
Troubleshoot a Slow APIC GUI

Contents

Introduction
Quick Start
Background Information
APIC as a Webserver - NGINX
Relevant Logs
Methodology
Isolate Initial Trigger
Check NGINX Usage and Health
Access.log Entry Format
Access.log Behaviors
Check NGINX Resource Usage
Check for Cores
Check Client to Server Latency
Browser Development Tools Network Tab
Enhancements for Specific UI Pages
General Recommendations for Client > Server Latency
Check for Long-Web Requests
System Response Time - Enable Calculation for Server Response Time
APIC API Usage Considerations
General Pointers to Ensure That a Script Does Not Harm Nginx
Address Script Inefficiencies
NGINX Request Throttle

Introduction

This document describes the general methodology to troubleshoot a slow APIC GUI experience.

Quick Start

It is frequently found that slow APIC GUI issues are the result of a high rate of API Requests sourced from a
script, integration, or application. The access.log of an APIC logs each processed API request. The
access.log of an APIC can be quickly analyzed with the Access Log Analyzer script within the Github
Datacenter group aci-tac-scripts project.

Background Information

APIC as a Webserver - NGINX

NGINX is the DME responsible for the API endpoints available on each APIC. If NGINX is down, API
requests cannot be handled. If NGINX is congested, the API is congested. Each APIC runs its own NGINX
process, so it is possible that only a single APIC can have NGINX problems if only that APIC is targeted by
any aggressive queriers.

The APIC UI performs multiple API requests to populate each page. Similarly, all APIC 'show'
commands (NXOS Style CLI) are wrappers for python scripts that perform multiple API requests, handle
the response, then serve it to the user.

https://github.com/datacenter/aci-tac-scripts/tree/main/Access%20Log%20Analyzer
https://github.com/datacenter/aci-tac-scripts

Relevant Logs

Log Filename Location Which
techsupport is it in Comments

access.log /var/log/dme/log APIC 3of3 ACI agnostic, gives 1 line per API request

error.log /var/log/dme/log APIC 3of3
ACI Agnostic, shows nginx errors
(throttling included)

nginx.bin.log /var/log/dme/log APIC 3of3 ACI specific, logs DME transactions

nginx.bin.warnplus.log /var/log/dme/log APIC 3of3
ACI Specific contains logs that are
warning+ severity

Methodology

Isolate Initial Trigger

What is affected?

Which APICs are affected; one, many, or all APICs?•
Where is slowness seen; via UI, CLI commands, or both?•
Which specific UI pages or commands are slow?•

How is the slowness experienced?

Is this seen across multiple browsers for a single user?•
Do multiple users report slowness or just a single/subset of users?•
Do the affected users share a similar geographic location or network path from browser to APIC?•

When was the slowness first noticed?

Was an ACI integration or script recently added?•
Was a browser extension recently enabled?•
Was there a recent change in ACI configuration?•

Check NGINX Usage and Health

Access.log Entry Format

access.log is a feature of NGINX and is, therefore, APIC agnostic. Each line represents 1 HTTP Request
that the APIC received. Reference this log to understand the NGINX usage of an APIC.

The default access.log format on ACI version 5.2+:

log_format proxy_ip '$remote_addr ($http_x_real_ip) - $remote_user [$time_local]'
 '"$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent"';

This line represents an access.log entry when a moquery -c fvTenant is performed:

127.0.0.1 (-) - - [07/Apr/2022:20:10:59 +0000]"GET /api/class/fvTenant.xml HTTP/1.1" 200 15863 "-" "Python-urllib"

Map of example access.log entry to log_format:

log_format field Content from example Comments

$remote_addr 127.0.0.1 IP of host which sent this request

$http_x_real_ip - IP of last requester if proxies in use

$remote_user -
Not generally used. Check nginx.bin.log to track
which user logged in to perform requests

$time_local 07/Apr/2022:20:10:59 +0000 When the request was processed

$request
GET /api/class/fvTenant.xml
HTTP/1.1

Http Method (GET, POST, DELETE) and URI

$status 200 HTTP Response Status Code

$body_bytes_sent 1586 response payload size

$http_referer - -

$http_user_agent Python-urllib What type of client sent the request

Access.log Behaviors

High rate request bursts over a large period of time:

