In dem Dokumentationssatz für dieses Produkt wird die Verwendung inklusiver Sprache angestrebt. Für die Zwecke dieses Dokumentationssatzes wird Sprache als „inklusiv“ verstanden, wenn sie keine Diskriminierung aufgrund von Alter, körperlicher und/oder geistiger Behinderung, Geschlechtszugehörigkeit und -identität, ethnischer Identität, sexueller Orientierung, sozioökonomischem Status und Intersektionalität impliziert. Dennoch können in der Dokumentation stilistische Abweichungen von diesem Bemühen auftreten, wenn Text verwendet wird, der in Benutzeroberflächen der Produktsoftware fest codiert ist, auf RFP-Dokumentation basiert oder von einem genannten Drittanbieterprodukt verwendet wird. Hier erfahren Sie mehr darüber, wie Cisco inklusive Sprache verwendet.
Cisco hat dieses Dokument maschinell übersetzen und von einem menschlichen Übersetzer editieren und korrigieren lassen, um unseren Benutzern auf der ganzen Welt Support-Inhalte in ihrer eigenen Sprache zu bieten. Bitte beachten Sie, dass selbst die beste maschinelle Übersetzung nicht so genau ist wie eine von einem professionellen Übersetzer angefertigte. Cisco Systems, Inc. übernimmt keine Haftung für die Richtigkeit dieser Übersetzungen und empfiehlt, immer das englische Originaldokument (siehe bereitgestellter Link) heranzuziehen.
In diesem Dokument wird die Fehlerbehebung für die HSRP-kompatible (Hot Standby Router Protocol) PIM-Funktion und die Szenarien beschrieben, in denen diese verwendet werden kann.
In Umgebungen, die eine Redundanz erfordern, wird HSRP normal ausgeführt. HSRP ist ein bewährtes Protokoll, das funktioniert, aber wie geht es um Clients, die Multicast benötigen? Was veranlasst Multicast dazu, zusammenzuführen, wenn der aktive Router (AR) ausfällt? In diesem Fall wird Topologie 1 verwendet:
Topologie 1
Dabei ist zu beachten, dass R3 der PIM Designated Router (DR) ist, obwohl R2 die HSRP AR ist. Das Netzwerk wurde mit Open Shortest Path First (OSPF) eingerichtet, PIM und R1 sind der Rendezvous Point (RP) mit einer 10.1.1.1-IP-Adresse. Sowohl R2 als auch R3 empfangen IGMP-Berichte (Internet Group Management Protocol), aber nur R3 sendet die PIM-Join-Nachricht, da es sich um die PIM DR handelt. R3 erstellt die '*,G' in Richtung des RP:
R3#sh ip mroute 239.0.0.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
Q - Received BGP S-A Route, q - Sent BGP S-A Route,
V - RD & Vector, v - Vector, p - PIM Joins on route
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.0.0.1), 02:54:15/00:02:20, RP 10.1.1.1, flags: SJC
Incoming interface: Ethernet0/0, RPF nbr 172.16.1.1
Outgoing interface list:
Ethernet0/2, Forward/Sparse, 00:25:59/00:02:20
Anschließend pingen Sie 239.0.0.1 von der Multicast-Quelle, um die S,G:
Sender#ping 239.0.0.1 re 3
Type escape sequence to abort.
Sending 3, 100-byte ICMP Echos to 239.0.0.1, timeout is 2 seconds:
Reply to request 0 from 10.0.0.10, 35 ms
Reply to request 1 from 10.0.0.10, 1 ms
Reply to request 2 from 10.0.0.10, 2 ms
Das S,G wurde erstellt:
R3#sh ip mroute 239.0.0.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
Q - Received BGP S-A Route, q - Sent BGP S-A Route,
V - RD & Vector, v - Vector, p - PIM Joins on route
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.0.0.1), 02:57:14/stopped, RP 10.1.1.1, flags: SJC
Incoming interface: Ethernet0/0, RPF nbr 172.16.1.1
Outgoing interface list:
Ethernet0/2, Forward/Sparse, 00:28:58/00:02:50
(192.168.1.10, 239.0.0.1), 00:02:03/00:00:56, flags: JT
Incoming interface: Ethernet0/0, RPF nbr 172.16.1.1
Outgoing interface list:
Ethernet0/2, Forward/Sparse, 00:02:03/00:02:50
Die Unicast- und Multicast-Topologie ist derzeit nicht konform. Dies kann wichtig sein oder nicht. Was passiert, wenn R3 fehlschlägt?
