Contents

Introduction

Prerequisites

Requirements

Components Used

Background Information

Configure

Network Diagram

Configure

Verify and Troubleshoot

Introduction

This document describes the configuration walkthrough of L4-L7 Service Graph with Route Peering, where both the consumer and the provider are external to the Application Centric Infrastructure (ACI) fabric.

Contributed by Zahid Hassan, Cisco Advanced Services Engineer.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

- Static VLAN Pools that will be used for the encapsulation VLAN between the external devices and the ACI fabric
- External Physical and Routed Domains that will tie together the location (leaf node/path) of the external devices and the VLAN pool
- Layer 3 Connection to an Outside Network (L3Out)

The preceding **Fabric Access** and **L3Out** configurations steps are not covered in this document and have been assumed that these have already been completed.

Components Used

The information in this document is based on these software versions:

- Cisco Application Policy Infrastructure Controller (Cisco APIC) 1.2(1m)
- Adaptive Security Appliance (ASA) Device Package -
- ASA 5585 9.5(1)
- Nexus 3064 6.0(2)U3(7)

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, make sure that you understand the potential impact of any command.

Background Information

Route Peering is a feature which enables a service appliance such as a load balancer or a firewall to advertise it's reachability through the ACI fabric to all the way to an external network.

The use case presented here is a physical firewall which is deployed as a two-arm Service Graph, in between two L3Outs or external End Point Groups (EPGs). The Service Graph is associated with a contract between the external EPG on Leaf 101 (N3K-1) and the external EPG on Leaf 102 (N3K-2). The ACI fabric is providing a transit ervice for the routers (N3K-1 and N3K-2) and Route Peering is used, with Open Shortest Path First (OSPF) as the routing protocol, to exchange routes between the firewall and the ACI fabric.

Configure

Network Diagram

The following image shows how Route Peering works end-to-end:

Configure

Step 1. Configure the Virtual Routing and Forwarding1 (VRF1), VRF2, Bridge Domain1 (BD1) and BD2. Associate BD1 to VRF1 and BD2 to VRF2, as shown in the image:

Step 2. U under L4-L7 Device, as shown in the image, :

Configure L4-L7 Device for physical ASA 5585 (Routed), as shown in the image:

Step 3. Configure L3Out for N3K-1 and associate with BD1 and VRF1

External routed network is used to specify the routing configuration in the ACI fabric for Route Peering, as shown in the image:

Note: All L3Out interfaces which are used for Route Peering, are required to be configured as a Switch Virtual Interface (SVI) with VLAN encap accordingly.

Configure Import/Export Route Control on Subnets for N3K-1 L3Out External EPG, as shown in the image:

Configure L3Out for ASA-External Interface and associate with BD1 and VRF1, as shown in the image:

Configure Import/Export Route Control on Subnets for ASA-External L3Out External EPG, as shown in the image:

Configure L3out for ASA-Internal and associate with BD2 and VRF2, as shown in the image:

Configure Import/Export Route Control on Subnets for ASA-Internal L3Out External EPG, as shown in the image:

Configure L3Out for N3K-2 and associate with BD2 and VRF2, as shown in the image:

Configure Import/Export Route Control on Subnets for N3K-2 L3Out for External EPG, as shown in the image:

Step 4. Create Function Profile Group and configure Function Profile from existing template, as shown in the image:

Step 5. Create a Contract and modify the Scope field to Tenant, as shown in the image:

Step 6. As shown in the image, create L4-L7 Service Graph Template where Service Graph association involves the association of an external routed network policy and router configuration with a Device Selection Policy.

L4-L7 Service Graph Template - ASA5585_SGT Quick Start ▶ ■ Application Profiles L4-L7 Service Parameters ▶ ■ Security Policies ASA5585 Function Profiles ▶ Imported Devices ▶ ■ Devices Selection Policies ▶ ■ Deployed Graph Instances Inband Management Configuration for L4-L7 devices Device Managers ▶ ■ Chassis Create L4-L7 Service Graph Template 1 X Drag device clusters to create graph nodes ASA5585 SGT 0 + T1 /ASA5585 (Managed Firewall) EPG & ASA5585 Please drag a device from devices table and drop it here to create a service node Profile: T1/ASA5585_FPG/ASA5585_FP SUBMIT CANCEL

