
SNMP Migration to Telemetry on IOS XR

Contents
Introduction

SNMP

Components of SNMP

SNMP Manager

SNMP Agent

SNMP MIB

SNMP Operations

MIBs and RFCs

Versions of SNMP

Yang models

OpenConfig Models

Native Models

Telemetry

Model Driven Telemetry

Event Driven Telemetry

Transport

TCP

gRPC

gNMI/gNOI

Encoding

JSON

GPB-KV

GPB

MDT Configuration in IOS XR

Dial-Out Mode

Dial-In Mode

SNMP Migration to MDT

MIB migration into XPATH

BGP4-MIB

CISCO-BGP4-MIB

CISCO-CLASS-BASED-QOS-MIB

CISCO-ENHANCED-MEMPOOL-MIB

CISCO-ENTITY-FRU-CONTROL-MIB

CISCO-ENTITY-SENSOR-MIB

CISCO-FLASH-MIB

CISCO-PROCESS-MIB

ENTITY-MIB

IF-MIB

IP-MIB

IPMIB-COMMMON

LLDP-MIB

MPLS-TE-STD-MIB

RFC2465-MIB

SNMP-MIB

TCP-MIB

UDP-MIB

SNMP Traps migration

Security considerations

Introduction

This article introduces Simple Network Management Protocol (SNMP) components, and provides a
correlation between current implementations based on SNMP monitoring into Model Driven Telemetry
(MDT) approach.

SNMP

SNMP is an application-layer protocol that provides a message format for communication between SNMP
managers and agents. SNMP provides a standardized framework and a common language that is used for
monitoring and managing devices in a network

Components of SNMP

The SNMP framework has the following components, which are described in the following sections:

SNMP Manager•
SNMP Agent•
SNMP MIB•

SNMP Manager

The SNMP manager is a system that controls and monitors the activities of network hosts using SNMP. The
most common managing system is a network management system (NMS). The term NMS can be applied
either to a dedicated device used for network management or to the applications used on such a device.

SNMP Agent

The SNMP agent is the software component within a managed device that maintains the data for the device
and reports this data, as needed, to managing systems. The agent resides on the routing device (router,
access server, or switch).

SNMP MIB

An SNMP agent contains MIB variables, whose values can be requested or changed by the SNMP manager
through 'Get' or 'Set' operations. A manager can get a value from an agent or store a value in that agent. The
agent gathers data from the SNMP MIB, the repository for information about device parameters and
network data. The agent can also respond to manager requests to get or set data.

The figure below illustrates the communications between the SNMP manager and agent. A manager sends
an agent requests to get and set the SNMP MIB values. The agent responds to these requests. Independent of
this interaction, the agent can send the manager unsolicited notifications (traps or informs) to notify the
manager about network conditions.

SNMP Operations

The SNMP applications perform the following operations to retrieve data, modify SNMP object variables,
and send notifications:

SNMP Get•
SNMP SET•
SNMP Notifications•

SNMP Get

The SNMP GET operation is performed by an NMS to retrieve SNMP object variables. There are three
types of GET operations:

GET—Retrieves the exact object instance from the SNMP agent.•
GETNEXT—Retrieves the next object variable, which is a lexicographical successor to the specified
variable.

•

GETBULK—Retrieves a large amount of object variable data, without the need for repeated
GETNEXT operations.

•

SNMP SET

The SNMP SET operation is performed by a NMS to modify the value of an object variable.

SNMP Notifications

A key feature of SNMP is its capability to generate unsolicited notifications from an SNMP agent.

Unsolicited (asynchronous) notifications can be generated as traps or inform requests (informs). Traps are
messages alerting the Simple Network Management Protocol (SNMP) manager to a condition on the
network. Informs are traps that include a request for confirmation of receipt from the SNMP manager.
Notifications can indicate improper user authentication, restarts, the closing of a connection, loss of
connection to a neighbor device, or other significant events.

Traps are less reliable than informs because the receiver does not send an acknowledgment when it receives
a trap. The sender does not know if the trap was received. An SNMP manager that receives an inform
acknowledges the message with an SNMP response Protocol Data Unit (PDU). If the sender never receives
a response, the inform can be sent again. Thus, informs are more likely to reach their intended destination.

Traps are often preferred even though they are less reliable because informs consume more resources in the
device and the network. Unlike a trap, which is discarded as soon as it is sent, an inform must be held in
memory until a response is received or the request times out. Also, traps are sent only once, whereas an
inform may be resent several times. The retries increase traffic and contribute to higher overhead on the
network. Use of traps and informs requires a trade-off between reliability and resources.

MIBs and RFCs

Management Information Base (MIB) modules typically are defined in Request for Comments (RFC)
documents submitted to the Internet Engineering Task Force (IETF), an international standards body. RFCs
are written by individuals or groups for consideration by the Internet Society and the Internet community as
a whole, usually with the intention of establishing a recommended Internet standard. Before being given
RFC status, recommendations are published as Internet Draft (I-D) documents. RFCs that have become
recommended standards are also labeled as standards documents (STDs). You can learn about the standards
process and the activities of the IETF at the Internet Society website at http://www.isoc.org. You can read
the full text of all RFCs, I-Ds, and STDs referenced in Cisco documentation at the IETF website
at http://www.ietf.org.

The Cisco implementation of SNMP uses the definitions of MIB II variables described in RFC 1213 and
definitions of SNMP traps described in RFC 1215.

Cisco provides its own private MIB extensions with every system. Cisco enterprise MIBs comply with the
guidelines described in the relevant RFCs unless otherwise noted in the documentation. You can find the
MIB module definition files and the list of MIBs supported on each Cisco platform on the Cisco MIB
website on Cisco.com.

Versions of SNMP

Currently Cisco devices support the following versions of SNMP:

SNMPv1—Simple Network Management Protocol: a full Internet standard, defined in RFC 1157.
(RFC 1157 replaces the earlier versions that were published as RFC 1067 and RFC 1098.) Security is
based on community strings.

•

SNMPv2c—The community string-based Administrative Framework for SNMPv2. SNMPv2c (the
“c” is for “community”) is an experimental Internet protocol defined in RFC 1901, RFC 1905, and
RFC 1906. SNMPv2c is an update of the protocol operations and data types of SNMPv2p (SNMPv2
Classic) and uses the community-based security model of SNMPv1.

•

SNMPv3—Version 3 of SNMP. SNMPv3 is an interoperable standards-based protocol defined in
RFCs 3413 to 3415. SNMPv3 provides secure access to devices by authenticating and encrypting
packets over the network.

•

The security features provided in SNMPv3 are as follows:

Message integrity—Ensuring that a packet has not been tampered with in transit.•
Authentication—Determining that the message is from a valid source.•
Encryption—Scrambling the contents of a packet to prevent it from being learned by an unauthorized
source.

•

Both SNMPv1 and SNMPv2c use a community-based form of security. The community of SNMP managers
are able to access the agent MIB is defined by a community string.

SNMPv2c support includes a bulk retrieval mechanism and detailed error message reporting to management
stations. The bulk retrieval mechanism supports the retrieval of tables and large quantities of information,
minimizing the number of round trips required. The SNMPv2c improved error handling support includes
expanded error codes that distinguish different types of errors; these conditions are reported through a single
error code in SNMPv1. The following three types of exceptions are also reported: no such object, no such
instance, and end of MIB view.

SNMPv3 is a security model in which an authentication strategy is set up for a user and the group in which
the user resides. A security level is the permitted level of security within a security model. A combination of

http://www.isoc.org/
http://www.ietf.org/

a security model and a security level determines which security mechanism is employed when handling an
SNMP packet.

Three security models are available: SNMPv1, SNMPv2c, and SNMPv3. The table below lists the
combinations of security models and levels and their meanings.

Model Level Authentication Encryption What Happens

v1 noAuthNoPriv Community String No Uses a community string match for authentication.

v2c noAuthNoPriv Community String No Uses a community string match for authentication.

v3 noAuthNoPriv Username No Uses a username match for authentication.

v3 authNoPriv

Message Digest 5
(MD5) or Secure
Hash Algorithm
(SHA)

No
Provides authentication based on the HMAC-MD5
or HMAC-SHA algorithms.

v3 authPriv MD5 or SHA

Data
Encryption
Standard
(DES)

Provides authentication based on the HMAC-MD5
or HMAC-SHA algorithms. Provides DES 56-bit
encryption in addition to authentication based on
the CBC-DES (DES-56) standard.

An SNMP agent should be implemented in order to use the version of SNMP supported by the management
station. An agent can communicate with multiple managers.

SNMPv3 supports RFCs 1901 to 1908, 2104, 2206, 2213, 2214, and 2271 to 2275. For additional
information about SNMPv3, see RFC 2570, Introduction to Version 3 of the Internet-standard Network
Management Framework (this is not a standards document).

Yang models

Yang models represent a tree-structured abstraction of a specific feature or hardware characteristics of a
system. In network elements, a Yang model could represent a routing protocol, internal physical sensors
arrays. YANG language and terminology is described on RFC 6020 and next updated on RFC 7950. In high-
level, a Yang model organizes the data representing the main structure into submodules and containers that
are a list of sub-nodes related. Several node types are explained next.

A leaf node contains simple data like an integer or a string. It has exactly one value of a particular type and
no child nodes.

leaf host-name {

 type string;

 description "Hostname for this system";

https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7950

 }

A leaf-list is a sequence of leaf nodes with exactly one value of a particular type per leaf.

leaf-list domain-search {

 type string;

 description "List of domain names to search";

 }

A container node is used to group related nodes in a subtree. A container has only child nodes and no value.
A container may contain any number of child nodes of any type (including leafs, lists, containers, and leaf-
lists).

container system {

 container login {

 leaf message {

 type string;

 description

 "Message given at start of login session";

 }

 }

 }

A list defines a sequence of list entries. Each entry is like a structure or a record instance and is uniquely
identified by the values of its key leafs. A list can define multiple key leafs and may contain any number of
child nodes of any type (including leafs, lists, containers etc.).