R3(config)#int e0/2
R3(config-if)#sh
R3(config-if)#
Keine Antworten auf die Pings kommen ein, bis PIM auf R2 erkennt, dass R3 weg ist und die Rolle des DR übernimmt. Bei Verwendung der Standard-Timer dauert dies zwischen 60 und 90 Sekunden.
Sender#ping 239.0.0.1 re 100 ti 1
Type escape sequence to abort.
Sending 100, 100-byte ICMP Echos to 239.0.0.1, timeout is 1 seconds:
Reply to request 0 from 10.0.0.10, 18 ms
Reply to request 1 from 10.0.0.10, 2 ms....................................................................
.......
Reply to request 77 from 10.0.0.10, 10 ms
Reply to request 78 from 10.0.0.10, 1 ms
Reply to request 79 from 10.0.0.10, 1 ms
Reply to request 80 from 10.0.0.10, 1 ms
Sie können die DR-Priorität für R2 erhöhen, um sie zur DR zu machen.
R2(config-if)#ip pim dr-priority 50
*May 30 12:42:45.900: %PIM-5-DRCHG: DR change from neighbor 10.0.0.3 to 10.0.0.2 on interface Ethernet0/2
HSRP-kompatibles PIM ist eine Funktion, die das HSRP AR zum PIM DR macht. Es sendet auch PIM-Nachrichten von der virtuellen IP-Adresse, die nützlich ist, wenn Sie einen Router mit einer statischen Route zu einer virtuellen IP (VIP) haben. So beschreibt Cisco die Funktion:
HSRP-kompatibles PIM ermöglicht die Weiterleitung von Multicast-Datenverkehr über HSRP AR, ermöglicht PIM die Nutzung der HSRP-Redundanz, vermeidet potenziell doppelten Datenverkehr und ermöglicht Failover, was von den HSRP-Zuständen im Gerät abhängt. Der PIM-DR wird auf demselben Gateway wie der HSRP AR ausgeführt und behält die Weiterleitungsstatus bei.
In Topologie 1 verläuft HSRP zu den Clients, sodass diese Funktion zwar perfekt geeignet klingt, aber bei der Multicast-Konvergenz nicht hilfreich ist. Konfigurieren Sie diese Funktion auf R2:
R2(config-if)#ip pim redundancy HSRP1 hsrp dr-priority 100
R2(config-if)#
*May 30 12:48:20.024: %PIM-5-DRCHG: DR change from neighbor 10.0.0.3 to 10.0.0.2 on interface Ethernet0/2
R2 ist jetzt der PIM DR, und R3 sieht jetzt zwei PIM-Nachbarn auf der Schnittstelle E0/2:
R3#sh ip pim nei e0/2
PIM Neighbor Table
Mode: B - Bidir Capable, DR - Designated Router, N - Default DR Priority,
P - Proxy Capable, S - State Refresh Capable, G - GenID Capable
Neighbor Interface Uptime/Expires Ver DR
Address Prio/Mode
10.0.0.1 Ethernet0/2 00:00:51/00:01:23 v2 0 / S P G
10.0.0.2 Ethernet0/2 00:07:24/00:01:23 v2 100/ DR S P G
R2 hat jetzt den S,G und Sie können sehen, dass er der Assert-Sieger war, da R3 zuvor der Multicast-Forwarder zum LAN-Segment war.