Router configuration to specify the Router ID that will be used on the Service Appliance (ASA 5585), as shown in the image:

Change Adjacency Type from L2 to L3, as shown in the image:

Apply Service Graph Template, as shown in the image:

Attach the Service Graph to Contract, as shown in the image:

Add/Change L4-L7 Parameter if needed, as shown in the image:

Step 7: Route-tag Policy, configure Route-tag Policy for VRF1 (Tag:100), as shown in the image:

Configure Route-tag Policy for VRF2 (Tag:200), as shown in the image:

Step 8: Check the status and verify Device Selection Policy, as shown in the image:

Verify Deployed Graph instance, as shown in the image:

Verify and Troubleshoot

APIC configuration for Tenant:

```
apic1# sh running-config tenant T1
# Command: show running-config tenant T1
# Time: Thu Feb 25 16:05:14 2016
 tenant T1
   access-list PERMIT_ALL
     match ip
     exit
   contract PERMIT_ALL
     scope tenant
     subject PERMIT_ALL
       access-group PERMIT_ALL both
       1417 graph ASA5585_SGT
     exit
   vrf context VRF1
   vrf context VRF2
     exit
   13out ASA_IN_L3OUT
     vrf member VRF2
     exit.
   13out ASA_OUT_L3OUT
     vrf member VRF1
     exit
   13out N3K-1_L3OUT
     vrf member VRF1
     exit
   13out N3K-2_L3OUT
     vrf member VRF2
   bridge-domain BD1
     vrf member VRF1
     exit.
   bridge-domain BD2
     vrf member VRF2
     exit.
   application AP1
      epg EPG1
       bridge-domain member BD1
       exit
      epg EPG2
       bridge-domain member BD2
      exit
    external-13 epg ASA_IN_EXT_NET 13out ASA_IN_L3OUT
     vrf member VRF2
     match ip 10.10.10.0/24
    external-13 epg ASA_OUT_EXT_NET 13out ASA_OUT_L3OUT
     vrf member VRF1
     match ip 20.20.20.0/24
   external-13 epg N3K-1_EXT_NET 13out N3K-1_L3OUT
     vrf member VRF1
     match ip 10.10.10.0/24
     contract consumer PERMIT_ALL
    external-13 epg N3K-2_EXT_NET 13out N3K-2_L3OUT
```

```
vrf member VRF2
     match ip 20.20.20.0/24
      contract provider PERMIT_ALL
    interface bridge-domain BD1
      exit
    interface bridge-domain BD2
   1417 cluster name ASA5585 type physical vlan-domain T1_PHY service FW function go-to
      cluster-device ASA5585_Device_1
      cluster-interface inside
        member device ASA5585_Device_1 device-interface GigabitEthernet0/1
          interface ethernet 1/2 leaf 106
          exit
        exit
      cluster-interface outside
       member device ASA5585_Device_1 device-interface GigabitEthernet0/0
         interface ethernet 1/2 leaf 105
        exit
      exit
    1417 graph ASA5585_SGT contract PERMIT_ALL
      service N1 device-cluster-tenant T1 device-cluster ASA5585 mode FW_ROUTED
        connector consumer cluster-interface outside
         1417-peer tenant T1 out ASA_OUT_L3OUT epg ASA_OUT_EXT_NET redistribute bgp,ospf
        connector provider cluster-interface inside
          1417-peer tenant T1 out ASA_IN_L3OUT epg ASA_IN_EXT_NET redistribute bgp,ospf
          exit
       rtr-cfg ASA5585
        exit
      connection C1 terminal consumer service N1 connector consumer
      connection C2 terminal provider service N1 connector provider
   rtr-cfg ASA5585
     router-id 3.3.3.3
      exit
    exit
apic1#
```

