
Cisco Meeting Server
Cisco Meeting Server Release 3.7 and later
Call Detail Records Guide

September 27, 2024

Cisco Systems, Inc. www.cisco.com

http://www.cisco.com/

Cisco Meeting Server Release 3.7 and later : CDR Guide 2

Contents

Change History 3

1 Introduction 4
1.1 How to Use this Document 4

2 General Mechanism 6
2.1 Configuring the Recipient Devices 6

2.1.1 Using the Web Admin Interface to configure the CDR receivers 6
2.1.2 Using the API to configure the CDR receivers 6
2.1.3 Recipient URI 7

3 Record Types 8

4 Record Details 11
4.1 callStart Record Contents 11
4.2 callEnd Record Contents 12
4.3 callLegStart Record Contents 13
4.4 callLegEnd Record Contents 16
4.5 callLegUpdate Record Contents 20
4.6 recordingStart Record Contents 21
4.7 recordingEnd Record Contents 21
4.8 streamingStart Record Contents 22
4.9 streamingEnd Record Contents 22

5 Reason Codes in Call Leg End Records 23

6 Example Traffic Flow 25

Appendix A Example script for creating a CDR receiver 29

Cisco Legal Information 31

Cisco Trademark 32

Figures:

Figure 1: Cisco Meeting Server documentation for release 3.10 5

Cisco Meeting Server Release 3.7 and later : CDR Guide 3

Change History
Date Change Summary

March 16, 2023 Updated for version 3.7

August 23, 2022 Updated for version 3.6.

April 20, 2022 Updated for version 3.5.

December 15, 2021 Updated for version 3.4.

September 16, 2021 Updated for version 3.3.

May 12, 2021 Removed distributionLink from subType in callLegStart Record Contents.

April 09, 2021 Updated for version 3.2.

July 29, 2020 Updated for version 3.0, removed references to X-Series servers.

May 05, 2020 Clarification added to Section 4.6

April 08, 2020 Updated for version 2.9.

January 07, 2020 Minor correction

September 16, 2019 callMove and displayName missing from callLegUpdate record.

August 13, 2019 Changed title to "... 2.6 and later", no changes for version 2.7.

July 19, 2019 Minor correction

April 23, 2019 Updated for version 2.6. Added canMove, movedCallLeg and
movedCallLegCallBridge to the callLegStart record.

December 12, 2018 Changed title to "... 2.4 and later", no changes for version 2.5.

September 20, 2018 Updated for version 2.4. Added endpointRecorded to the callEnd record.

December 20, 2017 Reissued for version 2.3. No additions or changes.

June 28, 2017 Added multiStreamVideo to mediaUsagePercentages in the callLegEnd
records.

June 28, 2017 Added example on creating a CDR receiver.

May 03, 2017 Updated for version 2.2. Added ownerName field to callStart records..

December 20, 2016 Updated for version 2.1. Additions and changes are indicated.

August 03, 2016 Rebranded for Cisco Meeting Server 2.0

Change History

Cisco Meeting Server Release 3.7 and later : CDR Guide 4

1 Introduction
The Cisco Meeting Server software can be hosted on specific servers based on Cisco Unified
Computing Server (UCS) technology or on a specification-based VM server. Cisco Meeting
Server is referred to as the Meeting Server throughout this document.

Note: Cisco Meeting Server software version 3.0 onwards does not support X-Series servers.

The Meeting Server generates Call Detail Records (CDRs) internally for key call-related events,
such as a new SIP connection arriving at the server, or a call being activated or deactivated.

The server can be configured to send these records to a remote system to be collected and
analyzed. There is no provision for records to be stored on a long-term basis on the Meeting
Server, nor any way to browse CDRs on the Meeting Server itself.

The CDR system can be used in conjunction with the Meeting Server API, with the call ID and
call leg IDs values being consistent between the two systems to allow cross referencing of
events and diagnostics.

The Meeting Server supports up to four CDR receivers enabling you to deploy different
management tools or multiple instances of the same management tool.

Note: Also refer to the Cisco Meeting Server API Reference guide.

1.1 How to Use this Document
This document is one of a number of reference guides as shown in the figure below.

It is split into sections allowing you to build your knowledge by reading from front to back. In
addition chapters 3, 4, and 5 act as a reference that can be “dipped into”. Each CDR record
type and its fields are described in detail.

This document describes a “minimum set” of information; the XML nature of the records means
that new elements may appear in new Call Bridge software versions and so you should always
allow for this when parsing the records we generate. A receiver must be able to cope with
additional, new elements, not mentioned in any existing version of the document (while at the
same time we commit to providing what the document says we provide, according to the
structure it describes).

These documents can be found on cisco.com.

1 Introduction

http://www.cisco.com/c/en/us/support/conferencing/meeting-server/tsd-products-support-series-home.html

Cisco Meeting Server Release 3.7 and later : CDR Guide 5

Figure 1: Cisco Meeting Server documentation for release 3.10

1 Introduction

Cisco Meeting Server Release 3.7 and later : CDR Guide 6

2 General Mechanism
CDRs are sent out by the Meeting Server over HTTP or HTTPS as a series of XML documents.
When new records are generated, a connection is made to the receiving system and the
receiving system should expect to receive one or multiple records on this connection. When
the Meeting Server has successfully sent a group of records to the receiver, those records are
no longer stored by the Meeting Server, and responsibility for their long-term storage then
moves to the receiving device. The Meeting Server considers the records to have been
successfully sent to the receiver if the HTTP or HTTPS connection has been successfully
established, the XML record data has been sent by the Meeting Server, and the receiver has
acknowledged the data with a "200 OK" HTTP response.