Finally, a sample model that binds all these note types together looks like the following example:

Contents of "example-system.yang"
module example-system {
 yang-version 1.1;
 namespace "urn:example:system";
 prefix "sys";
 organization "Example Inc.";

 contact "joe@example.com";
 description "The module for entities implementing the Example system.";
 revision 2007-06-09 {
 description "Initial revision.";
 }
 container system {
 leaf host-name {
 type string;
 description "Hostname for this system.";
 }
 leaf-list domain-search {
 type string;
 description "List of domain names to search.";
 }
 container login {
 leaf message {
 type string;
 description "Message given at start of login session.";
 }
 list user {
 key "name";
 leaf name {
 type string;
 }
 leaf full-name {
 type string;
 }
 leaf class {
 type string;
 }
 }
 }
 }
}

However, the Yang language used on Yang Models does not indicate the organization of the data into
containers/list/leafs. This is why a certain feature on a network element could be represented with diverse
Yang models. This challenge has been addressed with the following Yang Models Types:

OpenConfig Models•
Native Models•

OpenConfig Models

OpenConfig Models were developed using agnostic vendor organization for the model representing a
specific feature, the benefit of this approach is that a NMS could use these models for interacting with
network elements on multi-vendor or even multi-platform environment.

As the name states, these models are open and are publicly available for inspecting on repositories like
github on this link:

https://github.com/openconfig/public/tree/master/release/models

As an example, you can find an openconfig model for Border Gateway Protocol (BGP), another for Link
Aggregation Control Protocol (LACP) and a different one for ISIS, with different specific model. In the case
of BGP you can find a model for BGP errors, another one for BGP policy and so on. The models could be
related, and some models can call another yang package. For example, openconfig-bgp-neighbor.yang

https://github.com/openconfig/public/tree/master/release/models

belongs to openconfig-bgp.yang:

module openconfig-bgp {
 yang-version "1";

 ## namespace
 namespace "http://openconfig.net/yang/bgp";
 prefix "oc-bgp";

 ## import some basic inet types
 import openconfig-extensions { prefix oc-ext; }
 import openconfig-rib-bgp { prefix oc-bgprib; }

 ## Include the OpenConfig BGP submodules
 ## Common: defines the groupings that are common across more than
 ## one context (where contexts are neighbor, group, global)
 include openconfig-bgp-common;
 ## Multiprotocol: defines the groupings that are common across more
 ## than one context, and relate to Multiprotocol
 include openconfig-bgp-common-multiprotocol;
 ## Structure: defines groupings that are shared but are solely used for
 ## structural reasons.
 include openconfig-bgp-common-structure;
 ## Include peer-group/neighbor/global - these define the groupings
 ## that are specific to one context
 include openconfig-bgp-peer-group;
 include openconfig-bgp-neighbor;
 include openconfig-bgp-global;

<snip>

To sum up, OpenConfig Models are oriented for protocols common to all platforms, like IETF or RFC
standardized features.

Native Models

In contrast, Native models are vendor-oriented models that cover in depth structures specific to a particular
platform. For example, models that group sensors of physical values inside a network element like voltages,
temperatures, ASIC counters, Fabric counters and so on. Since they depend on the platform, it is common to
find models specific for NCS6K, ASR9K or Cisco 8000.

As OpenConfig Models, Native Models are also available in Github repository:

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr

As these models tend to be much more specific and complete than OpenConfig models, they are tied to
specific software version, and subject to change between software releases.

There are two main categories for Native Models:

“Oper” models, used to retrieve information from an element.•

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr

For example, Cisco-IOS-XR-eigrp-oper.yang

“Cfg” models, used to configure a network element•

For example, Cisco-IOS-XR-eigrp-cfg.yang

In general terms, Model Driven Telemetry uses “oper” models to stream data from infrastructure and NMS
like NSO uses “cfg” models to make changes in the configuration on network elements.

Native and OpenConfig Yang Models are present on XR software on /pkg/yang folder and can be listed to
find out if any Yang Model is available on a platform. This example is for XRrv9k running cXR 6.4.2:

RP/0/RP0/CPU0:xrv9k1#run ls /pkg/yang | grep isis

Tue Sep 22 14:21:27.471 CLST

Cisco-IOS-XR-clns-isis-cfg.yang

Cisco-IOS-XR-clns-isis-datatypes.yang

Cisco-IOS-XR-clns-isis-oper-sub1.yang

Cisco-IOS-XR-clns-isis-oper-sub2.yang

Cisco-IOS-XR-clns-isis-oper-sub3.yang

Cisco-IOS-XR-clns-isis-oper.yang

Cisco-IOS-XR-isis-act.yang

openconfig-isis-lsdb-types.yang

openconfig-isis-lsp.yang

openconfig-isis-policy.yang

openconfig-isis-routing.yang

openconfig-isis-types.yang

openconfig-isis.yang

RP/0/RP0/CPU0:xrv9k1#

Telemetry

Telemetry is a process that allows collecting information from different remote elements into a central
location that aggregate visibility and analytics layer.

In networking environments, the data could be produced by every element in the network, routers, swiches
between others and the information could be related to a very large set of specific protocols, performance

https://github.com/YangModels/yang/blob/master/vendor/cisco/xr/702/Cisco-IOS-XR-eigrp-oper.yang
https://github.com/YangModels/yang/blob/master/vendor/cisco/xr/702/Cisco-IOS-XR-eigrp-cfg.yang

counters or measures from physical sensors.

In general, Visibility and Analytics functions are located in central points in networks, streaming of
telemetry information is made using networking transport mechanisms, so telemetry information should be
fast as possible allowing to scale.

As opposed to SNMP legacy mechanisms, Telemetry uses a Push paradigm, where the network should be
provisioned to stream its own data without being polled at regular intervals, which is the main characteristic
of SNMP based monitoring. This provision it is often called subscription, and it is based on a set of variables
to be monitored, the regular interval for the sampling interval for data collection, and the remote system to
send this data across the network.

Model Driven Telemetry

MDT states for Model Driven Telemetry, and as the name says, it is based on Yang Models. Every aspect in
network equipment could be represented with Yang Models, for example OSPF Neighbors table, RIB or
Temperature Sensors for each component on modular systems.

Regarding MDT architecture, it can be divided in the following layers:

Note: Regarding the producer layer, in model driven telemetry there is a sampling-interval definition
that controls how often the device consult the internal database for raw data and organizes this data into
the data-model layer.

The telemetry subscription also defines which models and with containers/path would produce data to be
streamed into the Analytics Layer. This definition would impact in relevant information to business
purposes. MDT definition of this sensor-path would be analogue to define OID to retrieve via SNMP, since
both techinques produces structured data at defined sampling-rate.

Event Driven Telemetry

EDT stands for Event Driven Telemetry and is also based on Yang models for the structure. The main
difference is that the trigger for the collection and data stream is not regular interval, but is a specific event,
like threshold cross, link events, hardware failure, and so on.

A comparison from an event with Model Driven Telemetry and Event Driven Telemetry is presented next:

Tip: This figure shows redundant messages using MDT, but only messages representing changes by
using EDT.

Transport

Telemetry should be reliable as possible, so makes sense using Transmission Control Protocol (TCP) based
transport for using session-oriented sockets between the infrastructure and the Analytics layer, which should
implement collectors for making the session.

There are two main approaches when using telemetry, and they differ between each other in the 3-way-
handshake initial flow.

Note: In Dial-Out mode, the setup of the session is started on the infrastructure side, which implies that
the sensors of interest should be configured on the network elements. In constrast, Dial-In approach
allow a lighter configuration on network elements since the collector should ask for specific sensor
paths at setup phase.

TCP

TCP is the simplest way of making a connection-oriented session between a network element and a
telemetry collector, and the stream of data starts from Router to Collector who sent ACK back to the router
for reliability purposes:

gRPC

Since Google Protocol RPC (gRPC) works over Hypertext Transfer Protocol/2 (HTTP/2), the session itself
should form at setup, and allows speed control from the collector side natively:

gNMI/gNOI

gRPC Network Management Interface (gNMI) is gRPC network management protocol developed by
Google. gNMI provides the mechanism to install, manipulate, and delete the configuration of network
devices, and also to view operational data. The content provided through gNMI can be modeled using
YANG.

gNMI uses gRPC-HTTP/2 to setup a connection and provides bi-directional channel between network
elements and a NMS that could also be a telemetry collector, but also provides and interface to manage the
devices.

Between the operations supported by this protocol, we can find gNMI Get, gNMI Set that return the
information requested, success or error messages.

gRPC Network Operations Interface (gNOI) is a collection of microservices that uses the same
communication channel as gNMI but allows generic operations not related to configuration itself like ping,
reboot, change SSL certificates, clearing, etc.

Encoding

Yang models define the structure of the data, its hierarchy, and the type of every leaf node on it. However,
modeling does not indicate how this data should be serialized. This process governate the conversion from
structured data into a stream of bytes to be sent over the TCP connection (raw TCP, gRPC, gNMI, etc).

Note: This process should be implemented with an equivalent mechanism in the network element who
should encode the data, and the collector should decode this data.

JSON

The first encoding mechanism is native JavaScript Object Notation (JSON) format, which is well-known but
is human-oriented as it has every key represented as string which is inefficient in terms of message size. The
major benefit of using JSON is that is easy to parse, and read as is text-based as the next example:

{

“node_id_str":"test-IOSXR ",
"subscription_id_str":" if_rate",
"encoding_path":"Cisco-IOS-XR-infra-statsdoper:infra-statistics/interfaces/interface/latest/datarate", "collection_id":49,
"collection_start_time":1510716302467,
"msg_timestamp":1510716302479,
"data_json":
[
 {
 "timestamp":1510716282334,
 "keys":{
 "interface-name":"Null0”
 },
 "content":{
 "input-data-rate":0,
 "input-packet-rate":0,
 "output-data-rate":0,
 "output-packet-rate":0,
 <>
{
 "timestamp": 1510716282344,
 "keys":{
 "interface-name":"GigabitEthernet0/0/0/0”
 },
 "content":{
 "input-data-rate":8,
 "input-packet-rate":1,
 "output-data-rate":2,
 "output-packet-rate":0,
 <>
 "collection_end_time":1510716302372
}

GPB-KV

Google Protocol Buffers-Key Value (GPB-KV) Encoding format it is also called self-describing GPB
because it makes use of protocol buffers to make usage of messages that point to particular elements on
Yang models. This implies that only one .proto file is needed to encode/decode purposes, and the keys itself
from the data are in self-described strings.

