
Understand Informix High CPU Utilization

Contents

Introduction
Background Information
Feature Information
Troubleshoot Methodology
Data Analysis
Common Problems

Introduction

This document describes how Unified Contact Center Express (UCCX) activities, which require local
UCCX database access, might perform slowly.

Background Information

It causes AppAdmin pages to load slowly, updates to AppAdmin to take a long time to take effect, a delay in
the response to a wallboard query, Workforce Manager to be unable to query UCCX data, and other
performance and stability issues.

The command show process load , entered in the CLI , shows that the uccxoninit consumes a large amount of
CPU. The uccxoninit process represents the UCCX Informix database instance which runs on the UCCX
server.

Feature Information

The database engine that supports the UCCX application is Informix from IBM. Configuration and historical
information that is added to UCCX 's AppAdmin page and is produced by the UCCX application is stored in
the UCCX Informix instance.

The UCCX application provides three users that can be used to access the UCCX database directly in order
to extract information for the purposes of wallboard applications, Quality Management, Workforce
Management, and custom historical reporting.

User information, permissions for each user, and the intended purpose of each user are described here:

uccxhruser - This user has select permissions to many configuration and historical tables in the UCCX
database and can be used only for custom historical reporting and Cisco Unified Workforce
Management (WFM). Queries and stored procedures executed by this user can perform complex,
long-running queries. Due to the profile of a typical historical reporting or WFM user, these queries
and stored procedures cannot be executed frequently as would occur for a wallboard application.

Although many wallboard applications require data contained within the configuration and historical
tables to which the uccxhruser has access, it is technically not supported to use this user to execute
complex, frequent queries against the UCCX database for the purposes of a wallboard application.

•

uccxworkforce - The uccxworkforce user has access to the Team, Resource, and Supervisor tables which
must be used for Cisco Unified Quality Management (QM). Workforce Management must use
uccxhruser as it requires access to historical data tables that are not accessible by the uccxworkforce user.

•

uccxwallboard - This user has select permissions only on the real-time database tables that contain
snapshots of real-time statistics written from the memory of UCCX Engine. The select permissions
restricted to tables RTCSQsSummary and RTICDStatistics mean the uccxwallboard user can be used to
query the UCCX database frequently with simple, non-complex queries intended to be sourced by a
wallboard application.

•

Troubleshoot Methodology

In UCCX Release 10.0 and later, enter the utils uccx database dbperf start <totalHours> <interval> command in order to
begin performance tracing on the UCCX database. Theinterval argument in this command determines the
periodicity of the trace collection and the totalHours argument determines the total amount of time the tracing
runs before it is disabled. These parameters are optional. If they are not specified when the command is
executed the default values of 20 minutes and 10 hours are used.

For example, enter the utils uccx database dbperf start 24 30 command in order to enable performance tracing on the
database and collect data on performance statistics every 30 minutes for 24 hours.

Instructions to collect the data obtained by the CLI command are printed in the command output.

After the totalHours given, the data collection automatically stops. In order to manually stop the data
collection, enter the utils uccx database dbperf stop command.

If the UCCX version is Release 9.0(2) or earlier and the utils uccx database dbperf command is not available,
contact the Technical Assistance Center (TAC) for further assistance.

TAC executes the dbperf.sh script attached to Cisco bug ID CSCuc68413 manually with Remote Support
Account access.

When you determine when to start the script execution either manually or through the CLI command, the
periodicity, and the total time, ensure the CPU consumed by the uccxoninit process fluctuates significantly or
remains high during those periods in order to collect the necessary information for root cause analysis.

Additionally, periodically enter the show process load command to determine when the CPU fluctuates in order
to correlate the logs collected by the dbperf tracing script.

Data Analysis

https://bst.cloudapps.cisco.com/bugsearch/bug/CSCtz23710

The logs collected by the dbperf script execution of onstat -g ses 0 show active queries that are issued against
the UCCX database. High CPU on the uccxoninit process is typically the result of complex queries that take a
long time to execute. The goal is to determine the queries that consume the most resources, determine the
source client for those queries, disable the queries from the client for immediate resolution, and optimize the
long-running queries for permanent resolution.

In the logs collected by the dbperf script, look for queries that most likely cause high fluctuations in CPU or
sustained high CPU consumption by the uccxoninit process.

Suspect queries:

Are issued from sessions connected as uccxhruser - As described earlier, uccxhruser has privileges to select
information out of a vast number of configuration and historical tables. As a result, complex, long-
running queries across multiple tables can be constructed and can have performance impacts on the
UCCX database. Although not absolute, uccxwallboard and uccxworkforce users have such limited access to
tables within the UCCX database, complex queries that cause performance impact issued by these
users are unlikely. Additionally, queries issued byuccxhrc are issued by the UCCX Historical Reporting
Client (HRC) or Cisco Unified Intelligence Center (CUIC) against the UCCX database. These
queries are static and cannot be modified and the queries, along with relevant indices, have been
written, tested, and tuned for minimal performance impact.

•

Perform intensive queries on historical tables - Queries that require the UCCX database to perform
multiple joins across tables, select significant amounts of information or operate on non-indexed fields
could cause performance impacts to the UCCX database.

•

An example with a complex query that involves an HR table run as uccxhruser is shown here:

 session # RSAM total used dynamic
 id user tty pid hostname threads memory memory explain
 435050 uccxhrus WBBOX 836 10.16.5. 1 90112 80712 off

...................