The Call Bridge supports keepalive connections to allow it to send multiple (batches of) records
on one TCP or TLS connection to a receiver.

Note: In scalable and resilient deployments where multiple Call Bridges act as a single entity,
each Call Bridge provides CDRs for the call legs that it is running. Each CDR identifies the
coSpace ID for the call leg. Then if a call is hosted over more than one Call Bridge, you can
identify the same call on different Call Bridges by the same coSpace ID.

2.1 Configuring the Recipient Devices

Note: The list of CDR receivers is held locally to an individual call bridge, it is not stored in the
database shared between clustered call bridges.

You can use either the Web Admin Interface or the API to configure the CDR receivers.

2.1.1 Using the Web Admin Interface to configure the CDR receivers

To configure the recipient of the CDRs:

 1. Open the Web Admin Interface.

 2. Go to Configure > CDR settings.

 3. In the CDR Receiver Settings section, for each receiver, enter the receiver’s HTTP or
HTTPS URI (see Section 2.1.3).

2.1.2 Using the API to configure the CDR receivers

Use the following API objects to enable up to four CDR receivers to be configured for the
Meeting Server:

2 General Mechanism

Cisco Meeting Server Release 3.7 and later : CDR Guide 7

 n /system/cdrReceivers/

 n /system/cdrReceivers/<CDR receiver id>

Issue a POST on the /system/cdrReceivers node to set the full URI of a new receiver. A GET
request on /system/cdrReceivers shows the currently configured receivers.

Once a CDR receiver has been configured, its details can be read and updated by use of a GET
or PUT on the /system/cdrReceivers/<CDR receiver id> node respectively. A CDR receiver can
be removed by a DELETE of this node.

2.1.3 Recipient URI

The recipient URIs, as configured on the Meeting Server, can take one of a number of forms:
 n http://monitoring.example.com/cdr_receiver1

for a simple HTTP connection to TCP port 80 on the remote host “monitoring. example
com”, to the URI “/cdr_receiver1”

 n https://monitoring. example.com/cdr_receiver1
As above, but using HTTPS, TCP port 443

 n http://monitoring. example.com:8080/cdr_receiver1
As above, but using TCP port 8080 instead of the default port number (80)

 n http://monitoring. example.com/cdr_receiver1?system_id=cms1
As above but supplying the parameter “system_id” with value “cms1” to the destination
device. The Meeting Server will just send parameters as supplied in the URI field verbatim
to the far end, and it is up to the receiving device to understand their meaning.

2 General Mechanism

Cisco Meeting Server Release 3.7 and later : CDR Guide 8

3 Record Types
CDRs are sent in XML as one or more "<record>" items within a parent "<records>" element.
Each record has an associated "type" value that identifies what it describes, and determines
which fields and attributes should be expected within it.

The encompassing “<records>” element includes:
 n a “session” value that takes the form of a GUID that is unique for that session. The session

GUID is created when the Call Bridge restarts; it will be the same for all active CDR
receivers for a given running Call Bridge instance, but changes when that Call Bridge
restarts. It is used by a receiving device to determine that the records it is receiving are
being sent from the same session on the same device.

 n a Call Bridge GUID if the Call Bridge is in a cluster. This identifies which Call Bridge in a
cluster is sending the record. This remains the same across all restarts of the system. Note
that it is not present in unclustered deployments. The Call Bridge GUID is the same as in the
/callBridges API object.

The “<record>” items includes:
 n a time value at which the record was generated on the Meeting Server. This timestamp is in

RFC 3339 / ISO 8601 format, for instance “2014-02-28T16:03:25Z” for 4:03pm on 28
February 2014). Currently, the Meeting Server always supplies these times in UTC.

 n the “correlatorIndex” that increments by 1 for each new record. Note: the combination of
"session GUID" and "correlatorIndex" uniquely identifies a record across all receivers,
enabling the receiver to determine whether it has received duplicate records.

The “correlatorIndex” starts at “0” for the first record that the Call Bridge generates after
booting up. The “correlatorIndex” for a record is the same across all CDR receivers. Hence
for a receiver that is configured sometime after the Call Bridge has booted, the first record it
receives may not be index 0.

When a receiver successfully receives a record, it needs to send a “200 OK” HTTP
response to the Call Bridge, the Call Bridge then sends the next set of records to the
receiver. If the “200 OK” HTTP response is not successfully received by the Call Bridge,
then the Call Bridge will resend the records resulting in the receiver receiving duplicate
records.

If a remote receiver has been unavailable for a period of time such that the Meeting Server
has not been able to store all of the generated records internally, records pushed to the
remote receiver will show a gap in the “correlatorIndex”.

 n the "recordIndex” has been replaced by the “correlatorIndex”. The "recordIndex” is now
deprecated and may be removed in future releases.

3 Record Types

Cisco Meeting Server Release 3.7 and later : CDR Guide 9

For completeness, the following describes how to use the "recordIndex”.

The "recordIndex” can be used to detemine whether the Meeting Server has received
duplicate records.

Note: If you have multiple cdr receivers then the “recordIndex” value can differ for the same
record for different receivers.

This description assumes you only have one receiver. The “recordIndex” within a
“<record>” items determines the sequence of records, starting at “1” for the first record
that the Call Bridge generates, and increasing by 1 for each new record sent. This
“recordIndex” value allows a CDR receiver to determine whether it has received duplicate
records; the combination of session GUID value and recordIndex is unique. The Call
Bridgee re-sends any CDRs for which it had not received a positive acknowledgement
from the receiver (a “200 OK” HTTP response). If a receiver sends such a positive response
but that response is not successfully received by the Call Bridge, the receiver may receive
duplicate records – the “recordIndex” allows the receiver to detect this and not process the
duplicate records.