Continual bursts of 15+ requests per second can cause UI slowness•
Identify which host(s) are responsible for the queries•

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Reduce or disable the source of queries to see if this improves APIC response time.•

Consistent 4xx or 5xx responses:

If found, identify the error message from nginx.bin.log•

Check NGINX Resource Usage

NGINX CPU and memory usage can be checked with the top command from the APIC:

<#root>

top - 13:19:47 up 29 days, 2:08, 11 users, load average: 12.24, 11.79, 12.72
Tasks: 785 total, 1 running, 383 sleeping, 0 stopped, 0 zombie
%Cpu(s): 3.5 us, 2.0 sy, 0.0 ni, 94.2 id, 0.1 wa, 0.0 hi, 0.1 si, 0.0 st
KiB Mem : 13141363+total, 50360320 free, 31109680 used, 49943636 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 98279904 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
21495 root 20 0 4393916 3.5g 217624 S

 2.6

 2.8 759:05.78

nginx.bin

High NGINX resource usage can directly correlate to a high rate of processed requests.

Check for Cores

An NGINX crash is not typical for Slow APIC GUI issues. However, if NGINX cores are found, attach
them to a TAC SR for analysis. Refer to the ACI Techsupport guide for steps to check for cores.

Check Client to Server Latency

If rapid requests are not found but a user continues to exhibit UI slowness, the issue can be Client (browser)
to Server (APIC) latency.

In these scenarios, validate the data path from the browser to the APIC (Geographic distance, VPN, etc). If
possible, deploy and test access from a jump server located in the same geographic region or Data Center as
the APICs to isolate. Validate if other users exhibit a similar amount of latency.

Browser Development Tools Network Tab

All Browsers have the ability to validate HTTP requests and responses via its Browser Development
toolkit, typically within a Network tab.

This tool can be used to validate the amount of time it takes for each stage of browser-sourced requests as
shown in the image.

https://www.cisco.com/c/en/us/support/docs/cloud-systems-management/application-policy-infrastructure-controller-apic/214520-guide-to-collect-tech-support-and-tac-re.html#anc14

Example of the Browser Waiting 1.1 minutes for the APIC to Respond

Enhancements for Specific UI Pages

Policy Group page:

Cisco bug ID CSCvx14621 - APIC GUI loads slowly on IPG policies in the Fabric tab.

Interface under Inventory page:

Cisco bug ID CSCvx90048 - Initial load of "Layer 1 Physical Interface Configuration" Operational Tab is
long/induces 'freeze'.

General Recommendations for Client > Server Latency

Certain browsers, such as Firefox, allow for more web connections per host by default.

Check if this setting is configurable on the browser version that is used•
This matters more for multi-query pages, such as the Policy Group page•

VPN and distance to APIC increase overall UI slowness given client browser requests and APIC response
travel time. A jump box geographically local to the APICs significantly reduces the browser to APIC travel
times.

Check for Long-Web Requests

If a Webserver (NGINX on APIC) is handles a high volume of Long-Web Requests, this can affect the
performance of other requests received in parallel.

This is especially true for systems which have distributed databases, such as APICs. A single API request

https://tools.cisco.com/bugsearch/bug/CSCvx14621
https://tools.cisco.com/bugsearch/bug/CSCvx90048

can require additional requests and lookups sent to other nodes in the fabric which can result in expectedly
longer response times. A burst of these Long-Web Requests within a small time frame can compound the
amount of resources required and lead to unexpectedly longer response times. Furthermore, received
requests can then time out (90 seconds) which results in unexpected system behavior from a user
perspective.

System Response Time - Enable Calculation for Server Response Time

In 4.2(1)+, a user can enable "System Performance Calculation" which tracks and highlights API requests
that took along time to handle.

Calculation can be enabled from System - System Settings - System Performance

Once "Calculation" is enabled, a user can navigate to specific APICs under Controllers to view the Slowest
API Requests within the last 300 seconds.

