guestshell.

[guestshell@guestshell ~]1$ ping www.google.com

PING www.google.com (172.217.14.228) 56(84) bytes of data.

64 bytes from sea30s02-in-f4.1el100.net (172.217.14.228): icmp_seqg=1 ttl=51 time=4.89 ms
64 bytes from sea30s02-in-f4.1el100.net (172.217.14.228): icmp_seqg=2 ttl=51 time=5.02 ms

Run curl to verify Metadata is retreivable. The external facing interface must be Gigl (eth0).
Otherwise, check Azure security groups, routing, or other features that might block
169.254.169.254. 169.254.169.254 is not a pingable address.

[guestshell@guestshell ~]$ curl -H Metadata:true
"http://169.254.169.254/metadata/instance?api-version=2018-04-02"
{"compute":{"location":"westus2", "name": "csr-david-2", "offer":"cisco-csr-

1000v", "osType": "Linux", "placementGroupId":"", "plan":{"name":"16_7", "product":"cisco-csr-
1000v", "publisher":"cisco"}, "platformFaultDomain":"0", "platformUpdateDomain":"0", "publicKey

s":[],"publisher":"cisco", "resourceGroupName" : "RG-David-

2", "sku":"16_7", "subscriptionId":"09el3fd4-def2-46aa-a056-

XXXXKXXXXKXXX" ,"tags":"", "version":"16.7.120171201", "vmmId":"£8£f32b48-daa0-4053-8bad-
XXXXKXXXXKXXXXX" , "vmScaleSetName": " ", "vmSize" : "Standard_DS2_v2","zone":""}, "network": {"interf

ace":[{"ipv4d":{"ipAddress": [{"privateIpAddress":"10.3.0.5", "publicIpAddress":"21.53.135.210
"}],"subnet":[{"address":"10.3.0.0", "prefix":"24"}]}, "ipv6":{"ipAddress":[]}, "macAddress":"

000D3A93F"}, {"ipv4d":{"ipAddress": [{"privateIpAddress":"10.3.1.5", "publicIpAddress":""}], "su
bnet":[{"address":"10.3.1.0", "prefix":"24"}1},"ipv6":{"ipAddress":[]}, "macAddress" :"000D3A9
61"}133}I1

3. Install the python packages. Note: Do not use sudo mode to install packages. Ensure to use
the --user option. Failure to perform all three steps will install the packages in the wrong
folder. This may result in ImportErrors. To fix incorrectly installed packages, you may need
to run the IOS command guestshell destroy and start over.

[guestshell@guestshell ~]$ pip install csr_azure_guestshell~=1.1 --user
[guestshell@guestshell ~]$ pip install csr_azure_ha~=1.0 --user
[guestshell@guestshell ~]$ source ~/.bashrc

4. Ensure that the packages are correctly installed in

/home/guestshell/.local/lib/python2.7/site-packages.
[guestshell@guestshell ~]$ which show_node.py
~/.local/lib/python2.7/site-packages/csr_azure_ha/client_api/show_node.py

Step 3. Configure Authentication for CSR1000v API Calls.
There are 2 methods to allow the CSR1000v to make API calls to Azure.

1. The Azure Active Directory(AAD) - This is the standard HAv1 method that can also be used
in HAv2. Make a note of the Tenant ID, app-id, app-key to be used in the create_node.py
script. Visit Create an Application in a Microsoft Azure Active Directory for details. Note: The
app-key used in HAv1 is the encoded key. The app-key used in HAv2 is the unencoded key.
If you did not make a note of the unencoded key, you may need to create a new one since
keys are not recoverable.

2. Microsoft has a Managed Service ldentity (MSI) service that automates the creation of an
application for a virtual machine. For more information on MSI,
visit https://docs.microsoft.com/en-us/azure/active-directory/managed-service-
identity/overview. HA version 2 can use the MSI service to authenticate the Cisco CSR
1000v. HA version 1 cannot use MSI.

http://www.google.comto
https://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/azu/b_csr1000config-azure/b_csr1000config-azure_chapter_01001.html#id_76848
https://docs.microsoft.com/en-us/azure/active-directory/managed-service-identity/overview
https://docs.microsoft.com/en-us/azure/active-directory/managed-service-identity/overview

Step 1. Enable MSI for each of the CSR1000v virtual machines. Navigate to the VM in Azure
Portal. Navigate to Identity and click on System Assigned > On > Save.