If a remote receiver has been unavailable for a period of time such that the Meeting Server
has not been able to store all of the generated records internally, records pushed to the
remote receiver will include a numeric "numPreceedingRecordsMissing" value in the
"<record>" tag. This signals to the remote receiver that this number of records
(immediately preceding the record in whose header it appears) have been discarded and
are no longer available. A CDR receiver should not see a discontinuity in the “recordIndex”
sequence even in the presence of a non-zero value for “numPreceedingRecordsMissing”.

The record types are described briefly in Table 1 below, and in more detail in Chapter 4.

Table 1: Overview of Record Types

Record type Description

callStart This record is generated when a call is either created or first instantiated from a
coSpace. The record contains the call’s ID, its name, and the ID of any associated
coSpace.

callEnd This record is generated when a call ends, and typically will be seen after the last
call leg for the call has disconnected. The record contains the call ID, which
should match a call ID in an earlier callStart record, and summary values for the
call, such as the maximum number of call legs that were ever simultaneously act-
ive within the call.

3 Record Types

Cisco Meeting Server Release 3.7 and later : CDR Guide 10

Record type Description

callLegStart This record is generated when a call leg is first created, because of an incoming
connection, an outgoing call leg being established, or the user of a Cisco Meeting
App connecting to a coSpace. The record contains the call leg ID, the remote
party type (a SIP connection or a Cisco Meeting App device), the remote party
“name” (for instance their SIP URI) and, if meaningful, whether the call leg was
incoming or outgoing.

callLegEnd This record is generated when a call leg terminates, either because someone has
chosen to disconnect or because another user with sufficient privileges has
chosen to disconnect it. The record contains the call leg ID (which should cor-
respond to a call leg ID from an earlier callLegStart record), the reason for the dis-
connection, and certain other summary fields relating to the lifetime of the call leg
in question (which audio and video codecs were in use, for example).

callLegUpdate This record is generated when a significant change occurs for a call leg, for
instance that call leg being placed into a call, or (for the outgoing case) being
answered and so transitioning to “connected” state.

recordingStart This record is generated when recording starts on a call. The record contains the
ID of the recording that is starting, the path where the recording will be stored (dir-
ectory and filename), the URL of the recording device, the ID of the call that is
being recorded and the ID of the call leg that is recording the call.

recordingEnd This record is generated when the recording on a call is ended. It contains the ID
of the recording that is ending.

streamingStart This record is generated when streaming starts on a call. The record contains the
ID of the streaming that is starting, the URL and stream name of the streaming,
and the URL of the streaming device.

streamingEnd This record is generated when the streaming on a call is ended. It contains the ID
of the streaming that is ending.

3 Record Types

Cisco Meeting Server Release 3.7 and later : CDR Guide 11

4 Record Details
This section provides details of the parameter names and values which appear within the
“<record>” tag for each record type.

4.1 callStart Record Contents

Parameter Type Description

id ID The ID of the call that is starting. This is conveyed as an
“id” attribute within the “<call>” tag that encapsulates
the callStart record.

name String The name of the call; typically this is the name of the
coSpace if the call is associated with a coSpace.

coSpace ID The ID of the coSpace associated with this call. If this
call is not associated with a coSpace (for instance, if it
is an ad hoc call) then this field will not be present.

ownerName String Name of the owner of this call, taken from one of the
following in descending priority:
the value of the 'meetingScheduler' field of the
coSpace, or
the name of the user which owns the coSpace, or
the jid of the user which owns the coSpace, or
blank (this means that none of the above exist).

tenant ID In a multi-tenant deployment, specifies the tenant

cdrTag String If a coSpace was given a tag (see the API Reference),
this is shown in the callStart CDR. The tag is an optional,
up to 100 character text string used to help identify the
call.

callType coSpace|
adHoc|
lyncConferencing|
forwarding

One of:

coSpace - this call is a coSpace instantiation

adHoc - this is an ad hoc multi-party call

lyncConferencing - this call is a Meeting Server
connection to a Lync-hosted conference

forwarding - this is a forwarded / "gateway" call

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 12

Parameter Type Description

callCorrelator ID This value can be used to identify call legs which may
be distributed across multiple call bridges, but which
are all in the same call either in the same coSpace or an
ad hoc call.

Note: For calls within a coSpace, the callCorrelator
value will be the same for the life time of the coSpace.
For every ad hoc call, the value will be dynamically
generated.

coSpaceMetaDataConfigured true | false This is set to true when metadata has been configured
on the coSpace that this call is in. If the call is an adhoc
call then this field is false. (From version 3.2)

Note: In distributed calls, if you see multiple overlapping "callStart" records for:

 n a single coSpace ID, these call legs comprise a distributed coSpace call i.e. a coSpace call
hosted by more than one Call Bridge. You can search for the coSpace ID using the API.

 n a single callCorrelator value, these call legs comprise a distributed call. This can be a
coSpace call but may not be; for example a “point-to-point call” in which each call leg is
hosted by a different Call Bridge.