node_id_str: “test-IOSXR"
subscription_id_str: ”if_rate"
encoding_path: "Cisco-IOS-XR-infra-statsd-oper:infrastatistics/interfaces/interface/latest/data-rate"
collection_id: 3
collection_start_time: 1485793813366
msg_timestamp: 1485793813366
data_gpbkv {
 timestamp: 1485793813374
 fields {
 name: "keys"
 fields {
 name: "interface-name" string_value: "Null0"
 }
 }
fields {
 name: "content"

 fields { name: "input-data-rate" 8: 0 }
 fields { name: "input-packet-rate" 8: 0 }
 fields { name: "output-data-rate" 8: 0 }
 fields { name: "output-packet-rate" 8: 0 }
 <>
data_gpbkv {
 timestamp: 1485793813389
 fields {
 name: "keys"
 fields { name: "interface-name" string_value: "GigabitEthernet0/0/0/0" }
 }
fields {
 name: "content"
 fields { name: "input-data-rate" 8: 8 }
 fields { name: "input-packet-rate" 8: 1 }
 fields { name: "output-data-rate" 8: 2 }
 fields { name: "output-packet-rate" 8: 0 }
 <>
}
...
collection_end_time: 1485793813405

GPB

Finally, Google Protocol Buffers (GPB), also called compact GPB, takes this approach one step futher and
requires .proto files to map every key of the structure making it much more efficient in terms of message
size since everything is sent as binary values. However, the drawback is the need of compiling every .proto
file associated to every Yang model supported by infrastructure/collector.

node_id_str: ”test-IOSXR"
subscription_id_str: ”if_rate"
encoding_path: "Cisco-IOS-XR-infra-statsdoper:infrastatistics/interfaces/interface/latest/data-rate"
collection_id: 5
collection_start_time: 1485794640452
msg_timestamp: 1485794640452
data_gpb {
 row {
 timestamp: 1485794640459
 keys: "\n\005Null0"
 content: "\220\003\000\230\003\000\240\003\000\250\0 03\000\260\003\000\270\003\000\300\003\000\ 310\003\000\320\003\000\330\003\t\340\003\00 0\350\003\000\360\003\377\001"
 }
 row {
 timestamp: 1485794640469
 keys: "\n\026GigabitEthernet0/0/0/0"
 content: "\220\003\010\230\003\001\240\003\002\250\0 03\000\260\003\000\270\003\000\300\003\000\ 310\003\000\320\003\300\204=\330\003\000\34 0\003\000\350\003\000\360\003\377\001"
 }
collection_end_time: 1485794640480

MDT Configuration in IOS XR

The core components used in streaming model-driven telemetry data are:

Session•
Sensor Path•
Subscription•

Transport and Encoding•

The session options can be Dial-in or Dial-out as we discussed previously. In order to build the
configuration in IOS XR.

Dial-Out Mode

for Dial-Out mode, the router initiates a session to the destinations based on the subscription, and the
process should include following steps:

Create a Destination Group•
Create a Sensor Group•
Create a Subscription•
Validate Dial-out configuration•

In order to create a destination group, you need to know the Internet Protocol Version 4 (IPv4) / Internet
Protocol Version 6 (IPv6) address of the collector and the port that would service this application. Also, you
need to specify the protocol and the encoding that should be agreed on the network device and the collector.

Finally, you may need to specify the Virtual Routing and Forwarding (VRF) used to communicate to the
collector network address.

Next, an example of Dial-Out configuration is presented:

telemetry model-driven

 destination-group DG1

 vrf MGMT

 address-family ipv4 192.168.122.20 port 5432

 encoding self-describing-gpb

 protocol tcp

 !

 !

Encoding options are presented next:

<#root>

RP/0/RP0/CPU0:C8000-1(config-model-driven-dest-addr)#encoding ?

 gpb GPB encoding

 json JSON encoding

 self-describing-gpb Self describing GPB encoding

← Also known as GPB-KV

RP/0/RP0/CPU0:C8000-1(config-model-driven-dest-addr)#encoding

The protocols options:

RP/0/RP0/CPU0:C8000-1(config-model-driven-dest-addr)#protocol ?

 grpc gRPC

 tcp TCP

 udp UDP

RP/0/RP0/CPU0:C8000-1(config-model-driven-dest-addr)#protocol grpc ?

 gzip gRPC gzip message compression

 no-tls No TLS

 tls-hostname TLS hostname

 <cr>

RP/0/RP0/CPU0:C8000-1(config-model-driven-dest-addr)#protocol tcp ?

 <cr>

RP/0/RP0/CPU0:C8000-1(config-model-driven-dest-addr)#protocol udp ?

 packetsize UDP packet size

 <cr>

RP/0/RP0/CPU0:C8000-1(config-model-driven-dest-addr)#protocol udp

TCP protocol is straightforward and only need the port settings attached to the IPv4/IPv6 address. User
Datagram Protocol (UDP) in contrast is connectionless, so the destination group status would always be
active.

Compression in gRPC can be achieved by the usage of the optional gzip keyword. gRPC uses TLS by
default, so a certificate should be installed locally on the router for this usage. This behaviour can be
override by configuration of no-tls keyword. Finally, you can specify a different hostname for certificate
purposes using tls-hostname keyword.

Next, sensor-group section should be added listing the sensor-paths of our interest. This section is
straightforward but is important to know that the sensor-path itself allows for filtering to optimize several
resources like Central Processing Unit (CPU) and bandwidth.

telemetry model-driven

 sensor-group SG1

 sensor-path Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization

 sensor-path Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface[interface-name='Mgmt*']/data-rate

 !

!

Note: The format needed for a sensor path is <model-name>:<container-path>

This document presents the mapping from SNMP based monitoring using OID representing “leaves” in this
legacy approach into YANG models, represented with XPATHs that matches the same “leaves”.

The final configuration stage should be configuring a subscription, which ties the sensor group with a
cadence for the telemetry streaming to a destination group.

telemetry model-driven

 subscription SU1

 sensor-group-id SG1 sample-interval 5000

 destination-id DG1

 !

!

This example uses a sampling interval of 5000 milliseconds (5 seconds) which is relative to the end of the
previous collection. To change this behavior, you can change sample-interval keyword with strict-timer
option.

For verification, you can use the following command that covers subscription status. This method allows
covering sensor-group and destination-group information also.

RP/0/RP0/CPU0:C8000-1#sh telemetry model-driven subscription SU1

Wed Nov 18 15:38:01.397 UTC

Subscription: SU1

 State: ACTIVE

 Sensor groups:

 Id: SG1

 Sample Interval: 5000 ms

 Heartbeat Interval: NA

 Sensor Path: Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface[interface-name='Mgmt*']/data-rate

 Sensor Path State: Resolved

 Sensor Path: Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization

 Sensor Path State: Resolved

 Destination Groups:

 Group Id: DG1

 Destination IP: 192.168.122.10

 Destination Port: 5432

 Destination Vrf: MGMT(0x60000001)

 Encoding: self-describing-gpb

 Transport: tcp

 State: Active

 TLS : False

 Total bytes sent: 636284346

 Total packets sent: 4189

 Last Sent time: 2020-11-18 15:37:58.1700077650 +0000

 Collection Groups:

 Id: 9

 Sample Interval: 5000 ms

 Heartbeat Interval: NA

 Heartbeat always: False

 Encoding: self-describing-gpb

 Num of collection: 1407

 Collection time: Min: 4 ms Max: 13 ms

 Total time: Min: 8 ms Avg: 10 ms Max: 20 ms

 Total Deferred: 0

 Total Send Errors: 0

 Total Send Drops: 0

 Total Other Errors: 0

 No data Instances: 1407

 Last Collection Start:2020-11-18 15:37:57.1699545994 +0000

 Last Collection End: 2020-11-18 15:37:57.1699555589 +0000

 Sensor Path: Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/data-rate

 Id: 10

 Sample Interval: 5000 ms

 Heartbeat Interval: NA

 Heartbeat always: False

 Encoding: self-describing-gpb

 Num of collection: 1391

 Collection time: Min: 178 ms Max: 473 ms

 Total time: Min: 247 ms Avg: 283 ms Max: 559 ms

 Total Deferred: 0

 Total Send Errors: 0

 Total Send Drops: 0

 Total Other Errors: 0

 No data Instances: 0

 Last Collection Start:2020-11-18 15:37:58.1699805906 +0000

 Last Collection End: 2020-11-18 15:37:58.1700078415 +0000

 Sensor Path: Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization

RP/0/RP0/CPU0:C8000-1#

Dial-In Mode

In Dial In mode, the collector initiates the connection to the network elements. Then, the collector should
indicate the interest to build a subscription.

The configuration has the following steps:

Enable gRPC service•
Setup Sensor groups•
Verification•

To enable the gRPC service, the configuration is displayed next:

!

grpc

 vrf MGMT

 port 57400

 no-tls

 address-family dual

!

The options are straightforward, including the VRF, and the TCP port. By default, gRPC uses TLS but it can
be disabled with no-tls keyword. Finally, the address-family dual option allows connection using IPv4 and
IPv6.

Next, Dial-in requires the definition of sensor-groups locally, that would be used by the collector later to
define a subscription.

telemetry model-driven

 sensor-group SG3

 sensor-path Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization

 sensor-path Cisco-IOS-XR-fib-common-oper:fib-statistics/nodes/node/drops

 !

!

At this, point the configuration for Dial-In mode, is complete, and the collector itself can make a
subscription to the router using gRPC. For verification, you can make the same approach as in dial-out
mode:

RP/0/RP0/CPU0:C8000-1#sh telemetry model-driven subscription anx-1605878175837

Fri Nov 20 13:58:37.894 UTC

Subscription: anx-1605878175837

 State: ACTIVE

 Sensor groups:

 Id: SG3

 Sample Interval: 15000 ms

 Heartbeat Interval: NA

 Sensor Path: Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization

 Sensor Path State: Resolved

 Sensor Path: Cisco-IOS-XR-fib-common-oper:fib-statistics/nodes/node/drops

 Sensor Path State: Resolved

 Destination Groups:

 Group Id: DialIn_1003

 Destination IP: 192.168.122.10

 Destination Port: 46974

 Compression: gzip

 Encoding: json

 Transport: dialin

 State: Active

 TLS : False

 Total bytes sent: 71000035

 Total packets sent: 509

 Last Sent time: 2020-11-20 13:58:32.1030932699 +0000

 Collection Groups:

 Id: 5

 Sample Interval: 15000 ms

 Heartbeat Interval: NA

 Heartbeat always: False

 Encoding: json

 Num of collection: 170

 Collection time: Min: 273 ms Max: 640 ms

 Total time: Min: 276 ms Avg: 390 ms Max: 643 ms

 Total Deferred: 0

 Total Send Errors: 0

 Total Send Drops: 0

 Total Other Errors: 0

 No data Instances: 0

 Last Collection Start:2020-11-20 13:58:32.1030283276 +0000

 Last Collection End: 2020-11-20 13:58:32.1030910008 +0000

 Sensor Path: Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring/cpu-utilization

 Id: 6

 Sample Interval: 15000 ms

 Heartbeat Interval: NA

 Heartbeat always: False

 Encoding: json

 Num of collection: 169

 Collection time: Min: 15 ms Max: 33 ms

 Total time: Min: 17 ms Avg: 22 ms Max: 33 ms

 Total Deferred: 0

 Total Send Errors: 0

 Total Send Drops: 0

 Total Other Errors: 0

 No data Instances: 0

 Last Collection Start:2020-11-20 13:58:32.1030910330 +0000

 Last Collection End: 2020-11-20 13:58:32.1030932787 +0000

 Sensor Path: Cisco-IOS-XR-fib-common-oper:fib-statistics/nodes/node/drops

RP/0/RP0/CPU0:C8000-1#

Tip: Note that no cadence, encoding, collector IP or transport is hardcoded on the router for dial-in
mode.