Home » Virtual machines > david-test-csr-1 - ldentity (Preview)

david-test-csr-1 - Identity (Preview)

Wirtual ma

L .
System assigned : User assigned
D Security
O Refresh
7 Extensions
©% Continuous delivery (Preview)
Status @
¢ Availability set off
& Configuration ObjectID @
Identity (Preview)
Properties
n Locks . This resource is registered with Azure Active Directory. You can control its access to services like Azure Resource

Manager, Azure Key Vault, etc, Learn more
Automation script

Step 2. Under Subnet Route Table, in order to allow API calls from the CSR1000v router,
choose Access Control (IAM) and click on Add.

Step 3. Choose Role - Network Contributor. Choose Assign Access to - Virtual
Machine. Choose the proper Subscription. Select the VM from the list which have their MSI

turned on.
Heme » Resource groups > RG-David » subnet2-david-C5R-RouteTable - Access contral (IAM) Add permiggigns =
.5 gubnet2-david-CSR-RouteTable - Access control (lLAM)
ra] Route table Rale ¢
Metwork Contribut
® + Add ba Roles C} Refrach SV SR b
Assign access to @
Virtual Machme kv
5 Owverview Mame @ Type @ * Subscription
so All Microsoft Azure Enterprise e
H ey lUg sope O Group by @
s Access control (IAM) All scopes i Role
& Tags 19 items (16 Users, 1 Service Principals, 2 Virtual Machines) csr-legit-16-9-david-1
- = fsubscriptions/
. Diagnose and solve problems NAME TYPE
Settings Selected members:
METWORK CONTRIBUTOR
& Configuration
david-test-csr-1
Ramowe
% Boutes - Ssubsenptiong

Subnets

Properties m Digcard
Step 4. Configure HAv2 in Guestshell.

1. Use the create_node.py script to add the HA configs. To check all the flag parameter
definitions, view Tables 3 and 4 of the Cisco CSR 1000v Deployment Guide for Microsoft
Azure. This example uses AAD authentication which require the app-id (a), tenant-id (d),
and app-key (k) flags. If you use MSI authentication, these extra flags are not needed. The
node [-i] flag is an arbitrary number. Use unique node numbers to create multiple nodes if

updates to multiple route tables are required.
create_node.py -i 100 -p azure -s 09el3fd4-def2-46aa-al056-XXXXxXxXxXXXX -g RG-David -t
subnet2-david-CSR-RouteTable -r 8.8.8.8/32 -n 10.3.1.4 -a 1le0f69c3-bbaa-46¢cf-b5f9-

https://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/azu/b_csr1000config-azure/b_csr1000config-azure_chapter_01001.html#id_74411
https://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/azu/b_csr1000config-azure/b_csr1000config-azure_chapter_01001.html#id_74411

XXXXXXXXX -d aed9849c-2622-4d45-b95e-xxxxxxXxxxX -k DbDENlk8batJgpeqjAuUvaUCzZn5Md6rWEL=
2. Use set_params.py to add or change individual parameters.

set_params.py -1 100 [optionl] [option2]
3. Use clear_params.py to clear individual parameters.

clear_params.py -i 100 [optionl] [option2]

4. Use delete_node.py to delete the node.
delete_node.py -1 100

Step 5. Configure EEM to Trigger Failovers.

The node_event.py script with peerFail option is how HAv2 triggers a failover and updates the
Azure Route Table. This is where you have the flexibility to program your own logic. You can use
EEM within 10S to run node_event.py, or write a python script within guestshell.

One example is to catch an interface down state with EEM to trigger node_event.py.

event manager applet HAv2_interface_flap

event syslog pattern "Interface GigabitEthernet2, changed state to down"
action 1 cli command "enable"

action 2 cli command "guestshell run node_event.py -i 100 -e peerFail"

You can manually run node_event.py in guestshell to test a real failover.