4.2 callEnd Record Contents

Parameter Type Description

id ID The ID of the call that is ending; an earlier “callStart” record will have been
generated for the same call. This is conveyed as an “id” attribute within the
“<call>” tag that encapsulates the callEnd record.

callLegsCompleted Number The number of call legs that have completed within this call.

callLegsMaxActive Number The maximum number of call legs that were simultaneously active within
this call.

durationSeconds Number The length of time (in seconds) that this call was active for.

endpointRecorded true|false Has a value of true if the call has been recorded by an endpoint such as a
Skype or Lync client at any given time. (From version 2.4)

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 13

4.3 callLegStart Record Contents

Parameter Type Description

id ID The ID of the call leg that is starting. This is
conveyed as an “id” attribute within the
“<callLeg>” tag that encapsulates the
callLegStart record.

displayName String The "friendly name" for a SIP endpoint, a
user's "real name" for an Cisco Meeting App
connection, or what a user types for a web
client guest connection. This value is blank if
the far end does not provide a friendly name.

localAddress String Any local destination relevant to the call leg
(e.g. what the caller connected to in order to
reach the Meeting Server.) The interpretation
of this value depends on the direction (see
below). Therefore, this is the destination
address for incoming calls, or the caller ID of
outgoing calls.

Note: In some call scenarios, no localAddress
applies e.g. calling out to an Cisco Meeting
App user from a coSpace with no defined
URIs.

remoteAddress String For SIP calls, the remote URI relevant to the
call leg. The interpretation of this value
depends on the direction (see below). This is
the destination URI for outgoing calls, or the
source URI of incoming calls.

remoteParty String The address of the remote party of this call leg.
For outgoing calls this is the output of the dial
transform and may not contain a domain.

cdrTag String If a call leg was given a tag, this is shown in the
CDR. The tag is an optional, up to 100
character text string used to help identify the
call leg.

guestConnection true|false (optional) Connections known to be guest
logins initiated via the WebRTC App have a
value of True here.

recording true|false Connections known to be recording the call
have a value of "true " here.

streaming true|false Connections known to be streaming the call
have a value of "true " here

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 14

Parameter Type Description

type sip|acano The type of call leg: either “acano” for a Cisco
Meeting App connection or “sip” for a SIP
connection.

subType lync|
avaya|
lyncdistribution|
webApp

A further specialization of the call leg type; if
the call leg is “sip”, possible values here are
"lync", "avaya", "lyncdistribution" or
"webApp".

lyncSubType audioVideo|
applicationSharing|
instantMessaging

A further specialization of the call leg type if
the call leg sub type is "lync".

audioVideo - this is a Lync call leg used for
exchange of audio and video between the Call
Bridgeand Lync

applicationSharing - this is a Lync call leg used
for application or desktop sharing between
Lync and the Call Bridge

instantMessaging - this is a Lync call leg used
for the exchange of instant messages
between Lync and the Call Bridge

direction incoming|
outgoing

For both sip and "acano" call types:

 incoming -if the remote SIP device initiated
the connection to the Meeting Server,

outgoing - if the call leg was established from
the Meeting Server to the remote SIP device.

call ID The call ID for this call leg. If known at the call
leg start time, this may be included, otherwise
it will be signaled in a later callLegUpdate
record

ownerId ID The ID that a remote, managing, system has
chosen to assign to this call leg, which has
meaning only to that remote system. This field
will be absent if no such owner ID has been
assigned to this call leg.

sipCallId String If the call leg is a SIP connection, this field will
hold the unique “Call-ID” value from the SIP
protocol headers, if known at call leg start
time.

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 15

Parameter Type Description

groupId ID For Lync calls only, this parameter links the
Presenter’s video callLeg and their
presentation stream if they share content. This
is also the ID that should be used when
performing “participant” API operations that
relate to this call leg.

A Lync presentation can create an extra
callLeg in the CDRs, and that these can be tied
together using the groupId parameter. (The
callId will of course be the same, but there can
be other Lync call legs in the call that aren’t
owned by the same user – it is the groupId that
is unique to a Lync ‘connection’.)

If the Lync caller stops and restarts sharing,
there will be a different call leg ID for the
content sharing connection that for the first
presentation, but the groupID will be the same.

replacesSipCallId String If the call leg replaces another SIP call, this
field will hold the unique "Call-ID" value (as a
string) from the SIP protocol headers of the
call that was replaced.

canMove true|false Indicates whether the participant owning this
call leg can be moved using the movedPar-
ticipant API command. (From version 2.6)

movedCallLeg ID If this call leg was created as part of a par-
ticipant move, the ID is the GUID of that par-
ticipant's call leg that it was moved from.
(From version 2.6)

movedCallLegCallBridge ID If this call leg was created as part of a par-
ticipant move, the ID is the GUID of the Call
Bridge hosting the conference that the moved
participant's call leg was homed on. (From ver-
sion 2.6)

confirmationStatus required/notRequired/confirmed

 l required: means that confirmation=true
was configured and the user has not yet
provided the DTMF confirmation to join
the call.

 l notRequired: means that
confirmation=true was not configured.

 l confirmed: means that a DTMF
sequence was entered to confirm that
the participant wants to join the call.

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 16

4.4 callLegEnd Record Contents

Parameter Type Description

id ID The ID of the call leg that is ending. This is
conveyed as an “id” attribute within the
“<callLeg>” tag that encapsulates the
callLegEnd record.

cdrTag String If a call leg was given a tag, this is shown in
the CDR. The tag is an optional, up to 100
character text string used to help identify
the call leg.

reason String The reason that the call leg is ending (see
the table in Section 5).

remoteTeardown true|false true - indicates that the ending of this call
leg was initiated by the remote party

false - indicates that the ending of this call
leg was initiated by the Meeting Server

reasonDetails String If the call leg ended due to a remote tear-
down, the parameter indicates whether the
call was a WebRTC call or a SIP call.

encryptedMedia

unencryptedMedia

 One or both of these values may be present
to indicate the presence or absence (based
on the value being “true” or “false”) of
encrypted or unencrypted media during the
lifetime of the call leg. If absent, that media
type was not present for this call leg.

durationSeconds Number The length of time (in seconds) that this call
leg was active for.

activatedDuration Number The length of time (in seconds) that this call
leg was activated.