SNMP Migration to MDT

In order to accomplish the migration from traditional SNMP into Telemetry model, the following aspects
should be covered:

MIB migration into XPATH•
Trap migration into Telemetry•
Security considerations•

MIB migration into XPATH

For this purpose, we could categorize MIB using its own hierarchy which could be mapped (at least on high
level) to a particular functionality.

BGP4-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to BGP peering sessions.

OID Name OID Number OID
Description XPATH

The last error
code and
subcode seen
by this peer on
this
connection. If
no error has
occurred, this
field is zero.
Otherwise, the
first byte of
this two byte
OCTET
STRING
contains the
error code,
and the
second byte
contains the

bgpPeerLastError 1.3.6.1.2.1.15.3.1.14

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/neighbor-missing-
eor-table/neighbor/last-notify-error-
code

subcode.

bgpPeerOutUpdates 1.3.6.1.2.1.15.3.1.11

The number
of BGP
UPDATE
messages
transmitted on
this
connection.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/update-messages-out

bgpPeerInUpdates 1.3.6.1.2.1.15.3.1.10

The number
of BGP
UPDATE
messages
received on
this
connection.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/update-messages-in

bgpPeerNegotiatedVersion 1.3.6.1.2.1.15.3.1.4

The
negotiated
version of
BGP running
between the
two peers.
This entry
MUST be
zero (0) unless
the
bgpPeerState
is in the
openconfirm
or the
established
state. Note
that legal
values for this
object are
between 0 and
255.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/negotiated-protocol-
version

bgpPeerState 1.3.6.1.2.1.15.3.1.2
The BGP peer
connection
state.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/connection-state

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/connection-remote-

bgpPeerRemoteAddr 1.3.6.1.2.1.15.3.1.7

The remote IP
address of this
entry's BGP
peer.

address

bgpPeerLocalAddr 1.3.6.1.2.1.15.3.1.5

The local IP
address of this
entry's BGP
connection.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/connection-local-
address

bgpPeerFsmEstablishedTime 1.3.6.1.2.1.15.3.1.16

This timer
indicates how
long (in
seconds) this
peer has been
in the
established
state or how
long since this
peer was last
in the
established
state. It is set
to zero when a
new peer is
configured or
when the
router is
booted.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/connection-
established-time

The desired
state of the
BGP
connection. A
transition
from 'stop' to
'start' will
cause the BGP
Manual Start
Event to be
generated. A
transition
from 'start' to
'stop' will
cause the BGP
Manual Stop
Event to be
generated.
This
parameter can
be used to
restart BGP
peer

bgpPeerAdminStatus 1.3.6.1.2.1.15.3.1.3

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/connection-admin-
status

connections.
Care should
be used in
providing
write access to
this object
without
adequate
authentication.

CISCO-BGP4-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to BGP session state and prefix interchanged.

OID Name OID Number OID
Description XPATH

cbgpPeer2RemoteAs 1.3.6.1.4.1.9.9.187.1.2.5.1.11

The remote
autonomous
system
number
received in
the BGP
OPEN
message.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-
vrf/sessions/session/remote-as

cbgpPeer2PrevState 1.3.6.1.4.1.9.9.187.1.2.5.1.29

The BGP peer
connection
previous
state.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/previous-connection-
state

cbgpPeer2State 1.3.6.1.4.1.9.9.187.1.2.5.1.3
The BGP peer
connection
state.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/connection-state

cbgpPeer2LocalAddr 1.3.6.1.4.1.9.9.187.1.2.5.1.6

The local IP
address of
this entry's
BGP
connection.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/connection-local-
address

This counter
is
incremented

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-

cbgpPeer2AdvertisedPrefixes 1.3.6.1.4.1.9.9.187.1.2.8.1.6

when a route
prefix, which
belongs to an
address
family is
advertised on
this
connection. It
is initialized
to zero when
the
connection is
undergone a
hard reset.

table/neighbor/af-data/prefixes-
advertised

cbgpPeer2AcceptedPrefixes 1.3.6.1.4.1.9.9.187.1.2.8.1.1

Number of
accepted
route prefixes
on this
connection,
which belong
to an address
family.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/af-data/prefixes-
accepted

cbgpPeerPrefixLimit 1.3.6.1.4.1.9.9.187.1.2.1.1.3

Max number
of route
prefixes
accepted on
this
connection

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/instances/instance/instance-
active/default-vrf/afs/af/neighbor-af-
table/neighbor/af-data/max-prefix-
limit

cbgpPeer2PrefixThreshold 1.3.6.1.4.1.9.9.187.1.2.8.1.4

Prefix
threshold
value (%) for
an address
family on this
connection at
which
warning
message
stating the
prefix count
is crossed the
threshold or
corresponding
SNMP
notification is
generated.

Cisco-IOS-XR-ipv4-bgp-
oper:bgp/config-instances/config-
instance/config-instance-default-
vrf/entity-configurations/entity-
configuration/af-dependent-
config/max-prefix-warn-threshold

CISCO-CLASS-BASED-QOS-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to statistics in Quality of Service (QoS) classes/policies.

OID Name OID Number OID
Description XPATH

cbQosCMDropBitRate 1.3.6.1.4.1.9.9.166.1.15.1.1.18

The bit rate
of the drops
per class as
the result of
all features
that can
produce
drops (e.g.,
police,
random
detect, etc.).

Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/input/service-
policy-names/service-policy-
instance/statistics/class-
stats/general-stats/total-drop-
rate
Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/output/service-
policy-names/service-policy-
instance/statistics/class-
stats/general-stats/total-drop-
rate

cbQosCMDropPkt64 1.3.6.1.4.1.9.9.166.1.15.1.1.14

The 64 bits
counter of
dropped pkts
per class as
the result of
all features
that can
produce
drops (e.g.,
police,
random
detect, etc.).

Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/input/service-
policy-names/service-policy-
instance/statistics/class-
stats/general-stats/total-drop-
packets
Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/output/service-
policy-names/service-policy-
instance/statistics/class-
stats/general-stats/total-drop-
packets

Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/input/service-
policy-names/service-policy-
instance/statistics/class-
stats/general-stats/pre-policy-
matched-packets
Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/output/service-
policy-names/service-policy-
instance/statistics/class-

cbQosCMPrePolicyPkt64 1.3.6.1.4.1.9.9.166.1.15.1.1.3

The 64 bits
count of
inbound
packets prior
to executing
any QoS
policies.

stats/general-stats/pre-policy-
matched-packets

cbQosCMName 1.3.6.1.4.1.9.9.166.1.7.1.1.1
Name of the
Classmap.

Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/input/service-
policy-names/service-policy-
instance/statistics/class-
stats/class-name

cbQosCMPostPolicyByte64 1.3.6.1.4.1.9.9.166.1.15.1.1.10

The 64 bits
count of
outbound
octets after
executing
QoS
policies.

Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/input/service-
policy-names/service-policy-
instance/statistics/class-
stats/child-policy/class-
stats/general-stats/transmit-
bytes

Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/output/service-
policy-names/service-policy-
instance/statistics/class-
stats/child-policy/class-
stats/general-stats/transmit-
bytes

cbQosIfIndex 1.3.6.1.4.1.9.9.166.1.1.1.1.4

ifIndex for
the interface
to which this
service is
attached.
This field
makes sense
only if the
logical
interface has
a snmp
ifIndex. For
e.g. the value
of this field
is
meaningless
when the
cbQosIfType
is
controlPlane.

Cisco-IOS-XR-infra-
policymgr-oper:policy-
manager/global/policy-
map/policy-map-
types/policy-map-
type/policy-maps

An arbitrary Cisco-IOS-XR-infra-cbQosConfigIndex 1.3.6.1.4.1.9.9.166.1.5.1.1.2

(system-
assigned)
config
(instance
independent)
index for
each Object.
Each objects
having the
same
configuration
share the
same config
index.

policymgr-oper:policy-
manager/global/policy-
map/policy-map-
types/policy-map-
type/policy-maps

cbQosCMPrePolicyByte64 1.3.6.1.4.1.9.9.166.1.15.1.1.6

The 64 bits
count of
inbound
octets prior
to executing
any QoS
policies.

 Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/input/service-
policy-names/service-policy-
instance/statistics/class-
stats/child-policy/class-
stats/general-stats/pre-policy-
matched-bytes

Cisco-IOS-XR-qos-ma-
oper:qos/interface-
table/interface/output/service-
policy-names/service-policy-
instance/statistics/class-
stats/child-policy/class-
stats/general-stats/pre-policy-
matched-bytes

CISCO-ENHANCED-MEMPOOL-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to the memory usage.

OID Name OID Number OID Description XPATH

cempMemPoolUsed 1.3.6.1.4.1.9.9.221.1.1.1.1.7

Indicates the number
of bytes from the
memory pool that
are currently in use
by applications on
the physical entity.

Cisco-IOS-XR-nto-misc-
oper:memory-
summary/nodes/node/summary

Indicates the number
of bytes from the

Cisco-IOS-XR-nto-misc-
oper:memory-

cempMemPoolHCUsed 1.3.6.1.4.1.9.9.221.1.1.1.1.18

memory pool that
are currently in use
by applications on
the physical entity.
This object is a 64-
bit version of
cempMemPoolUsed.

summary/nodes/node/detail/total-
used

cempMemPoolHCFree 1.3.6.1.4.1.9.9.221.1.1.1.1.20

Indicates the number
of bytes from the
memory pool that
are currently unused
on the physical
entity. This object is
a 64-bit version of
cempMemPoolFree.