R2#sh ip mroute 239.0.0.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
Q - Received BGP S-A Route, q - Sent BGP S-A Route,
V - RD & Vector, v - Vector, p - PIM Joins on route
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.0.0.1), 00:20:31/stopped, RP 10.1.1.1, flags: SJC
Incoming interface: Ethernet0/0, RPF nbr 192.0.2.1
Outgoing interface list:
Ethernet0/2, Forward/Sparse, 00:16:21/00:02:35
(192.168.1.10, 239.0.0.1), 00:00:19/00:02:40, flags: JT
Incoming interface: Ethernet0/0, RPF nbr 192.0.2.1
Outgoing interface list:
Ethernet0/2, Forward/Sparse, 00:00:19/00:02:40, A
Was passiert, wenn die LAN-Schnittstelle des R2s ausfällt? Kann R3 zum DR werden? Und wie schnell kann es konvergiert werden?
R2(config)#int e0/2
R2(config-if)#sh
HSRP wechselt auf R3 zu active, aber die PIM DR-Rolle konvergiert erst, wenn das PIM-Abfragenintervall abgelaufen ist (3x hellos).
*May 30 12:51:44.204: HSRP: Et0/2 Grp 1 Redundancy "hsrp-Et0/2-1" state Standby -> Active
R3#sh ip pim nei e0/2
PIM Neighbor Table
Mode: B - Bidir Capable, DR - Designated Router, N - Default DR Priority,
P - Proxy Capable, S - State Refresh Capable, G - GenID Capable
Neighbor Interface Uptime/Expires Ver DR
Address Prio/Mode
10.0.0.1 Ethernet0/2 00:04:05/00:00:36 v2 0 / S P G
10.0.0.2 Ethernet0/2 00:10:39/00:00:36 v2 100/ DR S P G
R3#
*May 30 12:53:02.013: %PIM-5-NBRCHG: neighbor 10.0.0.2 DOWN on interface Ethernet0/2 DR
*May 30 12:53:02.013: %PIM-5-DRCHG: DR change from neighbor 10.0.0.2 to 10.0.0.3 on interface Ethernet0/2
*May 30 12:53:02.013: %PIM-5-NBRCHG: neighbor 10.0.0.1 DOWN on interface Ethernet0/2 non DR
Bei der PIM-Konvergenz gehen viele Pakete verloren:
Sender#ping 239.0.0.1 re 100 time 1
Type escape sequence to abort.
Sending 100, 100-byte ICMP Echos to 239.0.0.1, timeout is 1 seconds:
Reply to request 0 from 10.0.0.10, 5 ms
Reply to request 0 from 10.0.0.10, 14 ms...................................................................
Reply to request 68 from 10.0.0.10, 10 ms
Reply to request 69 from 10.0.0.10, 2 ms
Reply to request 70 from 10.0.0.10, 1 ms
HSRP ist sich bewusst, dass PIM hier nicht wirklich hilfreich war. Es ist hilfreich, wenn Sie stattdessen Topologie 2 verwenden:
Topologie 2
Der Router R5 wurde hinzugefügt, und der Receiver sitzt stattdessen hinter R5. R5 führt kein Routing mit R2 und R3 aus, sondern nur mit statischen Routing-Punkten am RP und der Multicast-Quelle:
R5(config)#ip route 10.1.1.1 255.255.255.255 10.0.0.1
R5(config)#ip route 192.168.1.0 255.255.255.0 10.0.0.1
Ohne HSRP-kompatibles PIM schlägt die RPF-Prüfung (Reverse Path Forwarding) fehl, da PIM-Peers mit der physischen Adresse vorhanden sind. R5 sieht jedoch drei Nachbarn im Segment, von denen einer das VIP ist:
R5#sh ip pim nei
PIM Neighbor Table
Mode: B - Bidir Capable, DR - Designated Router, N - Default DR Priority,
P - Proxy Capable, S - State Refresh Capable, G - GenID Capable
Neighbor Interface Uptime/Expires Ver DR
Address Prio/Mode
10.0.0.2 Ethernet0/0 00:03:00/00:01:41 v2 100/ DR S P G
10.0.0.1 Ethernet0/0 00:03:00/00:01:41 v2 0 / S P G
10.0.0.3 Ethernet0/0 00:03:00/00:01:41 v2 1 / S P G
R2 leitet Multicast unter normalen Bedingungen weiter, da es der PIM-DR über den HSRP-Status des aktiven Routers ist:
R2#sh ip mroute 239.0.0.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
Q - Received BGP S-A Route, q - Sent BGP S-A Route,
V - RD & Vector, v - Vector, p - PIM Joins on route
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.0.0.1), 00:02:12/00:02:39, RP 10.1.1.1, flags: S
Incoming interface: Ethernet0/0, RPF nbr 192.0.2.1
Outgoing interface list:
Ethernet0/2, Forward/Sparse, 00:02:12/00:02:39
Versuchen Sie einen Ping von der Quelle:
Sender#ping 239.0.0.1 re 3
Type escape sequence to abort.