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 17

Parameter Type Description

mediaUsagePercent
ages

 Information on the percentage of this call
leg's lifetime that the different types of
media were active.The media types are:

mainVideoViewer - user was receiving main
video

mainVideoContributor - user was
contributing to main video

presentationViewer - user was receiving
presentation information

presentationContributor - user was sharing
a presentation

multistreamVideo - percentage of time that
multistreamVideo was active.

multistreamVideo Information on the transmitted multistream video during the lifetime of this call leg.

Name Type Description

maxScreens Number The maximum number of multiscreen main video
screens active during the lifetime of this call leg;
for instance this will be 2 for dual video..

alarm There will be one or more of these elements if the call leg experienced any alarm
conditions during its lifetime.

Name Type Description

type packetLoss|
excessiveJitter|
highRoundTripTime

packetLoss - packet loss was
observed locally or reported by the far
end for this call leg

excessiveJitter - high jitter values
were observed locally or reported by
the far end for this call leg

highRoundTripTime - a long round trip
between the Meeting Server and the
remote party was detected for this call
leg

durationPercentage Number This value gives the percentage of the
call duration for which thae alarm
condition occurred.

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 18

Parameter Type Description

rxAudio

txAudio

Provides detail on the received audio (“rxAudio”,audio received by the Meeting Server
from the remote party) and transmitted audio (“txAudio”) during the lifetime of this call leg.
The rxAudio and txAudio sections may contain the following elements:

Parameter Type Description

codec one of:
g711u
g711a
g722
g728
g729
g722_1
g722_1c
aac
speexNb
speexWb
speexUwb
isacWb
opus

the audio codec used:
g711u - G.711 mu law
g711a - G.711 a law
g722 - G.722
g728 - G.728
g729 - G.729
g722_1 - G.722.1
g722_1c - G.722.1C
(G.722.1 Annex C)
aac - AAC
speexNb - Speex
narrowband
speexWb - Speex
wideband
speexUwb - Speex ultra-
wideband
isacWb - iSAC (internet
Speech Audio Codec)
wideband
isacSwb - iSAC (internet
Speech Audio Codec)
superwideband

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 19

Parameter Type Description

rxVideo

txVideo

Provides detail on the received video (“rxVideo”, video received by the Meeting Server
from the remote party) and transmitted video (“txVideo”) during the lifetime of this call leg.
The rxVideo and txVideo sections may contain the following elements:

Name Type Description

codec one of:
h261
h263
h263+
h264
h264Lync
vp8
rtVideo

the video codec used
h261 - H.261
h263 - H.263
h263+ - H.263+
h264 - H.264
h264Lync - H.264 SVC
for Lync
vp8 - VP8
rtVideo - RTVideo

maxSizeWidth Number The width of the maximum
video resolution used

maxSizeHeight Number The height of the maximum
video resolution used

Note: If a “rxVideo” or “txVideo” section is absent, no video was sent in that direction.

ownerId ID The ID that a remote, managing, system has
chosen to assign to this call leg, which has
meaning only to that remote system.

sipCallId String If the call leg is a SIP connection, this field
will hold the unique “Call-ID” value from the
SIP protocol headers.

confirmationStatus required/notRequired/confirmed/rejected l required: means that
confirmation=true was configured
and the user has not yet provided the
DTMF confirmation to join the call.

 l notRequired: means that
confirmation=true was not
configured.

 l confirmed: means that a DTMF
sequence was entered to confirm
that the participant wants to join the
call.

 l rejected: means that a DTMF
sequence was entered to reject the
call. The Meeting Management will
stop re-dialing the participant.

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 20

4.5 callLegUpdate Record Contents

Parameter Type Description

id ID The ID of the call leg that is being updated. This is
conveyed as an “id” attribute within the “<callLeg>”
tag that encapsulates the callLegUpdate record.

cdrTag String If a call leg was given a tag, this is shown in the CDR.
The tag is an optional, up to 100 character text string
used to help identify the call leg.

state connected or value absent If present, contains an indication of the call leg state;
currently only the “connected” value is supported.
An absence of this value indicates that the call leg
has not yet reached the connected state.

deactivated true|false Indicates if the call leg is currently deactivated

remoteAddress String For SIP calls, the remote uri relevant to the call leg.
The interpretation of this value depends on the dir-
ection (see below). Therefore, this is the destination
uri for outgoing calls, or the source uri of incoming
calls.

call

ivr

 The call ID for this call leg, or the (empty) “ivr”
indication if the call leg is currently in an IVR.

ownerId ID The ID that a remote, managing, system has chosen
to assign to this call leg, which has meaning only to
that remote system.

sipCallId String If the call leg is a SIP connection, this field will hold
the unique “Call-ID” value from the SIP protocol
headers, if known at call leg start time.

groupID ID For Lync calls only, this parameter links the
Presenter’s video callLeg and the Presentation
stream being sent.

displayName String The "friendly name" for a SIP endpoint, a user's
"real name" for an Cisco Meeting App connection,
or what a user types for a web client guest
connection. This value is blank if the far end does not
provide a friendly name.

canMove true|false Whether the participant owning this call leg can be
moved using the movedParticipant API command.

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 21

Parameter Type Description

confirmationStatus required/notRequired/confirmed l required: means that confirmation=true was
configured and the user has not yet provided
the DTMF confirmation to join the call.

 l notRequired: means that confirmation=true
was not configured.

 l confirmed: means that a DTMF sequence was
entered to confirm that the participant wants
to join the call.