Cisco-IOS-XR-nto-misc-
oper:memory-
summary/nodes/node/detail/free-
physical-memory

CISCO-ENTITY-FRU-CONTROL-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to the field replaceable units on the monitored system.

OID Name OID Number OID Description XPATH

cefcFRUPowerOperStatus 1.3.6.1.4.1.9.9.117.1.1.2.1.2
Operational FRU
power state.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/fru-
info/power-operational-state

cefcFRUPowerAdminStatus 1.3.6.1.4.1.9.9.117.1.1.2.1.1
Administratively
desired FRU power
state.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/fru-
info/power-administrative-state

cefcModuleStatusLastChangeTime 1.3.6.1.4.1.9.9.117.1.2.1.1.4

The value of
sysUpTime at the time
the
cefcModuleOperStatus
is changed.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/fru-
info/last-operational-state-change

cefcModuleUpTime 1.3.6.1.4.1.9.9.117.1.2.1.1.8

This object provides
the up time for the
module since it was
last re-initialized. This
object is not
persistent; if a module
reset, restart, power
off, the up time starts
from zero.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/fru-
info/card-up-time

cefcModuleResetReason 1.3.6.1.4.1.9.9.117.1.2.1.1.3

This object identifies
the reason for the last
reset performed on the
module.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/fru-
info/card-reset-reason

cefcModuleOperStatus 1.3.6.1.4.1.9.9.117.1.2.1.1.2
This object shows the
module's operational
state.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/fru-
info/card-operational-state

cefcModuleAdminStatus 1.3.6.1.4.1.9.9.117.1.2.1.1.1
This object provides
administrative control
of the module.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/fru-
info/card-administrative-state

CISCO-ENTITY-SENSOR-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to sensor entities on the node.

OID Name OID Number OID Description XPATH

entSensorValue 1.3.6.1.4.1.9.9.91.1.1.1.1.4

This variable reports the most
recent measurement seen by
the sensor. To correctly
display or interpret this
variable's value, you must also
know entSensorType,
entSensorScale, and
entSensorPrecision. However,
you can compare
entSensorValue with the
threshold values given in
entSensorThresholdTable
without any semantic
knowledge.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/env-
sensor-info/value

entSensorThresholdEvaluation 1.3.6.1.4.1.9.9.91.1.2.1.1.5

This variable indicates the
result of the most recent
evaluation of the threshold. If
the threshold condition is true,
entSensorThresholdEvaluation
is true(1). If the threshold
condition is false,
entSensorThresholdEvaluation
is false(2). Thresholds are
evaluated at the rate indicated
by
entSensorValueUpdateRate.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/threshold

CISCO-FLASH-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to flash storage on the system.

OID Name OID Number OID Description XPATH

ciscoFlashPartitionName 1.3.6.1.4.1.9.9.10.1.1.4.1.1.10

Flash partition name used to refer
to a partition by the system. This
can be any alpha-numeric
character string of the form
AAAAAAAAnn, where A
represents an optional alpha
character and n a numeric
character. Any numeric characters
must always form the trailing part
of the string. The system will strip
off the alpha characters and use the
numeric portion to map to a
partition index. Flash operations
get directed to a device partition
based on this name. The system
has a concept of a default partition.
This would be the first partition in
the device. The system directs an
operation to the default partition
whenever a partition name is not
specified. The partition name is
therefore mandatory except when
the operation is being done on the
default partition, or the device has
just one partition (is not
partitioned).

Cisco-IOS-XR-
shellutil-
filesystem-
oper:file-
system/node/file-
system/type

ciscoFlashPartitionSizeExtended 1.3.6.1.4.1.9.9.10.1.1.4.1.1.13

Flash partition size. It should be an
integral multiple of
ciscoFlashDeviceMinPartitionSize.
If there is a single partition, this
size will be equal to
ciscoFlashDeviceSize. This object
is a 64-bit version of
ciscoFlashPartitionSize

Cisco-IOS-XR-
shellutil-
filesystem-
oper:file-
system/node/file-
system/size

Free space within a Flash partition.
Note that the actual size of a file in
Flash includes a small overhead
that represents the file system's file
header. Certain file systems may
also have a partition or device
header overhead to be considered

ciscoFlashPartitionFreeSpaceExtended 1.3.6.1.4.1.9.9.10.1.1.4.1.1.14

Cisco-IOS-XR-
shellutil-
filesystem-
oper:file-
system/node/file-
system/free

when computing the free space.
Free space will be computed as
total partition size less size of all
existing files (valid/invalid/deleted
files and including file header of
each file), less size of any partition
header, less size of header of next
file to be copied in. In short, this
object will give the size of the
largest file that can be copied in.
The management entity will not be
expected to know or use any
overheads such as file and partition
header lengths, since such
overheads may vary from file
system to file system. Deleted files
in Flash do not free up space. A
partition may have to be erased in
order to reclaim the space
occupied by files. This object is a
64-bit version of
ciscoFlashPartitionFreeSpace

CISCO-PROCESS-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related CPU Usage and resource allocation for processes.

OID Name OID Number OID Description XPATH

cpmCPUTotal1minRev 1.3.6.1.4.1.9.9.109.1.1.1.1.7

The overall CPU busy
percentage in the last 1
minute period. This object
deprecates the object
cpmCPUTotal1min and
increases the value range to
(0..100).

Cisco-IOS-XR-wdsysmon-
fd-oper:system-
monitoring/cpu-
utilization/total-cpu-one-
minute

cpmCPUTotal5minRev 1.3.6.1.4.1.9.9.109.1.1.1.1.8

The overall CPU busy
percentage in the last 5
minute period. This object
deprecates the object
cpmCPUTotal5min and
increases the value range to
(0..100).

Cisco-IOS-XR-wdsysmon-
fd-oper:system-
monitoring/cpu-
utilization/total-cpu-five-
minute

The overall CPU busy
percentage in the last 15
minute period. This object

Cisco-IOS-XR-wdsysmon-
fd-oper:system-
monitoring/cpu-

cpmCPUTotal15minRev 1.3.6.1.4.1.9.9.109.1.1.1.1.31

deprecates the object
cpmCPUTotal15min and
increases the value range to
(0..100).

utilization/total-cpu-fifteen-
minute

cpmProcessName 1.3.6.1.4.1.9.9.109.1.2.1.1.2

The name associated with
this process. If the name is
longer than 32 characters, it
will be truncated to the first
31 characters, and a `*' will
be appended as the last
character to imply this is a
truncated process name.

Cisco-IOS-XR-wdsysmon-
fd-oper:system-
monitoring/cpu-
utilization/process-
cpu/process-name

cpmProcessTextSegmentSize 1.3.6.1.4.1.9.9.109.1.2.3.1.15
This indicates the text
memory of a process and
all its shared objects.

Cisco-IOS-XR-procmem-
oper:processes-
memory/nodes/node/process-
ids/process-id/text-seg-size

cpmProcessDynamicMemorySize 1.3.6.1.4.1.9.9.109.1.2.3.1.18
This indicates the amount
of dynamic memory being
used by the process.

Cisco-IOS-XR-procmem-
oper:processes-
memory/nodes/node/process-
ids/process-id/dyn-limit

cpmProcessDataSegmentSize 1.3.6.1.4.1.9.9.109.1.2.3.1.16
This indicates the data
segment of a process and
all its shared objects.

Cisco-IOS-XR-procmem-
oper:processes-
memory/nodes/node/process-
ids/process-id/data-seg-size

cpmProcExtMemAllocatedRev 1.3.6.1.4.1.9.9.109.1.2.3.1.1

The sum of all the
dynamically allocated
memory that this process
has received from the
system. This includes
memory that may have
been returned. The sum of
freed memory is provided
by
cpmProcExtMemFreedRev.
This object deprecates
cpmProcExtMemAllocated.

Cisco-IOS-XR-procmem-
oper:processes-
memory/nodes/node/process-
ids/process-id

cpmProcExtMemFreedRev 1.3.6.1.4.1.9.9.109.1.2.3.1.2

The sum of all memory that
this process has returned to
the system. This object
deprecates
cpmProcExtMemFreed.

Cisco-IOS-XR-procmem-
oper:processes-
memory/nodes/node/process-
ids/process-id

ENTITY-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related physical entities on the system.

OID Name OID Number OID Description XPATH

entPhysicalName 1.3.6.1.2.1.47.1.1.1.1.7

The textual name of the
physical entity. The value
of this object should be
the name of the
component as assigned
by the local device and
should be suitable for use
in commands entered at
the device's `console'.
This might be a text
name, such as `console'
or a simple component
number (e.g., port or
module number), such as
`1', depending on the
physical component
naming syntax of the
device. If there is no
local name, or this object
is otherwise not
applicable, then this
object contains a zero-
length string. Note that
the value of
entPhysicalName for two
physical entities will be
the same in the event that
the console interface does
not distinguish between
them, e.g., slot-1 and the
card in slot-1.

Cisco-IOS-XR-snmp-entitymib-
oper:entity-physical-index

entLogicalDescr 1.3.6.1.2.1.47.1.2.1.1.2

A textual description of
the logical entity. This
object should contain a
string which identifies
the manufacturer's name
for the logical entity, and
should be set to a distinct
value for each version of
the logical entity.

Cisco-IOS-XR-snmp-agent-
oper:snmp/information/system-name/

A textual description of Cisco-IOS-XR-snmp-agent-entPhysicalDescr 1.3.6.1.2.1.47.1.1.1.1.2

physical entity. This
object should contain a
string which identifies
the manufacturer's name
for the physical entity,
and should be set to a
distinct value for each
version or model of the
physical entity.

oper:snmp/Cisco-IOS-XR-snmp-entitymib-
oper:entity-mib/entity-physical-indexes/

entPhysicalContainedIn 1.3.6.1.2.1.47.1.1.1.1.4

The value of
entPhysicalIndex for the
physical entity which
'contains' this physical
entity. A value of zero
indicates this physical
entity is not contained in
any other physical entity.
Note that the set of
'containment'
relationships define a
strict hierarchy; that is,
recursion is not allowed.
In the event a physical
entity is contained by
more than one physical
entity (e.g., double-wide
modules), this object
should identify the
containing entity with the
lowest value of
entPhysicalIndex.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/inv-
basic-bag/unique-id

entPhysicalClass 1.3.6.1.2.1.47.1.1.1.1.5

An indication of the
general hardware type of
the physical entity. An
agent should set this
object to the standard
enumeration value which
most accurately indicates
the general class of the
physical entity, or the
primary class if there is
more than one. If no
appropriate standard
registration identifier
exists for this physical
entity, then the value
'other(1)' is returned. If
the value is unknown by
this agent, then the value
'unknown(2)' is returned.

