X.25 über TCP/IP

Inhalt

Einführung

Voraussetzungen

Anforderungen

Verwendete Komponenten

Konventionen

<u>Hintergrundinformationen</u>

Konfigurieren

Netzwerkdiagramm

Konfigurationen

Überprüfen

Fehlerbehebung

Befehle zur Fehlerbehebung

Zugehörige Informationen

Einführung

Dieses Dokument enthält eine Beispielkonfiguration für X25 Over TCP.

Voraussetzungen

Anforderungen

Für dieses Dokument bestehen keine speziellen Anforderungen.

Verwendete Komponenten

Die Informationen in diesem Dokument basieren auf der Cisco IOS® Software Version 9.21 oder höher mit allen Funktionen.

Hinweis: Bei Cisco IOS-Softwareversionen vor 11.3 muss der Befehl x25 route ^xxxx xot a.b.c.d das Format des Befehls x25 route ^xxxx ip a.b.c.d haben.

Die Informationen in diesem Dokument wurden von den Geräten in einer bestimmten Laborumgebung erstellt. Alle in diesem Dokument verwendeten Geräte haben mit einer leeren (Standard-)Konfiguration begonnen. Wenn Ihr Netzwerk in Betrieb ist, stellen Sie sicher, dass Sie die potenziellen Auswirkungen eines Befehls verstehen.

Konventionen

Weitere Informationen zu Dokumentkonventionen finden Sie unter <u>Cisco Technical Tips</u> Conventions.

Hintergrundinformationen

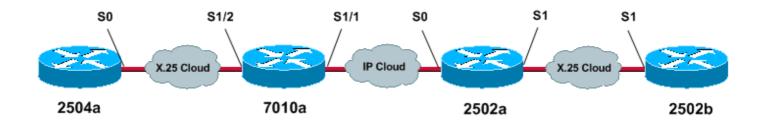
XOT ist X25 Over TCP, Request For Comments (RFC) 1613. Auf diese Weise können X.25-Pakete über ein TCP/IP-Netzwerk (Transmission Control Protocol/Internet Protocol) anstatt über eine LAPB-Verbindung (Link Access Procedure) gesendet werden.

Im Wesentlichen tunneln wir x25-Datenverkehr durch eine IP-Cloud. Zum Beispiel die Verbindung von zwei X.25-Clouds ohne physische Verbindung mit einem virtuellen TCP-Tunnel über die IP-Cloud.

Wenn ein eingehender Anruf empfangen wird, der weitergeleitet werden soll, werden zwei Felder in der X.25-Routingtabelle herangezogen, um eine Remote-X.25-Route zu bestimmen: die Zieladresse X.121 und optional das Feld Call User Data (CUD) des X.25-Pakets.

Wenn die Zieladresse und der CUD des eingehenden Pakets den X.121- und CUD-Mustern in der Routing-Tabelle entsprechen, wird der Anruf weitergeleitet. Sie können auch eine XOT-Quelle angeben, die bewirkt, dass die XOT-TCP-Verbindung die IP-Adresse einer angegebenen Schnittstelle als Quelladresse der TCP-Verbindung verwendet.

Wenn beispielsweise eine Loopback-Schnittstelle für die Quelladresse der XOT-Verbindung angegeben wird, kann TCP eine primäre Schnittstelle oder eine beliebige Backup-Schnittstelle verwenden, um das andere Ende der Verbindung zu erreichen. Wenn jedoch die Adresse einer physischen Schnittstelle als Quelladresse angegeben ist, wird die XOT-Verbindung beendet, wenn diese Schnittstelle ausfällt.


Konfigurieren

In diesem Abschnitt erhalten Sie Informationen zum Konfigurieren der in diesem Dokument beschriebenen Funktionen.

Hinweis: Um weitere Informationen zu den in diesem Dokument verwendeten Befehlen zu erhalten, verwenden Sie das Command Lookup Tool (nur registrierte Kunden).