Verify OSPF neighbor relationship and routing table on leaf 101:

```
leaf101# show ip ospf neighbors vrf T1:VRF1
OSPF Process ID default VRF T1:VRF1
Total number of neighbors: 2
Neighbor ID Pri State
                                    Up Time Address
                                                           Interface
1.1.1.1
                 1 FULL/BDR
                                   02:07:19 192.168.1.1
                                                             Vlan8
                 1 FULL/BDR
                                    00:38:35 192.168.1.5
3.3.3.3
                                                             Vlan9
leaf101# show ip route vrf T1:VRF1
IP Route Table for VRF "T1:VRF1"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.10.10.0/24, ubest/mbest: 1/0
   *via 192.168.1.1, vlan8, [110/8], 01:59:50, ospf-default, intra
20.20.20.0/24, ubest/mbest: 1/0
   *via 192.168.1.5, vlan9, [110/22], 00:30:20, ospf-default, inter
100.100.100.100/32, ubest/mbest: 2/0, attached, direct
   *via 100.100.100.100, lo1, [1/0], 02:21:22, local, local
   *via 100.100.100.100, lo1, [1/0], 02:21:22, direct
```

```
192.168.1.0/30, ubest/mbest: 1/0, attached, direct
   *via 192.168.1.2, vlan8, [1/0], 02:35:53, direct
192.168.1.2/32, ubest/mbest: 1/0, attached
   *via 192.168.1.2, vlan8, [1/0], 02:35:53, local, local
192.168.1.4/30, ubest/mbest: 1/0, attached, direct
   *via 192.168.1.6, vlan9, [1/0], 02:20:53, direct
192.168.1.6/32, ubest/mbest: 1/0, attached
   *via 192.168.1.6, vlan9, [1/0], 02:20:53, local, local
192.168.1.8/30, ubest/mbest: 1/0
   *via 192.168.1.5, vlan9, [110/14], 00:30:20, ospf-default, intra
200.200.200.200/32, ubest/mbest: 1/0
   *via 192.168.1.5, vlan9, [110/15], 00:30:20, ospf-default, intra
Verify OSPF neighbor relationship and routing table on leaf 102:
leaf102# show ip ospf neighbors vrf T1:VRF2
OSPF Process ID default VRF T1:VRF2
Total number of neighbors: 2
Neighbor ID Pri State
                                    Up Time Address
                                                             Interface
                                    00:37:07 192.168.1.9
3.3.3.3
                 1 FULL/BDR
                                                              Vlan14
                                     02:09:59 192.168.1.13
2.2.2.2
                  1 FULL/BDR
                                                              Vlan15
leaf102# show ip route vrf T1:VRF2
IP Route Table for VRF "T1:VRF2"
'*' denotes best ucast next-hop
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>
10.10.10.0/24, ubest/mbest: 1/0
    *via 192.168.1.9, vlan14, [110/22], 00:35:22, ospf-default, inter
20.20.20.0/24, ubest/mbest: 1/0
    *via 192.168.1.13, vlan15, [110/8], 02:08:13, ospf-default, intra
192.168.1.4/30, ubest/mbest: 1/0
    *via 192.168.1.9, vlan14, [110/14], 00:35:22, ospf-default, intra
192.168.1.8/30, ubest/mbest: 1/0, attached, direct
    *via 192.168.1.10, vlan14, [1/0], 02:14:29, direct
192.168.1.10/32, ubest/mbest: 1/0, attached
    *via 192.168.1.10, vlan14, [1/0], 02:14:29, local, local
192.168.1.12/30, ubest/mbest: 1/0, attached, direct
    *via 192.168.1.14, vlan15, [1/0], 02:09:04, direct
192.168.1.14/32, ubest/mbest: 1/0, attached
    *via 192.168.1.14, vlan15, [1/0], 02:09:04, local, local
200.200.200.200/32, ubest/mbest: 2/0, attached, direct
    *via 200.200.200.200, lo4, [1/0], 02:10:02, local, local
    *via 200.200.200.200, lo4, [1/0], 02:10:02, direct
Verify configuration, OSPF neighbor relationship and routing table on ASA 5585:
ASA5585# sh run interface
interface GigabitEthernet0/0
no nameif
security-level 0
no ip address
interface GigabitEthernet0/0.101
```