The callLegUpdate record is sent by the Meeting Server when any of the call leg characteristics
it refers to change for a call leg. For example, a CDR receiver would expect to see such an
update record if a call leg moves from an IVR into a call, or if an external management system
changed the “ownerId” associated with that call leg.

4.6 recordingStart Record Contents

Parameter Type Description

id ID The ID of the recording that is starting. This is conveyed as an “id” attribute within the
“<recording>” tag that encapsulates the recordingStart record.

path String A string holding the directory and filename of the recording. (Applicable to internal
XMPP recorder only.)

recorderUri String The URI of the recording device if it is a SIP recorder. (Applicable to external third-
party SIP recorder only.)

call ID The ID of the call that is being recorded.

callLeg ID The ID of the call leg that is recording the call.

4.7 recordingEnd Record Contents

Parameter Type Description

id ID The ID of the recording that is ending. This is conveyed as an “id” attribute within the
“<recording>” tag that encapsulates the recordingEnd record.

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 22

4.8 streamingStart Record Contents

Parameter Type Description

id ID The ID of the streaming that is starting. This is conveyed as an “id” attribute within the
“<streaming>” tag that encapsulates the streamingStart record.

streamerUri URL The URL of the streaming device. (Applicable to the internal SIP streamer component.)

call ID The ID of the call that is being streamed.

callLeg ID The ID of the call leg that is streaming the call.

4.9 streamingEnd Record Contents

Parameter Type Description

id ID The ID of the streaming that is ending. This is conveyed as an “id” attribute within the
“<streaming>” tag that encapsulates the streamingEnd record.

4 Record Details

Cisco Meeting Server Release 3.7 and later : CDR Guide 23

5 Reason Codes in Call Leg End Records
Call leg end records contain a reason code (within a “<reason>” tag) and a separate indication
of whether the Meeting Server or the remote party chose to disconnect that call leg (a
“<remoteTeardown>” section containing either “true” or “false”).

Although the party which caused the disconnection can be determined by the disconnect
reason, a separate remote or local teardown indication allows future-proofing to the extent that
if new reason codes are added that are not understood by a CDR receiver, basic knowledge of
which side initiated the disconnect can still be obtained.

The possible values for the “<reason>” code are:

Reason Description

apiInitiatedTeardown The call leg was disconnected by the Meeting Server in response to an API
request to do so

callDeactivated The call leg was disconnected by the Meeting Server because the call of
which it was part was deactivated, and the deactivate action for the call leg
was set to "disconnect". See the API Reference for details

callEnded The call leg was disconnected by the Meeting Server because the call it was
part of ended, for instance in response to an API command to destroy it

callMoved The call leg was moved to improve the efficiency in the use of the Call Bridge
resources

clientInitiatedTeardown The call leg was disconnected by the Meeting Server in response to a request
to do so by an Cisco Meeting App with sufficient privileges

confirmationTimeOut The call leg was disconnected because the remote destination did not
respond in time. The voice prompt "you've been invited to a call, press 1 to
join" will have been played, but the person on the other end did not press a
key within a minute, causing the call leg to be disconnected using this reason
code.

dnsFailure A failure to resolve the host name of a remote destination; for example, as part
of the process of establishing a connection to a remote system

encryptionRequired The call leg was disconnected because there was a requirement for encrypted
media that was not able to be met

error An error has occurred during a SIP call resulting in the disconnection of the call
leg. This may be caused by the SIP endpoint losing power or crashing during a
call. If this happens repeatedly then turn on SIP tracing.

incorrectPasscode After the maximum number of retries, the user did not supply the correct PIN
for the call or coSpace they wanted to join

5 Reason Codes in Call Leg End Records

Cisco Meeting Server Release 3.7 and later : CDR Guide 24

Reason Description

ivrTimeout The call leg connected to an IVR but was not able to be transitioned to a call
within the required time

ivrUnknownCall After the maximum number of retries, the user did not supply a valid call ID to
join when in the IVR

localTeardown A normal teardown of the call leg by the Meeting Server

participantLimitReached You tried to add a new participant beyond the maximum number allowed for
the call

remoteBusy The call leg disconnected because the remote party signaled that they were
busy and unable to accept the connection

remoteRejected The call leg was rejected by the remote party

remoteTeardown The call leg was disconnected by the remote party. During a remote teardown
the parameter reasonDetails indicates whether the call was a WebRTC
call or a SIP call.

ringingTimeout The call leg reached the remote device, which rang but was not answered
within the required time interval

tenantParticipantLimitReached You tried to add a new participant beyond the maximum number allowed for
the owning tenant

timeout The call leg was disconnected by the Meeting Server because of a protocol
timeout, for instance a SIP session timeout or the lack of a mandatory
response to a SIP request

unknownDestination The call leg was an incoming connection to a destination that did not resolve to
a valid coSpace or user

5 Reason Codes in Call Leg End Records

Cisco Meeting Server Release 3.7 and later : CDR Guide 25

6 Example Traffic Flow
The following trace shows a typical example traffic flow. It covers two SIP clients connecting to
a meeting, then one ending the meeting, and the other SIP call then being dropped. The XML in
this example has be formatted to make it easier to read.