Cisco-IOS-XR-invmgr-
oper:inventory/entities

entPhysicalHardwareRev 1.3.6.1.2.1.47.1.1.1.1.8

The vendor-specific
hardware revision string
for the physical entity.
The preferred value is the
hardware revision
identifier actually printed
on the component itself
(if present). Note that if
revision information is
stored internally in a non-
printable (e.g., binary)
format, then the agent
must convert such
information to a printable
format, in an
implementation-specific
manner. If no specific
hardware revision string
is associated with the
physical component, or
this information is
unknown to the agent,
then this object will
contain a zero-length
string.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/inv-
basic-bag/hardware-revision

entPhysicalFirmwareRev 1.3.6.1.2.1.47.1.1.1.1.9

The vendor-specific
firmware revision string
for the physical entity.
Note that if revision
information is stored
internally in a non-
printable (e.g., binary)
format, then the agent
must convert such
information to a printable
format, in an
implementation-specific
manner. If no specific
firmware programs are
associated with the
physical component, or
this information is
unknown to the agent,
then this object will
contain a zero-length
string.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/inv-
basic-bag/firmware-revision

The vendor-specific
software revision string
for the physical entity.
Note that if revision

entPhysicalSoftwareRev 1.3.6.1.2.1.47.1.1.1.1.10
Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/inv-
basic-bag/software-revision

information is stored
internally in a non-
printable (e.g., binary)
format, then the agent
must convert such
information to a printable
format, in an
implementation-specific
manner. If no specific
software programs are
associated with the
physical component, or
this information is
unknown to the agent,
then this object will
contain a zero-length
string.

The vendor-specific
serial number string for
the physical entity. The
preferred value is the
serial number string
actually printed on the
component itself (if
present). On the first
instantiation of an
physical entity, the value
of entPhysicalSerialNum
associated with that
entity is set to the correct
vendor-assigned serial
number, if this
information is available
to the agent. If a serial
number is unknown or
non-existent, the
entPhysicalSerialNum
will be set to a zero-
length string instead.
Note that
implementations which
can correctly identify the
serial numbers of all
installed physical entities
do not need to provide
write access to the
entPhysicalSerialNum
object. Agents which
cannot provide non-
volatile storage for the
entPhysicalSerialNum

entPhysicalSerialNum 1.3.6.1.2.1.47.1.1.1.1.11
Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/inv-
basic-bag/serial-number

strings are not required to
implement write access
for this object. Not every
physical component will
have a serial number, or
even need one. Physical
entities for which the
associated value of the
entPhysicalIsFRU object
is equal to 'false(2)' (e.g.,
the repeater ports within
a repeater module), do
not need their own
unique serial number. An
agent does not have to
provide write access for
such entities, and may
return a zero-length
string. If write access is
implemented for an
instance of
entPhysicalSerialNum,
and a value is written into
the instance, the agent
must retain the supplied
value in the
entPhysicalSerialNum
instance associated with
the same physical entity
for as long as that entity
remains instantiated. This
includes instantiations
across all re-
initializations/reboots of
the network management
system, including those
which result in a change
of the physical entity's
entPhysicalIndex value.

The name of the
manufacturer of this
physical component. The
preferred value is the
manufacturer name string
actually printed on the
component itself (if
present). Note that
comparisons between
instances of the
entPhysicalModelName,
entPhysicalFirmwareRev,

entPhysicalMfgName 1.3.6.1.2.1.47.1.1.1.1.12
Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/inv-
basic-bag/manufacturer-name

entPhysicalSoftwareRev,
and the
entPhysicalSerialNum
objects, are only
meaningful amongst
entPhysicalEntries with
the same value of
entPhysicalMfgName. If
the manufacturer name
string associated with the
physical component is
unknown to the agent,
then this object will
contain a zero-length
string.

entPhysicalModelName 1.3.6.1.2.1.47.1.1.1.1.13

The vendor-specific
model name identifier
string associated with
this physical component.
The preferred value is the
customer-visible part
number, which may be
printed on the component
itself. If the model name
string associated with the
physical component is
unknown to the agent,
then this object will
contain a zero-length
string.

Cisco-IOS-XR-invmgr-
oper:inventory/entities/entity/attributes/inv-
basic-bag/model-name

IF-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to interface characteristics and counters.

OID Name OID Number OID Description XPATH

ifMtu 1.3.6.1.2.1.2.2.1.4

The size of the largest packet
which can be sent/received on
the interface, specified in
octets. For interfaces that are
used for transmitting network
datagrams, this is the size of
the largest network datagram
that can be sent on the
interface.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/mtu

ifPhysAddress 1.3.6.1.2.1.2.2.1.6

The interface's address at its
protocol sub-layer. For
example, for an 802.x
interface, this object normally
contains a MAC address. The
interface's media-specific
MIB must define the bit and
byte ordering and the format
of the value of this object. For
interfaces which do not have
such an address (e.g., a serial
line), this object should
contain an octet string of zero
length.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-type-
information/bundle-
information/member/mac-
address

ifType 1.3.6.1.2.1.2.2.1.3

The type of interface.
Additional values for ifType
are assigned by the Internet
Assigned Numbers Authority
(IANA), through updating the
syntax of the IANAifType
textual convention.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-type

ifOutUcastPkts 1.3.6.1.2.1.2.2.1.17

The total number of packets
that higher-level protocols
requested be transmitted, and
which were not addressed to a
multicast or broadcast address
at this sub-layer, including
those that were discarded or
not sent. Discontinuities in the
value of this counter can
occur at re-initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/packets-sent

The total number of packets
that higher-level protocols
requested be transmitted, and
which were not addressed to a
multicast or broadcast address
at this sub-layer, including
those that were discarded or
not sent. This object is a 64-
bit version of ifOutUcastPkts.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at

ifHCOutUcastPkts 1.3.6.1.2.1.31.1.1.1.11

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/packets-sent

other times as indicated by the
value of
ifCounterDiscontinuityTime.

ifInUcastPkts 1.3.6.1.2.1.2.2.1.11

The number of packets,
delivered by this sub-layer to
a higher (sub-)layer, which
were not addressed to a
multicast or broadcast address
at this sub-layer.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/packets-received

ifHCInUcastPkts 1.3.6.1.2.1.31.1.1.1.7

The number of packets,
delivered by this sub-layer to
a higher (sub-)layer, which
were not addressed to a
multicast or broadcast address
at this sub-layer. This object
is a 64-bit version of
ifInUcastPkts. Discontinuities
in the value of this counter
can occur at re-initialization
of the management system,
and at other times as indicated
by the value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/packets-received

ifOutErrors 1.3.6.1.2.1.2.2.1.20

For packet-oriented
interfaces, the number of
outbound packets that could
not be transmitted because of
errors. For character-oriented
or fixed-length interfaces, the
number of outbound
transmission units that could
not be transmitted because of
errors. Discontinuities in the
value of this counter can
occur at re-initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/output-errors

ifOutDiscards 1.3.6.1.2.1.2.2.1.19

The number of outbound
packets which were chosen to
be discarded even though no
errors had been detected to
prevent their being
transmitted. One possible
reason for discarding such a
packet could be to free up
buffer space. Discontinuities
in the value of this counter
can occur at re-initialization
of the management system,
and at other times as indicated
by the value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/output-drops

ifOutMulticastPkts 1.3.6.1.2.1.31.1.1.1.4

The total number of packets
that higher-level protocols
requested be transmitted, and
which were addressed to a
multicast address at this sub-
layer, including those that
were discarded or not sent.
For a MAC layer protocol,
this includes both Group and
Functional addresses.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/multicast-packets-sent

The total number of packets
that higher-level protocols
requested be transmitted, and
which were addressed to a
multicast address at this sub-
layer, including those that
were discarded or not sent.
For a MAC layer protocol,
this includes both Group and
Functional addresses. This
object is a 64-bit version of
ifOutMulticastPkts.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of

ifHCOutMulticastPkts 1.3.6.1.2.1.31.1.1.1.12

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/multicast-packets-sent

ifCounterDiscontinuityTime.

ifInMulticastPkts 1.3.6.1.2.1.31.1.1.1.2

The number of packets,
delivered by this sub-layer to
a higher (sub-)layer, which
were addressed to a multicast
address at this sub-layer. For a
MAC layer protocol, this
includes both Group and
Functional addresses.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/multicast-packets-
received

ifHCInMulticastPkts 1.3.6.1.2.1.31.1.1.1.8

The number of packets,
delivered by this sub-layer to
a higher (sub-)layer, which
were addressed to a multicast
address at this sub-layer. For a
MAC layer protocol, this
includes both Group and
Functional addresses. This
object is a 64-bit version of
ifInMulticastPkts.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/multicast-packets-
received

For packet-oriented
interfaces, the number of
inbound packets that
contained errors preventing
them from being deliverable
to a higher-layer protocol. For
character-oriented or fixed-
length interfaces, the number
of inbound transmission units
that contained errors
preventing them from being
deliverable to a higher-layer
protocol. Discontinuities in
the value of this counter can
occur at re-initialization of the

ifInErrors 1.3.6.1.2.1.2.2.1.14

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/input-errors

management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

ifInDiscards 1.3.6.1.2.1.2.2.1.13

The number of inbound
packets which were chosen to
be discarded even though no
errors had been detected to
prevent their being
deliverable to a higher-layer
protocol. One possible reason
for discarding such a packet
could be to free up buffer
space. Discontinuities in the
value of this counter can
occur at re-initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/input-drops

ifOutOctets 1.3.6.1.2.1.2.2.1.16

The total number of octets
transmitted out of the
interface, including framing
characters. Discontinuities in
the value of this counter can
occur at re-initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/bytes-sent

ifHCOutOctets 1.3.6.1.2.1.31.1.1.1.10

The total number of octets
transmitted out of the
interface, including framing
characters. This object is a 64-
bit version of ifOutOctets.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/bytes-sent

The total number of octets
received on the interface,
including framing characters.
Discontinuities in the value of