[guestshell@guestshell ~]$ node_event.py -1 100 -e peerFail

HAv2 can also revert the route back to the original router with the revert option. This is an optional
configuration that simulates pre-emption. The -m primary flag in create_node.py is required to be
set on the primary router. This is an example that uses BFD to monitor the state of the interface.

event manager applet bfd_session_up

event syslog pattern ".*BFD_SESS_UP.*"

action 1 cli command "enable"

action 2 cli command "guestshell run node_event.py -i 100 -e revert"

[guestshell@guestshell ~]$ set_params.py -1 100 -m

Verify

1. Ensure all three processes are active.
systemctl status auth-token
systemctl status azure-ha
systemctl status waagent

2. Restart any ones that have failed.
sudo systemctl start waagent
sudo systemctl start azure-ha
sudo systemctl start auth-token

3. Two methods to verify the configuration added by create_node.py.
show_node.py -i 100

[guestshell@guestshell ~]$ cat azure/HA/node_file

{'appKey': 'bDENl1k8batJgWEiGXAxSR4Y=', 'index': '100', 'routeTableName': 'subnet2-david-
CSR-RouteTable', 'route': '8.8.8.8/32', 'nextHop': '10.3.1.4', 'tenantId': 'ae49849c-2622-
4d45-b95e-XXXXXXXXXX', 'resourceGroup': 'RG-David', 'appId': 'le0f69c3-bbaa-46cf-b5£9-
XXXXXXXXXX', 'subscriptionId': '09el3fd4-def2-46aa-al56-xxxxxxxxxxx', 'cloud': 'azure'}

4. Soft simulate a failover on the standby router. This does not actually cause a failover but

verifies that the configuration is valid. Check the logs in step 6.

node_event.py -i 100 -e verify

5. Trigger a real failover event on the standby router. In Azure, check if the route table updated
the route to the new hop. Check the logs in step 6.

node_event.py -i 100 -e peerFail
6. node_event.py generates 2 types of logs when triggered. This is useful to verify if failover
was successful or to troubleshoot issues. New events files are generated each time.

However, routeTableGetRsp is overwritten each time so there is generally one file.
[guestshell@guestshell ~]$ 1ls -latr /home/guestshell/azure/HA/events/
total 5

drwxr-xr-x 3 guestshell root 1024 Sep 18 23:01 ..

drwxr-xr-x 2 guestshell root 1024 Sep 19 19:40

-rw-r--r-- 1 guestshell guestshell 144 Sep 19 19:40 routeTableGetRsp

-rw-r--r-- 1 guestshell guestshell 390 Sep 19 19:40 event.2018-09-19 19:40:28.341616
-rw-r--r-- 1 guestshell guestshell 541 Sep 18 23:09 event.2018-09-18 23:09:58.413523

Troubleshoot

Step 1. Python packages are wrongly installed in /usr/lib/python2.7/site-packages/. Destroy
guestshell and follow the configuration steps.

[guestshell@guestshell ~]$ create_node.py -h
bash: create_node.py: command not found

[guestshell@guestshell ~]$ 1ls /usr/lib/python2.7/site-packages/
The correct installation path is ~/.local/lib/python2.7/site-packages/.

[guestshell@guestshell ~]$ which show_node.py
~/.local/lib/python2.7/site-packages/csr_azure_ha/client_api/show_node.py

Step 2. If authentication was not configured or misconfigured in step 3, token errors may be
generated. For AAD authentication, if the app-key used is invalid, or URL encoded, authentication
errors may be seen after node_event.py is triggered.

[guestshell@guestshell ~]$ cat /home/guestshell/azure/HA/events/routeTableGetRsp
{"error":{"code":"AuthenticationFailedMissingToken", "message":"Authentication failed. The
'Authorization' header is missing the access token."}}

[guestshell@guestshell ~]1$ cat /home/guestshell/azure/HA/events/event.2018-09-19\
23\:02\:55.581684

Event type is verify

appKey zGuYMyXQhabKge8xdufhUJ9eX%2BlzIhLsuw%3D
index 100

routeTableName subnet2-david-CSR-RouteTable
route 8.8.8.8/32

nextHop 10.3.1.4

tenantId ae49849c-2622-4d45-b95e-XXXXXXXKXKX
resourceGroup RG-David

appId 1e0f69c3-bbaa-46cf-b5f9I-XXXXXXXKXKXX
subscriptionId 09el3fd4-def2-46aa-a056-XXXXXXXXXX
cloud azure

All required parameters have been provided

Requesting token using Azure Active Directory
Token=

Failed to obtain token

Reading route table

Route GET request failed with code 401

Step 3. If the tenant-id or app-id is incorrect.