Events post #1
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callLegStart" time="2015-07-23T07:32:55Z" recordIndex="1"
correlatorIndex="0">
 <callLeg id="fc9c85ca-8c41-4a1a-9252-b16977d1e4e1">
 <remoteParty>sipclient1@example.com</remoteParty>
 <localAddress>access1@127.0.0.1</localAddress>
 <type>sip</type>
 <direction>incoming</direction>
 <groupId>18da80f3-8a71-4255-aa90-e1677b99b588</groupId>
 <sipCallId>b8a81da5-c24c-43db-ba58-742f587faec8</sipCallId>
 </callLeg>
 </record>
 </records>

Events post #2
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callStart" time="2015-07-23T07:32:55Z" recordIndex="2"
correlatorIndex="1">
 <call id="46d49cb4-8171-4abc-97f5-b88035b1da0a">
 <name>test564_1</name>
 <callType>coSpace</callType>
 <coSpace>50605235-60cf-484a-9fa1-278ad0646243</coSpace>
 <callCorrelator>5f3300c5-ca67-40e0-a503-
91baec70dbbe</callCorrelator>
 </call>
 </record>
 <record type="callLegUpdate" time="2015-07-23T07:32:55Z"
recordIndex="3" correlatorIndex="2">
 <callLeg id="fc9c85ca-8c41-4a1a-9252-b16977d1e4e1">
 <state>connected</state>
 <call>46d49cb4-8171-4abc-97f5-b88035b1da0a</call>
 <groupId>18da80f3-8a71-4255-aa90-e1677b99b588</groupId>
 <sipCallId>b8a81da5-c24c-43db-ba58-742f587faec8</sipCallId>
 </callLeg>
 </record>
 </records>

6 Example Traffic Flow

Cisco Meeting Server Release 3.7 and later : CDR Guide 26

Events post #3
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callLegStart" time="2015-07-23T07:32:55Z" recordIndex="4"
correlatorIndex="3">
 <callLeg id="9cfdb064-3ae9-4b08-a003-6478187f375f">
 <remoteParty>sipclient2@example.com</remoteParty>
 <localAddress>access2@127.0.0.1</localAddress>
 <type>sip</type>
 <direction>incoming</direction>
 <groupId>3420c93f-f33c-4c9e-be95-d0d1bfb207f0</groupId>
 <sipCallId>a939937c-8b5e-4376-92de-97635983d7ef</sipCallId>
 </callLeg>
 </record>
 </records>

Events post #4
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callLegUpdate" time="2015-07-23T07:32:55Z"
recordIndex="5" correlatorIndex="4">
 <callLeg id="9cfdb064-3ae9-4b08-a003-6478187f375f">
 <state>connected</state>
 <call>46d49cb4-8171-4abc-97f5-b88035b1da0a</call>
 <groupId>3420c93f-f33c-4c9e-be95-d0d1bfb207f0</groupId>
 <sipCallId>a939937c-8b5e-4376-92de-97635983d7ef</sipCallId>
 </callLeg>
 </record>
 </records>

Events post #5
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callLegEnd" time="2015-07-23T07:33:05Z" recordIndex="6"
correlatorIndex="5">
 <callLeg id="9cfdb064-3ae9-4b08-a003-6478187f375f">
 <reason>remoteTeardown</reason>
 <remoteTeardown>true</remoteTeardown>
 <durationSeconds>10</durationSeconds>
 <mediaUsagePercentages>
 <mainVideoViewer>100.0</mainVideoViewer>
 <mainVideoContributor>100.0</mainVideoContributor>
 </mediaUsagePercentages>
 <unencryptedMedia>true</unencryptedMedia>
 <rxAudio>
 <codec>g722</codec>
 <packetStatistics>

6 Example Traffic Flow

Cisco Meeting Server Release 3.7 and later : CDR Guide 27

 <packetLossBursts>
 <duration>0.000</duration>
 <density>0.00</density>
 </packetLossBursts>
 <packetGap>
 <duration>9.701</duration>
 <density>0.00</density>
 </packetGap>
 </packetStatistics>
 </rxAudio>
 <txAudio>
 <codec>g722_1c</codec>
 </txAudio>
 <rxVideo>
 <codec>h264</codec>
 <maxSizeWidth>768</maxSizeWidth>
 <maxSizeHeight>448</maxSizeHeight>
 <packetStatistics>
 <packetLossBursts>
 <duration>0.000</duration>
 <density>0.00</density>
 </packetLossBursts>
 <packetGap>
 <duration>8.597</duration>
 <density>0.00</density>
 </packetGap>
 </packetStatistics>
 </rxVideo>
 <txVideo>
 <codec>h264</codec>
 <maxSizeWidth>1280</maxSizeWidth>
 <maxSizeHeight>720</maxSizeHeight>
 </txVideo>
 <sipCallId>a939937c-8b5e-4376-92de-97635983d7ef</sipCallId>
 </callLeg>
 <record>
 </records>

Events post #6
<?xml version="1.0"?>
 <records session=“a865433a-4926-4549-a701-9bb5b93c75e6”
callBridge=“158ba4f7-70eb-4a35-982c-71d4f1674277”>
 <record type="callLegEnd" time="2015-07-23T07:33:05Z" recordIndex="7"
correlatorIndex="6">
 <callLeg id="fc9c85ca-8c41-4a1a-9252-b16977d1e4e1">
 <reason>callDeactivated</reason>
 <remoteTeardown>false</remoteTeardown>
 <durationSeconds>10</durationSeconds>
 <mediaUsagePercentages>
 <mainVideoViewer>100.0</mainVideoViewer>
 <mainVideoContributor>100.0</mainVideoContributor>
 </mediaUsagePercentages>