nameif externalIf
security-level 50

security-level 100

no nameif

interface GigabitEthernet0/1

ip address 192.168.1.5 255.255.255.252

```
no ip address
interface GigabitEthernet0/1.102
nameif internalIf
security-level 100
ip address 192.168.1.9 255.255.255.252
interface Management0/0
management-only
nameif management
security-level 0
ip address 172.23.97.1 255.255.254.0
ASA5585# sh run router
router ospf 1
router-id 3.3.3.3
network 192.168.1.4 255.255.255.252 area 0
network 192.168.1.8 255.255.255.252 area 0
area 0
log-adj-changes
ASA5585# sh ospf neighbor
Neighbor ID
              Pri State
                                     Dead Time Address
                                                                 Interface
                                     0:00:38 192.168.1.6 externalIf
0:00:33 192.168.1.10 internalIf
100.100.100.100 1 FULL/DR
200.200.200.200 1 FULL/DR
ASA5585# sh route ospf
Routing Table: T1
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, + - replicated route
Gateway of last resort is not set
O IA
       10.10.10.0 255.255.255.0
          [110/18] via 192.168.1.6, 00:22:57, externalIf
O IA
        20.20.20.0 255.255.255.0
          [110/18] via 192.168.1.10, 00:22:47, internalIf
         200.200.200.200 255.255.255.255
           [110/11] via 192.168.1.10, 00:22:47, internalIf
ASA5585# sh access-list
access-list cached ACL log flows: total 0, denied 0 (deny-flow-max 4096)
           alert-interval 300
access-list access-list-inbound; 3 elements; name hash: 0xcb5bd6c7
access-list access-list-inbound line 1 extended permit tcp any any eq www (hitcnt=0) 0xc873a747
access-list access-list-inbound line 2 extended permit tcp any any eq https (hitcnt=0)
0x48bedbdd
```

access-list access-list-inbound line 3 extended permit icmp any any (hitcnt=6) 0xe4b5a75d Verify configuration, OSPF neighbor relationship and routing table on N3K-1

```
N3K-1# sh run ospf
!Command: show running-config ospf
!Time: Thu Feb 25 15:40:55 2016
version 6.0(2)U3(7)
feature ospf
router ospf 1
  router-id 1.1.1.1
interface Ethernet1/21
  ip router ospf 1 area 0.0.0.1
interface Ethernet1/47
  ip router ospf 1 area 0.0.0.1
N3K-1# sh ip ospf neighbors
 OSPF Process ID 1 VRF default
 Total number of neighbors: 1
                                      Up Time Address Interface 01:36:24 192.168.1.2 Eth1/47
 Neighbor ID Pri State
 100.100.100.100 1 FULL/DR
N3K-1# sh ip ospf route
 OSPF Process ID 1 VRF default, Routing Table
  (D) denotes route is directly attached
                                              (R) denotes route is in RIB
10.10.10.0/24 (intra)(D) area 0.0.0.1
     via 10.10.10.0/Eth1/21* , cost 4
20.20.20.0/24 (inter)(R) area 0.0.0.1
     via 192.168.1.2/Eth1/47 , cost 62
100.100.100.100/32 (intra)(R) area 0.0.0.1
     via 192.168.1.2/Eth1/47 , cost 41
192.168.1.0/30 (intra)(D) area 0.0.0.1
     via 192.168.1.1/Eth1/47* , cost 40
Verify configuration, OSPF neighbor relationship and routing table on N3K-2
N3K-2# sh run ospf
!Command: show running-config ospf
!Time: Thu Feb 25 15:44:47 2016
version 6.0(2)U3(7)
feature ospf
router ospf 1
 router-id 2.2.2.2
interface loopback0
  ip ospf network point-to-point
  ip router ospf 1 area 0.0.0.0
interface Ethernet1/21
  ip router ospf 1 area 0.0.0.1
interface Ethernet1/47
  ip router ospf 1 area 0.0.0.1
```

N3K-2# sh ip ospf neighbors OSPF Process ID 1 VRF default

```
Total number of neighbors: 1
 Neighbor ID Pri State
                                                           Interface
                                   Up Time Address
 200.200.200.200 1 FULL/DR
                                    01:43:50 192.168.1.14 Eth1/47
N3K-2# sh ip ospf route
 OSPF Process ID 1 VRF default, Routing Table
  (D) denotes route is directly attached (R) denotes route is in RIB
2.2.2.0/30 (intra)(D) area 0.0.0.0
    via 2.2.2.0/Lo0* , cost 1
10.10.10.0/24 (inter)(R) area 0.0.0.1
    via 192.168.1.14/Eth1/47 , cost 62
20.20.20.0/24 (intra)(D) area 0.0.0.1
    via 20.20.20.0/Eth1/21* , cost 4
192.168.1.12/30 (intra)(D) area 0.0.0.1
    via 192.168.1.13/Eth1/47* , cost 40
```