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-

ifInOctets 1.3.6.1.2.1.2.2.1.10

this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

statistics/full-interface-
stats/bytes-received

ifHCInOctets 1.3.6.1.2.1.31.1.1.1.6

The total number of octets
received on the interface,
including framing characters.
This object is a 64-bit version
of ifInOctets. Discontinuities
in the value of this counter
can occur at re-initialization
of the management system,
and at other times as indicated
by the value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/bytes-received

ifOutBroadcastPkts 1.3.6.1.2.1.31.1.1.1.5

The total number of packets
that higher-level protocols
requested be transmitted, and
which were addressed to a
broadcast address at this sub-
layer, including those that
were discarded or not sent.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/broadcast-packets-
sent

ifHCOutBroadcastPkts 1.3.6.1.2.1.31.1.1.1.13

The total number of packets
that higher-level protocols
requested be transmitted, and
which were addressed to a
broadcast address at this sub-
layer, including those that
were discarded or not sent.
This object is a 64-bit version
of ifOutBroadcastPkts.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/broadcast-packets-
sent

ifInBroadcastPkts 1.3.6.1.2.1.31.1.1.1.3

The number of packets,
delivered by this sub-layer to
a higher (sub-)layer, which
were addressed to a broadcast
address at this sub-layer.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/broadcast-packets-
received

ifHCInBroadcastPkts 1.3.6.1.2.1.31.1.1.1.9

The number of packets,
delivered by this sub-layer to
a higher (sub-)layer, which
were addressed to a broadcast
address at this sub-layer. This
object is a 64-bit version of
ifInBroadcastPkts.
Discontinuities in the value of
this counter can occur at re-
initialization of the
management system, and at
other times as indicated by the
value of
ifCounterDiscontinuityTime.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/interface-
statistics/full-interface-
stats/broadcast-packets-
received

ifIndex 1.3.6.1.2.1.2.2.1.1

A unique value, greater than
zero, for each interface. It is
recommended that values are
assigned contiguously starting
from 1. The value for each
interface sub-layer must
remain constant at least from
one re-initialization of the
entity's network management
system to the next re-
initialization.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/if-index

ifDescr 1.3.6.1.2.1.2.2.1.2

A textual string containing
information about the
interface. This string should
include the name of the
manufacturer, the product
name and the version of the
interface hardware/software.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
xr/interface/description

An estimate of the interface's
current bandwidth in bits per

Cisco-IOS-XR-pfi-im-
cmd-

ifSpeed 1.3.6.1.2.1.2.2.1.5

second. For interfaces which
do not vary in bandwidth or
for those where no accurate
estimation can be made, this
object should contain the
nominal bandwidth. If the
bandwidth of the interface is
greater than the maximum
value reportable by this object
then this object should report
its maximum value
(4,294,967,295) and
ifHighSpeed must be used to
report the interace's speed.
For a sub-layer which has no
concept of bandwidth, this
object should be zero.

oper:interfaces/interface-
xr/interface/bandwidth

ifOperStatus 1.3.6.1.2.1.2.2.1.8

The current operational state
of the interface. The testing(3)
state indicates that no
operational packets can be
passed. If ifAdminStatus is
down(2) then ifOperStatus
should be down(2). If
ifAdminStatus is changed to
up(1) then ifOperStatus
should change to up(1) if the
interface is ready to transmit
and receive network traffic; it
should change to dormant(5)
if the interface is waiting for
external actions (such as a
serial line waiting for an
incoming connection); it
should remain in the down(2)
state if and only if there is a
fault that prevents it from
going to the up(1) state; it
should remain in the
notPresent(6) state if the
interface has missing
(typically, hardware)
components.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
non-dynamics/interface-
non-dynamic/oper-state

The desired state of the
interface. The testing(3) state
indicates that no operational
packets can be passed. When
a managed system initializes,
all interfaces start with
ifAdminStatus in the down(2)

ifAdminStatus 1.3.6.1.2.1.2.2.1.7

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
non-dynamics/interface-
non-dynamic/admin-state

state. As a result of either
explicit management action or
per configuration information
retained by the managed
system, ifAdminStatus is then
changed to either the up(1) or
testing(3) states (or remains in
the down(2) state).

ifName 1.3.6.1.2.1.31.1.1.1.1

The textual name of the
interface. The value of this
object should be the name of
the interface as assigned by
the local device and should be
suitable for use in commands
entered at the device's
`console'. This might be a text
name, such as `le0' or a
simple port number, such as
`1', depending on the interface
naming syntax of the device.
If several entries in the
ifTable together represent a
single interface as named by
the device, then each will
have the same value of
ifName. Note that for an agent
which responds to SNMP
queries concerning an
interface on some other
(proxied) device, then the
value of ifName for such an
interface is the proxied
device's local name for it. If
there is no local name, or this
object is otherwise not
applicable, then this object
contains a zero- length string.

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
briefs/interface-
brief/interface-name

An estimate of the interface's
current bandwidth in units of
1,000,000 bits per second. If
this object reports a value of
`n' then the speed of the
interface is somewhere in the
range of `n-500,000' to
`n+499,999'. For interfaces
which do not vary in
bandwidth or for those where
no accurate estimation can be
made, this object should
contain the nominal

ifHighSpeed 1.3.6.1.2.1.31.1.1.1.15

Cisco-IOS-XR-pfi-im-
cmd-
oper:interfaces/interface-
briefs/interface-
brief/bandwidth64-bit

bandwidth. For a sub-layer
which has no concept of
bandwidth, this object should
be zero.

IP-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to Internet Protocol (IP) statistics and operational values.

OID Name OID Number OID
Description XPATH

icmpInDestUnreachs 1.3.6.1.2.1.5.3

The number of
ICMP
Destination
Unreachable
messages
received.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpInParmProbs 1.3.6.1.2.1.5.5

The number of
ICMP
Parameter
Problem
messages
received.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpInSrcQuenchs 1.3.6.1.2.1.5.6

The number of
ICMP Source
Quench
messages
received.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpInEchos 1.3.6.1.2.1.5.8

The number of
ICMP Echo
(request)
messages
received.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpInEchoReps 1.3.6.1.2.1.5.9

The number of
ICMP Echo
Reply
messages
received.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

The number of Cisco-IOS-XR-ipv4-io-oper:ipv4-icmpInTimestamps 1.3.6.1.2.1.5.10

ICMP
Timestamp
(request)
messages
received.

network/nodes/node/statistics/traffic/icmp-stats

icmpInAddrMasks 1.3.6.1.2.1.5.12

The number of
ICMP Address
Mask Request
messages
received.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpInAddrMaskReps 1.3.6.1.2.1.5.13

The number of
ICMP Address
Mask Reply
messages
received.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutMsgs 1.3.6.1.2.1.5.14

The total
number of
ICMP
messages
which this
entity
attempted to
send. Note that
this counter
includes all
those counted
by
icmpOutErrors.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutDestUnreachs 1.3.6.1.2.1.5.16

The number of
ICMP
Destination
Unreachable
messages sent.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutTimeExcds 1.3.6.1.2.1.5.17

The number of
ICMP Time
Exceeded
messages sent.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutParmProbs 1.3.6.1.2.1.5.18

The number of
ICMP
Parameter
Problem
messages sent.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutSrcQuenchs 1.3.6.1.2.1.5.19

The number of
ICMP Source
Quench
messages sent.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutRedirects 1.3.6.1.2.1.5.20

The number of
ICMP Redirect
messages sent.
For a host, this
object will
always be zero,
since hosts do
not send
redirects.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutEchos 1.3.6.1.2.1.5.21

The number of
ICMP Echo
(request)
messages sent.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutEchoReps 1.3.6.1.2.1.5.22

The number of
ICMP Echo
Reply
messages sent.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutTimestamps 1.3.6.1.2.1.5.23

The number of
ICMP
Timestamp
(request)
messages sent.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutAddrMasks 1.3.6.1.2.1.5.25

The number of
ICMP Address
Mask Request
messages sent.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

icmpOutAddrMaskReps 1.3.6.1.2.1.5.26

The number of
ICMP Address
Mask Reply
messages sent.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/icmp-stats

The index
value which
uniquely
identifies the
interface to
which this

ipAdEntIfIndex 1.3.6.1.2.1.4.20.1.2
Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/

entry is
applicable. The
interface
identified by a
particular value
of this index is
the same
interface as
identified by
the same value
of RFC 1573's
ifIndex.

ipAdEntAddr 1.3.6.1.2.1.4.20.1.1

The IP address
to which this
entry's
addressing
information
pertains.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/interfaces/interface/vrfs/vrf/detail/primary-
address

ipAdEntNetMask 1.3.6.1.2.1.4.20.1.3

The subnet
mask
associated with
the IP address
of this entry.
The value of
the mask is an
IP address with
all the network
bits set to 1
and all the
hosts bits set to
0.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/interfaces/interface/vrfs/vrf/detail/prefix-
length

The value of
the least-
significant bit
in the IP
broadcast
address used
for sending
datagrams on
the (logical)
interface
associated with
the IP address
of this entry.
For example,
when the
Internet
standard all-

ipAdEntBcastAddr 1.3.6.1.2.1.4.20.1.4
Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/interfaces/interface/vrfs/vrf/detail/direct-
broadcast

ones broadcast
address is used,
the value will
be 1. This
value applies
to both the
subnet and
network
broadcasts
addresses used
by the entity
on this
(logical)
interface.

ipNetToMediaPhysAddress 1.3.6.1.2.1.4.22.1.2

The media-
dependent
`physical'
address.

Cisco-IOS-XR-ipv4-arp-
oper:arp/nodes/node/entries/entry/hardware-address

IPMIB-COMMMON

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to IP statistics.

OID Name OID Number OID Description XPATH

ipIfStatsHCOutTransmits 1.3.6.1.2.1.4.31.3.1.31

The total number of IP
datagrams that this entity
supplied to the lower layers
for transmission. This
object counts the same
datagrams as
ipIfStatsOutTransmits but
allows for larger values.
Discontinuities in the value
of this counter can occur at
re-initialization of the
management system, and at
other times as indicated by
the value of
ipIfStatsDiscontinuityTime.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/ipv4-
stats/packets-forwarded

The total number of input
IP datagrams received,
including those received in
error. Discontinuities in the
value of this counter can
occur at re-initialization of

ipIfStatsInReceives 1.3.6.1.2.1.4.31.3.1.3
Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/ipv4-
stats/input-packets

the management system,
and at other times as
indicated by the value of
ipIfStatsDiscontinuityTime.

ipIfStatsHCInReceives 1.3.6.1.2.1.4.31.3.1.4

The total number of input
IP datagrams received,
including those received in
error. This object counts
the same datagrams as
ipIfStatsInReceives but
allows for larger values.
Discontinuities in the value
of this counter can occur at
re-initialization of the
management system, and at
other times as indicated by
the value of
ipIfStatsDiscontinuityTime.