Netzwerkdiagramm

In diesem Dokument wird die folgende Netzwerkeinrichtung verwendet:

Konfigurationen

In diesem Dokument werden folgende Konfigurationen verwendet:

- 2504a
- 7010a
- 2502a
- 2502 b

```
!
hostname 2504a
!
x25 routing
!
interface Serial0
ip address 1.1.1.2 255.255.255.0
encapsulation x25
no ip mroute-cache
x25 address 111
!
x25 route 222 interface Serial0
!--- local x25 switching !
```

7010a

```
! service tcp-keepalives-in service tcp-keepalives-out !--- these two commands will tear down the tcp connection if the x25 connection idles out !--- or does not perform it clear call sequence appropriately. ! hostname 7010a ! x25 routing ! ! interface Serial1/1 ip address 10.1.1.2 255.255.255.0 clockrate 2000000 ! interface Serial1/2 ip address 1.1.1.1 255.255.255.0 encapsulation x25 dce no ip mroute-cache clockrate 2000000 ! ! x25 route 111 interface Serial1/2 !--- local x25 switching x25 route 222 ip 10.1.1.1 !--- sending x25 packet over the IP cloud !
```

2502a

```
!
service tcp-keepalives-in
service tcp-keepalives-out
!--- these two commands will tear down the tcp
connection if the x25 connection idles out !--- or does
not perform it clear call sequence appropriately. !
hostname 2502a ! ! x25 routing ! interface Serial0 ip
address 10.1.1.1 255.255.255.0 bandwidth 56 ! interface
Serial1 no ip address no ip mroute-cache encapsulation
x25 bandwidth 56 ! ! x25 route 111 ip 10.1.1.2 !---
sending x25 packet over the IP cloud x25 route 222
interface Serial1 !--- local x25 switching !
```

2502 b

```
!
hostname 2502b
!
```

```
x25 routing
!
interface Serial1
ip address 172.16.20.1 255.255.255.0
encapsulation x25 dce
no ip mroute-cache
bandwidth 56
x25 address 222
clockrate 56000
!
!
x25 route 111 interface Serial1
!--- local x25 switching !
```

Überprüfen

Dieser Abschnitt enthält Informationen, mit denen Sie überprüfen können, ob Ihre Konfiguration ordnungsgemäß funktioniert.

Bestimmte **show**-Befehle werden vom <u>Output Interpreter Tool</u> unterstützt (nur <u>registrierte</u> Kunden), mit dem Sie eine Analyse der **show**-Befehlsausgabe anzeigen können.

• show x25 vc: Zeigt Informationen über aktive geswitchte virtuelle Schaltungen (SVCs) und permanente virtuelle Schaltungen (PVCs) im privilegierten EXEC-Modus an.

Sie sehen die SVCs, die aus der Ausgabe des Befehls **show x25 vc** erstellt wurden:

Befehl für 2504a anzeigen

```
2504a#show x25 vc

SVC 1, State D1, Interface Serial0

Started 000011, last input 000000, output 000000

Line 2 vty 0 Location Host 222

222 connected to 111 PAD <--> X25

Window size input 2, output 2

Packet size input 128, output 128

PS 5 PR 2 ACK 2 Remote PR 3 RCNT 0 RNR no

Window is closed

P/D state timeouts 0 timer (secs) 0

data bytes 361/79 packets 21/26 Resets 0/0 RNRs 0/0 REJs 0/0 INTs 0/0
```

Befehl für 7010a anzeigen

```
7010a#show x25 vc
SVC 1024, State D1, Interface Serial1/2
Started 000430, last input 000410, output 000410
Connects 111 <--> 222 to
XOT between 10.1.1.2, 11011 and 10.1.1.1, 1998
Window size input 2, output 2
Packet size input 128, output 128
PS 1 PR 7 ACK 7 Remote PR 1 RCNT 0 RNR FALSE
Retransmits 0 Timer (secs) 0 Reassembly (bytes) 0
Held Fragments/Packets 0/0
Bytes 94/69 Packets 9/15 Resets 0/0 RNRs 0/0 REJs 0/0 INTs 0/0
7010a#
```

Befehl für 2502a anzeigen

```
2502a#show x25 vc

SVC 1024, State D1, Interface Serial1

Started 000410, last input 000350, output 000351

Connects 111 <--> 222 from

XOT between 10.1.1.1, 1998 and 10.1.1.2, 11011

Window size input 2, output 2

Packet size input 128, output 128

PS 7 PR 1 ACK 1 Remote PR 7 RCNT 0 RNR FALSE

Retransmits 0 Timer (secs) 0 Reassembly (bytes) 0

Held Fragments/Packets 0/0

Bytes 69/94 Packets 15/9 Resets 0/0 RNRs 0/0 REJs 0/0 INTs 0/0
2502a#
```

Befehl für 2502b anzeigen

```
2502b#show x25 vc

SVC 1024, State D1, Interface Serial1

Started 000346, last input 000326, output 000326

Connects 111 <--> PAD

Window size input 2, output 2

Packet size input 128, output 128

PS 1 PR 7 ACK 7 Remote PR 1 RCNT 0 RNR FALSE

Retransmits 0 Timer (secs) 0 Reassembly (bytes) 0

Held Fragments/Packets 0/0

Bytes 94/69 Packets 9/15 Resets 0/0 RNRs 0/0 REJs 0/0 INTs 0/0

2502b#
```

Fehlerbehebung

Dieser Abschnitt enthält Informationen zur Fehlerbehebung in Ihrer Konfiguration.