System - Controllers - Controllers Folder - APIC x - Server Response Time

APIC API Usage Considerations

General Pointers to Ensure That a Script Does Not Harm Nginx

Each APIC runs its own NGINX DME.Only APIC 1's NGINX processes requests to APIC 1. APIC 2 and 3's NGINX does not process
○

•

In general, 15+ API requests per second over a long period of time debilitates NGINX.•

If found, reduce the aggressiveness of requests.○

If the Requests host cannot be modified, consider NGINX Rate Limits on the APIC.○

Address Script Inefficiencies

Do not log in/log out before each API Request.
The default timeout for one login session is 10 minutes. This same session can be used for
multiple requests and can be refreshed to extend the validity time.

○

See Cisco APIC REST API Configuration Guide - Accessing the REST API - Authenticating
and Maintaining an API Session.

○

•

If your script queries many DNs that share a parent, instead of collapse the queries into a single
logical parent query with Query Filters.

See Cisco APIC REST API Configuration Guide - Composing REST API Queries - Applying
Query Scoping Filters.

○

•

If you need updates of an object or class of object, consider websocket subscriptions instead of rapid
API requests.

•

NGINX Request Throttle

Available in 4.2(1)+, a user can enable request throttle against HTTP and HTTPS independently.

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/cisco-aci-support-for-nginx-rate-limit.html
https://www.cisco.com/c/en/us/td/docs/dcn/aci/apic/all/apic-rest-api-configuration-guide/cisco-apic-rest-api-configuration-guide-42x-and-later/m_using_the_rest_api.html#concept_D16AC6DC9CCD4351A4A40287487F061A
https://www.cisco.com/c/en/us/td/docs/dcn/aci/apic/all/apic-rest-api-configuration-guide/cisco-apic-rest-api-configuration-guide-42x-and-later/m_using_the_rest_api.html#concept_D16AC6DC9CCD4351A4A40287487F061A
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#id_41223
https://www.cisco.com/c/en/us/td/docs/dcn/aci/apic/all/apic-rest-api-configuration-guide/cisco-apic-rest-api-configuration-guide-42x-and-later/m_using_the_rest_api.html#d173e2289a1635
https://www.cisco.com/c/en/us/td/docs/dcn/aci/apic/all/apic-rest-api-configuration-guide/cisco-apic-rest-api-configuration-guide-42x-and-later/m_using_the_rest_api.html#d173e2289a1635
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/rest_cfg/2_1_x/b_Cisco_APIC_REST_API_Configuration_Guide/b_Cisco_APIC_REST_API_Configuration_Guide_chapter_01.html#concept_71EBE2E241C3442BA326273AF1A9B617

Fabric - Fabric Policies - Policies Folder - Management Access Folder - default

When enabled:

NGINX is restarted to apply config file changes
A new zone, httpsClientTagZone, is written to nginx config○

•

The Throttle rate can be set in Requests per Minute (r/m) or Requests per Second (r/s).•
Request Throttle relies on the Rate Limit Implementation included in NGINX

API Requests against the /api/ URI use the user-defined Throttle Rate + burst= (Throttle Rate x
2) + nodelay

There is a non-configurable throttle (zone aaaApiHttps) for /api/aaaLogin and
/api/aaaRefresh which rate-limits at 2r/s + burst=4 + nodelay

○

○

Request Throttle is tracked on a per-client-ip-address basis○

API requests sourced from the APIC self-ip (UI + CLI) bypass the throttle○

Any Client IP Address which crosses the user-defined throttle rate + burst threshold receives a
503 response from the APIC

○

These 503s can be correlated within the access logs○

error.log will have entries indicating when throttling has been activated (zone
httpsClientTagZone) and against which Client hosts

○

•

https://www.nginx.com/blog/rate-limiting-nginx/#Configuring-Basic-Rate-Limiting

<#root>

apic#

less /var/log/dme/log/error.log

...
2023/04/17 20:19:14 [error] ...

limiting requests

, excess: 40.292 by zone "

httpsClientTagZone

", client: h.o.s.t, ... request: "GET /api/class/...", host: "a.p.i.c"
2023/04/17 20:19:14 [error] ...

limiting requests

, excess: 40.292 by zone "

httpsClientTagZone

", client: h.o.s.t, ... request: "GET /api/node/...", host: "a.p.i.c"

As a general rule, Request Throttle only serves to protect the server (APIC) from DDOS-like symptoms
induced by query-aggresive Clients. Understand and isolate the request-aggressive Client for final solutions
in the app/script logic.