Verify contract filter rules on leaf and the packet hit counts:.

```
leaf101# show system internal policy-mgr stats
Requested Rule Statistics
[CUT]
Rule (4107) DN (sys/actrl/scope-3112964/rule-3112964-s-32773-d-49158-f-33)
                                                                             Ingress: 1316,
Egress: 0, Pkts: 0 RevPkts: 0
Rule (4108) DN (sys/actrl/scope-3112964/rule-3112964-s-49158-d-32773-f-33)
                                                                             Ingress: 1317,
Egress: 0, Pkts: 0 RevPkts: 0
leaf101# show system internal policy-mgr stats
Requested Rule Statistics
[CUT]
Rule (4107) DN (sys/actrl/scope-3112964/rule-3112964-s-32773-d-49158-f-33)
                                                                              Ingress: 2317,
Egress: 0, Pkts: 0 RevPkts: 0
Rule (4108) DN (sys/actrl/scope-3112964/rule-3112964-s-49158-d-32773-f-33)
                                                                              Ingress: 2317,
Egress: 0, Pkts: 0 RevPkts: 0
```

leaf102# show system internal policy-mgr stats Requested Rule Statistics [CUT] Rule (4103) DN (sys/actrl/scope-2752520/rule-2752520-s-49156-d-6019-f-default) Ingress: 3394, Egress: 0, Pkts: 0 RevPkts: 0 Rule (4104) DN (sys/actrl/scope-2752520/rule-2752520-s-6019-d-49156-f-default) Ingress: 3394, Egress: 0, Pkts: 0 RevPkts: 0 [CUT] leaf102# show system internal policy-mgr stats Requested Rule Statistics [CUT] Rule (4103) DN (sys/actrl/scope-2752520/rule-2752520-s-49156-d-6019-f-default) Ingress: 4392, Egress: 0, Pkts: 0 RevPkts: 0 Rule (4104) DN (sys/actrl/scope-2752520/rule-2752520-s-6019-d-49156-f-default) Ingress: 4392, Egress: 0, Pkts: 0 RevPkts: 0 [CUT]

Reachability test between N3K-1 and N3K-2:

```
N3K-1# ping 20.20.20.1 source 10.10.10.1

PING 20.20.20.1 (20.20.20.1) from 10.10.10.1: 56 data bytes 64 bytes from 20.20.20.1: icmp_seq=0 ttl=250 time=2.098 ms 64 bytes from 20.20.20.1: icmp_seq=1 ttl=250 time=0.922 ms 64 bytes from 20.20.20.1: icmp_seq=2 ttl=250 time=0.926 ms 64 bytes from 20.20.20.1: icmp_seq=3 ttl=250 time=0.893 ms 64 bytes from 20.20.20.1: icmp_seq=4 ttl=250 time=0.893 ms 64 bytes from 20.20.20.1: icmp_seq=4 ttl=250 time=0.941 ms

--- 20.20.20.1 ping statistics --- 5 packets transmitted, 5 packets received, 0.00% packet loss round-trip min/avg/max = 0.893/1.156/2.098 ms

N3K-2# ping 10.10.10.1 source 20.20.20.1

PING 10.10.10.1 (10.10.10.1) from 20.20.20.1: 56 data bytes
```

```
64 bytes from 10.10.10.1: icmp_seq=0 ttl=250 time=2.075 ms
64 bytes from 10.10.10.1: icmp_seq=1 ttl=250 time=0.915 ms
64 bytes from 10.10.10.1: icmp_seq=2 ttl=250 time=0.888 ms
64 bytes from 10.10.10.1: icmp_seq=3 ttl=250 time=1.747 ms
64 bytes from 10.10.10.1: icmp_seq=4 ttl=250 time=0.828 ms

--- 10.10.10.1 ping statistics ---
5 packets transmitted, 5 packets received, 0.00% packet loss
round-trip min/avg/max = 0.828/1.29/2.075 ms
```

Attached is the XML configuration file for the Tenant and the ASA Function Profile, used for this demonstration.