Sending 3, 100-byte ICMP Echos to 239.0.0.1, timeout is 2 seconds:
Reply to request 0 from 198.51.100.10, 1 ms
Reply to request 1 from 198.51.100.10, 2 ms
Reply to request 2 from 198.51.100.10, 2 ms
Der Ping funktioniert, und R2 hat das S,G:
R2#sh ip mroute 239.0.0.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
Q - Received BGP S-A Route, q - Sent BGP S-A Route,
V - RD & Vector, v - Vector, p - PIM Joins on route
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.0.0.1), 00:04:18/00:03:29, RP 10.1.1.1, flags: S
Incoming interface: Ethernet0/0, RPF nbr 192.0.2.1
Outgoing interface list:
Ethernet0/2, Forward/Sparse, 00:04:18/00:03:29
(192.168.1.10, 239.0.0.1), 00:01:35/00:01:24, flags: T
Incoming interface: Ethernet0/0, RPF nbr 192.0.2.1
Outgoing interface list:
Ethernet0/2, Forward/Sparse, 00:01:35/00:03:29
Was passiert, wenn R2 ausfällt?
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#int e0/2
R2(config-if)#sh
R2(config-if)#
Sender#ping 239.0.0.1 re 200 ti 1
Type escape sequence to abort.
Sending 200, 100-byte ICMP Echos to 239.0.0.1, timeout is 1 seconds:
Reply to request 0 from 198.51.100.10, 9 ms
Reply to request 1 from 198.51.100.10, 2 ms
Reply to request 1 from 198.51.100.10, 11 ms....................................................................
......................................................................
............................................................
Die Pings laufen aus, weil R3 beim Eintreffen der PIM Join-Nachricht von R5 nicht erkennt, dass die Join-Nachricht verarbeitet werden muss.
*May 30 13:20:13.236: PIM(0): Received v2 Join/Prune on Ethernet0/2 from 10.0.0.5, not to us
*May 30 13:20:32.183: PIM(0): Generation ID changed from neighbor 10.0.0.2
Wie sich herausstellt, muss der PIM-Redundanzbefehl auch auf dem sekundären Router konfiguriert werden, damit er PIM-Joins zum VIP verarbeitet.
R3(config-if)#ip pim redundancy HSRP1 hsrp dr-priority 10
Nach der Konfiguration wird die eingehende Join-Nachricht verarbeitet. R3 veranlasst R5, eine neue Join-Nachricht zu senden, da die GenID im PIM hello auf einen neuen Wert festgelegt ist.
*May 30 13:59:19.333: PIM(0): Matched redundancy group VIP 10.0.0.1 on Ethernet0/2 Active, processing the Join/Prune, to us
*May 30 13:40:34.043: PIM(0): Generation ID changed from neighbor 10.0.0.1
Nach dieser Konfiguration konvergiert die PIM DR-Rolle so schnell, wie es HSRP zulässt. In diesem Szenario wird die Bidirectional Forwarding Detection (BFD) verwendet.
Das Schlüsselkonzept für das Verständnis des HSRP-kompatiblen PIM lautet hier:
Diese Funktion funktioniert nicht, wenn Sie einen Empfänger in einem HSRP-LAN haben, da die DR-Rolle erst verschoben wird, wenn die PIM-Adjacency abläuft.
Überarbeitung | Veröffentlichungsdatum | Kommentare |
---|---|---|
1.0 |
02-Jun-2022 |
Erstveröffentlichung |