Cisco-IOS-XR-ipv4-io-oper:ipv4-
network/nodes/node/statistics/traffic/ipv4-
stats/input-packets

LLDP-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to Link Layer Discovery Protocol (LLDP) operational data on the
monitored node.

OID Name OID Number OID
Description XPATH

lldpLocPortId 1.0.8802.1.1.2.1.3.7.1.3

The string value
used to identify
the port
component
associated with a
given port in the
local system.

Cisco-IOS-XR-ethernet-lldp-
oper:lldp/nodes/node/neighbors/devices/device/lldp-
neighbor/port-id-detail

lldpLocPortIdSubtype 1.0.8802.1.1.2.1.3.7.1.2

The type of port
identifier
encoding used in
the associated
'lldpLocPortId'
object.

Cisco-IOS-XR-ethernet-lldp-
oper:lldp/nodes/node/neighbors/devices/device/lldp-
neighbor/mib/port-id-sub-type

The type of
encoding used to
identify the
chassis

lldpLocChassisIdSubtype 1.0.8802.1.1.2.1.3.1
Cisco-IOS-XR-ethernet-lldp-
oper:lldp/nodes/node/neighbors/devices/device/lldp-
neighbor/mib/chassis-id-sub-type

associated with
the local system.

lldpLocSysName 1.0.8802.1.1.2.1.3.3

The string value
used to identify
the system name
of the local
system. If the
local agent
supports IETF
RFC 3418,
lldpLocSysName
object should
have the same
value of
sysName object.

Cisco-IOS-XR-ethernet-lldp-
oper:lldp/nodes/node/neighbors/devices/device/lldp-
neighbor/detail/system-name

lldpRemSysName 1.0.8802.1.1.2.1.4.1.1.9

The string value
used to identify
the system name
of the remote
system.

Cisco-IOS-XR-ethernet-lldp-
oper:lldp/nodes/node/neighbors/devices/device/lldp-
neighbor/detail/system-name

lldpRemChassisId 1.0.8802.1.1.2.1.4.1.1.5

The string value
used to identify
the chassis
component
associated with
the remote
system.

Cisco-IOS-XR-ethernet-lldp-
oper:lldp/nodes/node/neighbors/devices/device/lldp-
neighbor/chassis-id

lldpRemChassisIdSubtype 1.0.8802.1.1.2.1.4.1.1.4

The type of
encoding used to
identify the
chassis
associated with
the remote
system.

Cisco-IOS-XR-ethernet-lldp-
oper:lldp/nodes/node/neighbors/devices/device/lldp-
neighbor

lldpRemPortIdSubtype 1.0.8802.1.1.2.1.4.1.1.6

The type of port
identifier
encoding used in
the associated
'lldpRemPortId'
object.

Cisco-IOS-XR-ethernet-lldp-
oper:lldp/nodes/node/neighbors/devices/device/lldp-
neighbor

The string value
used to identify

Cisco-IOS-XR-ethernet-lldp-
oper:lldp/nodes/node/neighbors/devices/device/lldp-

lldpRemPortId 1.0.8802.1.1.2.1.4.1.1.7

the port
component
associated with
the remote
system.

neighbor

lldpLocChassisId 1.0.8802.1.1.2.1.3.2

The string value
used to identify
the chassis
component
associated with
the local system.

 Cisco-IOS-XR-ethernet-lldp-
oper:lldp/nodes/node/neighbors/details/detail/lldp-
neighbor/chassis-id

MPLS-TE-STD-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to Multiprotocol Label Switching (MPLS) Traffic Engineering
operational values on the managed device.

OID Name OID Number OID Description XPATH

mplsTunnelName 1.3.6.1.2.1.10.166.3.2.2.1.5

The canonical name
assigned to the tunnel.
This name can be used to
refer to the tunnel on the
LSR's console port. If
mplsTunnelIsIf is set to
true then the ifName of the
interface corresponding to
this tunnel should have a
value equal to
mplsTunnelName. Also
see the description of
ifName in RFC 2863.

Cisco-IOS-XR-mpls-te-oper:mpls-
te/p2p-p2mp-tunnel/tunnel-heads/tunnel-
head/tunnel-name

mplsTunnelDescr 1.3.6.1.2.1.10.166.3.2.2.1.6

A textual string containing
information about the
tunnel. If there is no
description this object
contains a zero length
string. This object is may
not be signaled by MPLS
signaling protocols,
consequentally the value
of this object at transit and
egress LSRs MAY be
automatically generated or
absent.

openconfig-network-instance:network-
instances/network-
instance/mpls/lsps/constrained-
path/tunnels/tunnel/state/description

mplsTunnelPerfHCPackets 1.3.6.1.2.1.10.166.3.2.9.1.2
High capacity counter for
number of packets
forwarded by the tunnel.

openconfig-network-instance:network-
instances/network-
instance/mpls/lsps/constrained-
path/tunnels/tunnel/state/counters/packets

mplsTunnelPerfHCBytes 1.3.6.1.2.1.10.166.3.2.9.1.5
High capacity counter for
number of bytes forwarded
by the tunnel.

openconfig-network-instance:network-
instances/network-
instance/mpls/lsps/constrained-
path/tunnels/tunnel/state/counters/bytes

mplsTunnelHopIpAddr 1.3.6.1.2.1.10.166.3.2.4.1.5

The Tunnel Hop Address
for this tunnel hop. The
type of this address is
determined by the value of
the corresponding
mplsTunnelHopAddrType.
The value of this object
cannot be changed if the
value of the corresponding
mplsTunnelHopRowStatus
object is 'active'.

Cisco-IOS-XR-mpls-te-oper:mpls-
te/p2p-p2mp-tunnel/tunnel-heads/tunnel-
head/destination/destination-address

RFC2465-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to IPv6 global values.

OID Name OID Number OID Description XPATH

ipv6AddrPfxLength1.3.6.1.2.1.55.1.8.1.2
The length of the prefix (in
bits) associated with the
IPv6 address of this entry.

Cisco-IOS-XR-ipv6-ma-oper:ipv6-
network/nodes/node/interface-
data/vrfs/vrf/briefs/brief/address/prefix-
length

ipv6AddrAnycastFlag1.3.6.1.2.1.55.1.8.1.4

This object has the value
'true(1)', if this address is
an anycast address and the
value 'false(2)' otherwise.

Cisco-IOS-XR-ipv6-ma-oper:ipv6-
network/nodes/node/interface-
data/vrfs/vrf/briefs/brief/address/is-
anycast

SNMP-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to the SNMP agent itself if available.

OID Name OID Number OID Description XPATH

sysUpTime 1.3.6.1.2.1.1.3
String representing the system
Uptime

Cisco-IOS-XR-snmp-agent-
oper:snmp/information/system-
up-time/

sysObjectID .1.3.6.1.2.1.1.2.0
String representing the system
OID

Cisco-IOS-XR-snmp-agent-
oper:snmp/information/system-
oid/

sysDescr 1.3.6.1.2.1.1.1
String representing the system
description

Cisco-IOS-XR-snmp-agent-
oper:snmp/information/system-
descr

TCP-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to TCP specific counters.

OID Name OID Number OID Description XPATH

tcpInErrs 1.3.6.1.2.1.6.14
The total number of segments
received in error (e.g., bad
TCP checksums).

Cisco-IOS-XR-ip-tcp-
oper:tcp/nodes/node/statistics/ipv4-
traffic/tcp-checksum-error-packets

tcpInSegs 1.3.6.1.2.1.6.10

The total number of segments
received, including those
received in error. This count
includes segments received
on currently established
connections.

Cisco-IOS-XR-ip-tcp-
oper:tcp/nodes/node/statistics/ipv4-
traffic/tcp-input-packets

tcpOutSegs 1.3.6.1.2.1.6.11

The total number of segments
sent, including those on
current connections but
excluding those containing
only retransmitted octets.

Cisco-IOS-XR-ip-tcp-
oper:tcp/nodes/node/statistics/ipv4-
traffic/tcp-output-packets

UDP-MIB

The next table represents the OID name and number and the correspondent XPATH to be setup on model-
driven telemetry sensor-groups related to UDP specific counters.

OID Name OID Number OID Description XPATH

The total number of UDP Cisco-IOS-XR-ip-udp-udpOutDatagrams 1.3.6.1.2.1.7.4

datagrams sent from this
entity.

oper:/udp/nodes/node/statistics/ipv4-
traffic/udp-output-packets
Cisco-IOS-XR-ip-udp-
oper:/udp/nodes/node/statistics/ipv6-
traffic/udp-output-packets

udpNoPorts 1.3.6.1.2.1.7.2

The total number of received
UDP datagrams for which
there was no application at
the destination port.

Cisco-IOS-XR-ip-udp-
oper:/udp/nodes/node/statistics/ipv4-
traffic/udp-no-ports-packets
Cisco-IOS-XR-ip-udp-
oper:/udp/nodes/node/statistics/ipv6-
traffic/udp-no-ports-packets

udpInErrors 1.3.6.1.2.1.7.3

The number of received
UDP datagrams that could
not be delivered for reasons
other than the lack of an
application at the destination
port.

Cisco-IOS-XR-ip-udp-
oper:/udp/nodes/node/statistics/ipv4-
traffic/udp-checksum-error-packets
Cisco-IOS-XR-ip-udp-
oper:/udp/nodes/node/statistics/ipv6-
traffic/udp-checksum-error-packets

udpInDatagrams 1.3.6.1.2.1.7.1
The total number of UDP
datagrams delivered to UDP
users.

Cisco-IOS-XR-ip-udp-
oper:/udp/nodes/node/statistics/ipv4-
traffic/udp-input-packets
Cisco-IOS-XR-ip-udp-
oper:/udp/nodes/node/statistics/ipv6-
traffic/udp-input-packets

SNMP Traps migration

SNMP traps are messages triggered by dynamic events on the managed device. Therefore, these messages
behave analogous to the concept of EDT that we covered before.

Configuration side, MDT allows the same structure for EDT, which depends on the implementation on the
telemetry collector in terms of Dial-In or Dial-Out choice or capabilities.

Security considerations

SNMPv2 uses only community as an authentication/authorization mechanism. However, SNMPv3 as we
covered before on SNMP section, could use credentials for authentication and AES encryption model for
protecting the information.

In Telemetry approach, IOS XR allows for the usage of gRPC/TLS techniques based on certificates to
perform authentication. These certificates could be used with a central point of trust (a CA server for
example). After the process of building a trust relationship, all telemetry messages are sent inside a gRPC
session which is encrypted with TLS accomplishing the same benefits of SNMPv3.