[guestshell@guestshell ~]$ cat azure/tools/TokenMgr/token_get_rsp

{"error":"invalid_request", "error_description":"AADSTS90002: Tenant 1e0f69c3-b6aa-46cf-b5f9-
xxXXXXXxxx not found. This may happen if there are no active subscriptions for the tenant. Check
with your subscription administrator.\r\nTrace ID: 8bc80efc-f086-46ec-83b9-
xxxxxxXXxxxx\r\nCorrelation ID: 2c6062f8-3a40-4b0e-83ec-xxxxxxxxxXxx\r\nTimestamp: 2018-09-19
23:58:02Z", "error_codes":[90002], "timestamp":"2018-09-19 23:58:02Z", "trace_id":"8bc80efc-f086-
46ec-83Dh9 -XXXXXXXXXXXX", "correlation_id":"2c6062f8-3a40-4b0e-83eC-XXXXXXXXXXX" }

Step 4. During package installation, sudo mode might have been used, --user was not included,
or source ~/.bashrc was not run. This causes create_node.py to fail or generate an
ImportError.

[guestshell@guestshell ~]$ create_node.py -i 1 -p azure -s d91490ec -g RG -t RT -r 10.12.0.0/11
-n 10.2.0.31 -m secondary
/usr/1ib64/python2.7/site-packages/cryptography/hazmat/primitives/constant_time.py:26:
CryptographyDeprecationWarning: Support for your Python version is deprecated. The next version
of cryptography will remove support. Please upgrade to a 2.7.x release that supports
hmac.compare_digest as soon as possible.

utils.DeprecatedIn23,

create_node -1 1 -p azure -s d91490ec -g RG -t RT -r 10.12.0.0/11 -n 10.2.0.31 -m secondary
failed

[guestshell@guestshell ~]$ create_node.py -i 1 -p azure -s d91490ec -g RG -t RT -r 10.1.0.0/18 -
n 10.2.0.31 -m secondary
Traceback (most recent call last):
File "/usr/bin/create_node.py", line 5, in
import ha_api
ImportError: No module named ha_api

Step 5. Check package install history.

[guestshell@guestshell ~]$ cat azure/HA/install.log

Installing the Azure high availability package

Show the current PATH

/usr/local/bin:/usr/bin: /home/guestshell/.local/lib/python2.7/site-
packages/csr_azure_ha/client_api

Show the current PYTHONPATH

: /home/guestshell/.local/lib/python2.7/site-

packages/csr_azure_guestshell: /home/guestshell/.local/lib/python2.7/site-
packages/csr_azure_guestshell/TokenMgr: /home/guestshell/.local/lib/python2.7/site-
packages/csr_azure_guestshell/MetadataMgr: /home/guestshell/.local/lib/python2.7/site-
packages/csr_azure_guestshell/bin: /home/guestshell/.local/lib/python2.7/site-
packages/csr_azure_ha/client_api:/home/guestshell/.local/lib/python2.7/site-
packages/csr_azure_ha/server

Step 6. Check HA config logs.

[guestshell@guestshell ~]$ cat azure/HA/azha.log

2018-09-24 16:56:29.215743 High availability server started with pid=7279
2018-09-24 17:03:20.602579 Server processing create_node command
2018-09-24 17:03:20.602729 Created new node with index 100

Step 6. Run the debug_ha.sh script to gather all logs files into a single tar file.

[guestshell@guestshell ~]$ bash ~/azure/HA/debug_ha.sh
File is placed in bootflash which is accessible from both guestshell and 10S.

[guestshell@guestshell ~]$ 1ls /bootflash/ha_debug.tar
/bootflash/ha_debug. tar

csr-david-2#dir | i debug
28 -—rw- 92160 Sep 27 2018 22:42:54 +00:00 ha_debug.tar

	CSR1000v HA Version 2 Configuration Guide on Microsoft Azure
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used

	Restrictions
	Configure
	Step 1. Configure IOX for Application Hosting.
	Step 2. Install Python Packages in Guestshell.
	Step 3. Configure Authentication for CSR1000v API Calls.
	Step 4. Configure HAv2 in Guestshell.
	Step 5. Configure EEM to Trigger Failovers.

	Verify
	Troubleshoot