6 Example Traffic Flow

Cisco Meeting Server Release 3.7 and later : CDR Guide 28

 <unencryptedMedia>true</unencryptedMedia>
 <rxAudio>
 <codec>g711u</codec>
 <packetStatistics>
 <packetLossBursts>
 <duration>0.000</duration>
 <density>0.00</density>
 </packetLossBursts>
 <packetGap>
 <duration>9.702</duration>
 <density>0.00</density>
 </packetGap>
 </packetStatistics>
 </rxAudio>
 <txAudio>
 <codec>g722_1c</codec>
 </txAudio>
 <rxVideo>
 <codec>h264</codec>
 <maxSizeWidth>1280</maxSizeWidth>
 <maxSizeHeight>720</maxSizeHeight>
 <packetStatistics>
 <packetLossBursts>
 <duration>0.000</duration>
 <density>0.00</density>
 </packetLossBursts>
 <packetGap>
 <duration>8.484</duration>
 <density>0.00</density>
 </packetGap>
 </packetStatistics>
 </rxVideo>
 <txVideo>
 <codec>h264</codec>
 <maxSizeWidth>1024</maxSizeWidth>
 <maxSizeHeight>576</maxSizeHeight>
 </txVideo>
 <sipCallId>b8a81da5-c24c-43db-ba58-742f587faec8</sipCallId>
 </callLeg>
 </record>
 <record type="callEnd" time="2015-07-23T07:33:05Z" recordIndex="8"
correlatorIndex="7">
 <call id="46d49cb4-8171-4abc-97f5-b88035b1da0a">
 <callLegsCompleted>2</callLegsCompleted>
 <callLegsMaxActive>2</callLegsMaxActive>
 <durationSeconds>10</durationSeconds>
 </call>
 </record>
 </records>

6 Example Traffic Flow

Cisco Meeting Server Release 3.7 and later : CDR Guide 29

Appendix A Example script for creating a CDR
receiver
The following python script illustrates how to create a CDR receiver. The example is for
illustrative purposes only, and Cisco will not provide any support or warranty in the use of the
code. Cisco reserves copyright of the code.

#!/usr/bin/python

Example CDR receiver code for Cisco Meeting Server
Copyright - Cisco Systems (2013-2017)
No support, warranty or liability exists for this code

import BaseHTTPServer
import sys
import getopt
import ssl

class RequestHandler(BaseHTTPServer.BaseHTTPRequestHandler):

handler = BaseHTTPServer.BaseHTTPRequestHandler
handler.protocol_version = 'HTTP/1.1'
print "using protocol version:", handler.protocol_version

def do_GET(self) :

#print 'received request for GET', self.path
self.send_response(200)
self.end_headers()

def do_POST(self) :
print 'received request for POST', self.path
length = int(self.headers['Content-Length'])
post_data = self.rfile.read(length)
print 'data:', post_data
self.send_response(200)
self.end_headers()

def log_message(self, format, *args):
return

def main(argv) :

try:

Appendix A Example script for creating a CDR receiver

Cisco Meeting Server Release 3.7 and later : CDR Guide 30

opts, args = getopt.getopt(argv, 'p:c:k:')
port = [val for opt,val in opts if opt=='-p'][0]
assert(len(port) > 0)
certfile_name = ''
keyfile_name = ''
for opt,val in opts :

if opt=='-c' :
certfile_name = val

if opt=='-k' :
keyfile_name = val

except:
print 'usage: cdr_receiver.py -p <port> [-c <certfile path>] [-
k <keyfile path>]'
sys.exit(2)

server_address = ('', int(port))
httpd = BaseHTTPServer.HTTPServer(server_address, RequestHandler)
if (len(certfile_name) > 0) :

print 'HTTPS mode with certfile', certfile_name
httpd.socket = ssl.wrap_socket (httpd.socket, keyfile=keyfile_
name, certfile=certfile_name, server_side=True)

try :
httpd.serve_forever()

except KeyboardInterrupt:
pass

httpd.server_close()

if __name__ == "__main__":

main(sys.argv[1:])

Appendix A Example script for creating a CDR receiver

Cisco Meeting Server Release 3.7 and later : CDR Guide 31

Cisco Legal Information
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL
ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND
RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE
PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE
FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT
ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND
ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE
SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE
FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program
developed by the University of California, Berkeley (UCB) as part of UCB’s public domain
version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the
University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND
SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND
THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL,
CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST
PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE
THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not
intended to be actual addresses and phone numbers. Any examples, command display output,
network topology diagrams, and other figures included in the document are shown for
illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative
content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See
the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the
Cisco website at www.cisco.com/go/offices.

© 2016-2024 Cisco Systems, Inc. All rights reserved.

Cisco Legal Information

Cisco Meeting Server Release 3.7 and later : CDR Guide 32

Cisco Trademark
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates
in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their
respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (1721R)

Cisco Trademark

http://www.cisco.com/go/trademarks

	Change History
	1 Introduction
	1.1 How to Use this Document

	2 General Mechanism
	2.1 Configuring the Recipient Devices
	2.1.1 Using the Web Admin Interface to configure the CDR receivers
	2.1.2 Using the API to configure the CDR receivers
	2.1.3 Recipient URI

	3 Record Types
	4 Record Details
	4.1 callStart Record Contents
	4.2 callEnd Record Contents
	4.3 callLegStart Record Contents
	4.4 callLegEnd Record Contents
	4.5 callLegUpdate Record Contents
	4.6 recordingStart Record Contents
	4.7 recordingEnd Record Contents
	4.8 streamingStart Record Contents
	4.9 streamingEnd Record Contents

	5 Reason Codes in Call Leg End Records
	6 Example Traffic Flow
	Appendix A Example script for creating a CDR receiver
	Cisco Legal Information
	Cisco Trademark