 Current SQL statement :
 SELECT x. resourceName , t. eventType , x. datetime , x.extension FROM (SELECT
 t1. resourceID , t1. resourceName , t1.extension, MAX(t2. eventDateTime) AS
 datetime FROM Resource AS t1, AgentStateDetail AS t2 WHERE t2. agentID
 = t1. resourceID AND t1. assignedTeamID = 21 and t1.active GROUP BY
 t1. resourceID , t1. resourceName , t1.extension) AS x, AgentStateDetail AS
 t WHERE t. agentID = x. resourceID AND t. eventDateTime = x. datetime
 ORDER BY x. resourceName

This example shows a complex query, entered by uccxhruser sourced from the host WBBOX that could cause a
performance impact on the UCCX database if it was entered often or was entered periodically before the
previous query had returned results.

Although rare, UCCX database performance can also degrade (and the CPU utilization of the uccxoninit

process fluctuates or remains high), as a result of the built-in purge process. The purge process is designed
to delete data from the configuration and historical tables within the UCCX database in order to maintain the
size of the database. Purge can be scheduled based on the size of the database or the oldest record contained
within the database.

When the purge process runs, the data is removed with one query. It is not done iteratively based on the
number of records to remove. This means that if the purge detects a large amount of data that must be

removed, it issues a single query in an attempt to remove this data.

The modification of the purge schedule or parameters from the UCCX AppAdmin page in order to schedule
the purge to remove a large amount of data can cause this single query, upon the next scheduled purge, to
take a significant amount of time to complete. Therefore, it drives up the CPU utilization of the database
instance.

In the output of the dbperf script, the purge query can be seen. It must be the only query entered by the user
uccxuser that calls the sp_purge stored procedure.

 session # RSAM total used dynamic
 id user tty pid hostname threads memory memory explain
 5628 uccxuser - -1 CC- EXPR - 1 544768 523408 off

 Current SQL statement in procedure db_ cra : sp _purge
 proc -counter 0x0x4ccf9260 opcode SQL

 delete from contactroutingdetail
 where (exists
 (select 1
 from contactcalldetail as ccdr
 where (and (and (and (and (and (= contactroutingdetail . sessionid ,
 ccdr . sessionid), (= contactroutingdetail . nodeid , ccdr . nodeid)),
 (= contactroutingdetail . sessionseqnum , ccdr . sessionseqnum)),
 (= contactroutingdetail . profileid , ccdr . profileid)), (>= ccdr . enddatetime ,
 p_ purgefrom)), (< ccdr . enddatetime , p_ purgeto))));

Common Problems

Based on recent Cisco TAC and Cisco Development Engineering experience, these are the most commonly
seen issues which cause high CPU utilization on the uccxoninit process:

A client in the enterprise connects as uccxhruser and runs frequent complex queries on the wallboard
tables (RTICDStatistics and RTCSQsSummary) joined with the historical tables in order to provide a
wallboard or custom reporting solution. For wallboard use, only use the uccxwallboard user and limit
queries to the real-time tables. The ability to query the historical or configuration tables from a
wallboard or with a frequency similar to a wallboard is not supported.

•

A client attempts to execute custom historical reports on the active primary node instead of the
secondary node. Only execute stored procedures, either custom or default, that produce historical
reports on the standby node. CUIC and HRC execute queries on the standby node by default, but
when it develops a custom historical report, the developer has a choice on which node to run these
queries or execute these stored procedures.

•

Reporting performance is found to be significantly degraded after a weekend. UCCX performs
database maintenance activities at 3 AM server time every Saturday and Sunday. If the database tables
are locked by continued queries at that time then it can cause the maintenance to fail and result in
degraded performance until the next automatic maintenance. Avoid this by not running scheduled
reports or queries against the UCCX database at 3 AM during the weekend. If reporting performance
is impacted, contact Cisco TAC to manually perform this maintenance.

•

Cisco Workforce Management (WFM) issues a complex query on the ContactRoutingDetail table in •

order to attempt to filter on the startdatetime field. No index is created on this field in this table by
default, so the performance of this query is poor. WFM issues this query periodically in an attempt to
synchronize data from UCCX to WFM. This issue is captured in Cisco bug ID CSCtz23710 and is
resolved in WFM Release 9.0(1)SR4. Customers who experience this issue must upgrade to a version
of WFM that contains a fix for Cisco bug ID CSCtz23710.
Purge thresholds are modified such that the next scheduled purge attempts to remove a large amount
of data. Rather than significantly modify the purge parameters in a single update, the purge schedule
modifications are made iteratively, with a few days between purge configuration modifications. This
allows the purge process to remove smaller sets of data in each pass, which improves the performance
of the delete operation.

•

The DialingList table is extremely large. The DialingList table stores all contacts uploaded to
Outbound Campaigns. In UCCX Releases 8.0 and 8.5, after millions of records are uploaded to
Outbound Campaigns, performance issues result then the table is queried (which causes high CPU on
the uccxoninit process and makes the AppAdmin page slow). In order to mitigate the performance
issues, open a TAC case for the installation of a cron job script that cleans up the DialingList table. In
UCCX Release 9.0, an index was added to this table for more effective queries from AppAdmin in an
attempt to improve performance. This change resolved the issue in all but the most extreme cases. In
UCCX Release 10.0 the DialingList has been split into two tables, one for active contacts and another
for historical contacts, which provides a comprehensive fix for this issue.

•

https://bst.cloudapps.cisco.com/bugsearch/bug/CSCtz23710
https://bst.cloudapps.cisco.com/bugsearch/bug/CSCtz23710