Befehle zur Fehlerbehebung

Hinweis: Bevor Sie **Debugbefehle** ausgeben, lesen Sie <u>Wichtige Informationen über Debug-</u>Befehle.

- debug x25 events Zeigt Informationen über X.25-Datenverkehr im privilegierten EXEC-Modus an.
- pad 222: Meldet Sie sich bei einem PAD an.

Die Debug-Ausgabe, die bei einem Pad-Anruf zwischen 2504a und 2502b angezeigt wird, ist unten dargestellt. Wir verwenden den Befehl **debug x25 events**.

Debuggen für 2504a

```
2504a#pad 222
Trying 222...Open
User Access Verification

Password
054553 Serial0 X.25 O R1 Call (12) 8 lci 1024
```

```
054553 From (3) 111 To (3) 222

054553 Facilities (0)

054553 Call User Data (4) 0x01000000 (pad)

054553 Serial0 X.25 I R1 Call Confirm (5) 8 lci 1024

054553 From (0) To (0)

054553 Facilities (0)

2502b>en

Password

2502b#
```

Debuggen für 7010a

```
7010a#debug x25 events
Jan 28 144359 Serial1/2 X25 I P1 CALL REQUEST (12) 8 lci 1024
Jan 28 144359 From(3) 111 To(3) 222
Jan 28 144359 Facilities (0)
Jan 28 144359 Call User Data (4) 0x01000000 (pad)
Jan 28 144359 XOT X25 O P1 CALL REQUEST (18) 8 lci 1024
Jan 28 144359 From(3) 111 To(3) 222
Jan 28 144359 Facilities (6)
              Window size 2 2
Jan 28 144359
Jan 28 144359
                Packet size 128 128
Jan 28 144359 Call User Data (4) 0x01000000 (pad)
Jan 28 144359 XOT X25 I P2 CALL CONNECTED (5) 8 lci 1024
Jan 28 144359 From(0) To(0)
Jan 28 144359
              Facilities (0)
Jan 28 144359 Serial1/2 X25 O P4 CALL CONNECTED (5) 8 lci 1024
Jan 28 144359 From(0) To(0)
Jan 28 144359 Facilities (0)
7010a#
```

Debug für 2502a

```
2502a#debug x25 events
Jan 28 144401 XOT X25 I R1 CALL REQUEST (18) 8 lci 1024
Jan 28 144401 From(3) 111 To(3) 222
Jan 28 144401 Facilities (6)
Jan 28 144401
                Window size 2 2
Jan 28 144401
                 Packet size 128 128
Jan 28 144401 Call User Data (4) 0x01000000 (pad)
Jan 28 144401 Serial1 X25 O P2 CALL REQUEST (12) 8 lci 1024
Jan 28 144401 From(3) 111 To(3) 222
Jan 28 144401 Facilities (0)
Jan 28 144401 Call User Data (4) 0x01000000 (pad)
Jan 28 144401 Serial1 X25 I P2 CALL CONNECTED (5) 8 lci 1024
Jan 28 144401 From(0) To(0)
Jan 28 144401
              Facilities (0)
Jan 28 144401 XOT X25 O P4 CALL CONNECTED (5) 8 lci 1024
Jan 28 144401 From(0) To(0)
Jan 28 144401 Facilities (0)
2502a#
```

Debug für 2502b

```
2502b#debug x25 events

Seriall X25 I P1 CALL REQUEST (12) 8 lci 1024

From(3) 111 To(3) 222

Facilities (0)
```

```
Call User Data (4) 0x01000000 (pad)

Seriall X25 O P4 CALL CONNECTED (5) 8 lci 1024

From(0) To(0)

Facilities (0)

2502b#
```

Zugehörige Informationen

- X.25-Hintergrund
- Grundlagen des Internetworking-Designs
- DNS-basiertes X.25-Routing
- Konfigurieren von X.25 und LAPB
- Technischer Support Cisco Systems